首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
利用新一代天气雷达(CINRAD/SA)对2004年11月10日闽西地区出现的一次秋季强降雹过程的超级单体风暴进行分析,对风暴的演变、结构、三体散射现象及相应的雷达产品做初步分析,得出该超级单体具有钩状回波、有界弱回波区、中气旋及三体散射现象等特征,这些持征对判断强对流天气有较好的指示作用。秋季出现强对流天气时垂直累积液态含水量(VIL)值较春、夏季小。  相似文献   

2.
一次强降水超级单体风暴过程分析   总被引:3,自引:1,他引:2       下载免费PDF全文
概述了2006年6月16日影响大连机场的一次由强降水超级单体导致的“黑昼”天气的天气背景,应用卫星云图分析了雷暴云团的演变过程;利用大连市气象局新一代天气雷达资料,分析了强降水超级单体的雷达回波特征。结果表明:“黑昼”现象出现的主要原因是高空受东北冷涡控制,东北冷涡底部干冷空气与暖湿东南气流汇合,在大连地区上空形成了强降水超级单体。新一代天气雷达图像上强度图的演变与强降水超级单体模式相吻合;剖面图上显示出强降水超级单体的明显结构;存在着中气旋和中等到强的垂直风切变;分析了此次过程中出现冰雹的相关因子。  相似文献   

3.
新一代天气雷达超级单体风暴中气旋特征分析   总被引:4,自引:0,他引:4  
超级单体风暴常伴随着冰雹、雷雨大风等强对流天气,最本质的特征是有一持久深厚的几千米尺度的涡旋——中气旋。利用2003--2009年福建龙岩新一代天气雷达观测到的32次超级单体风暴,分析了超级单体风暴中气旋的时空分布、结构特征以及旋转速度大小、中气旋顶和底的高度、伸长厚度以及切变值等特征量。结果表明:90%以上的超级单体中尺度气旋是与冰雹、雷雨大风、短时强降水等强对流天气相联系的。统计8次有详细灾情的雷雨大风或冰雹天气过程发现,中气旋强度不断加强,中气旋厚度加大,最强切变中心突降时将产生大风或冰雹等强对流天气。  相似文献   

4.
李庆 《四川气象》2003,23(3):54-55
1994年7月17日04时至05时左右,产生在成都市新都县及青白江区的大风、冰雹雷达回波特征图为依据,分析得出:这次局地强对流天气过程是一次典型的超级单体冰雹云活动所致。  相似文献   

5.
三峡坝区一次强风暴天气的多普勒雷达回波特征   总被引:1,自引:0,他引:1  
利用宜昌WSR-98D多普勒天气雷达资料,对2001年7月23日发生在三峡坝区的10级强对流风暴雷达回波进行了分析。结果发现:对流单体随环境风场发生东北移动且右向传播;风暴发生前20分钟,多普勒天气雷达速度图上有气旋性切变;风暴发生时回波顶出现坍塌。  相似文献   

6.
通过对强雹暴灾害性天气雷达回波形状、有界区域的分析,发现强雹暴云团雷达回波,具有强降水超级单体的特征,加强超级单体、飑线风暴等强对流天气的分析研究,对做好强对流天气的预报、预警,具有重要意义。  相似文献   

7.
利用烟台新一代天气雷达资料,结合自动气象站和常规观测资料,分析了2004年5月16日山东半岛西部强对流天气背景和雷达回波特征。结果表明:此次强对流天气是由高空低涡和地面气旋造成的,在雷达径向速度图上,有中气旋特征,并与地面风场相对应。  相似文献   

8.
通过对2006年7月7日发生在曲靖中部及南部的强对流天气的环流特征及相应的多普勒雷达产品的形状、强度、移向进行分析。得出在有利的大尺度天气环流形势背景下,曲靖处于冷锋切变前,具备有利的温湿条件和极不稳定能量时,极易生产强对流天气,同时当在多普勒雷达上出现典型的超级单体对流、倒“V”型、钩状回波、弓形回波等时,会伴有冰雹、大风天气出现。  相似文献   

9.
灵璧强龙卷个例的多普勒天气雷达分析   总被引:8,自引:0,他引:8  
宋子忠  刘娟  张健  卢海  项阳 《气象科学》2006,26(6):689-695
本文利用阜阳CINRAD/SA型新一代多普勒天气雷达的基本产品和部分导出产品等综合分析了2005年7月30日下午发生在灵壁县境内的一次强龙卷天气过程,分析了导致这次强对流天气的环流背景和多普勒天气雷达回波特征,发现该过程是由一个超级单体产生的。通过对阜阳和徐州雷达资料的对比分析,揭示了产生强龙卷天气的龙卷涡旋特征和垂直累积液态水的规律,总结出应用新一代多普勒天气雷达回波资料做临近预报的一些经验,为0~2 h局地强对流天气的临近预报提供了依据。  相似文献   

10.
CINRAD/SA中气旋产品与强对流天气   总被引:8,自引:5,他引:8       下载免费PDF全文
朱君鉴  王令  黄秀韶  刁秀广 《气象》2005,31(2):38-42
分析了济南新一代天气雷达2002年观测到的14次中气旋产品和滨州新一代天气雷达2001年1次风暴过程的中气旋产品。产生这些中气旋的风暴中有一次超级单体风暴和一次小型超级单体风暴,中气旋在这两次风暴中都维持了较长的时间。风暴产生了冰雹和雷雨大风天气。其余几次中气旋维持时间很短,产生这些中气旋的风暴不一定产生冰雹等强天气,预报时可在中气旋强度的基础上,结合环境条件和雷达的其它产品分析判断。  相似文献   

11.
12.
A simplified vegetation distribution prediction scheme is used in combination with the Biosphere-Atmosphere Transfer Scheme (BATS) and coupled to a version of the NCAR Community Climate Model (CCM1) which includes a mixed-layer ocean. Employed in an off-line mode as a diagnostic tool, the scheme predicts a slightly darker and slightly rougher continental surface than when BATS' prescribed vegetation classes are used. The impact of tropical deforestation on regional climates, and hence on diagnosed vegetation, differs between South America and S.E. Asia. In the Amazon, the climatic effects of removing all the tropical forest are so marked that in only one of the 18 deforested grid elements could the new climate sustain tropical forest vegetation whereas in S.E. Asia in seven of the 9 deforested elements the climate could continue to support tropical forest. Following these off-line tests, the simple vegetation scheme has been coupled to the GCM as an interactive (or two-way) submodel for a test integration lasting 5.6 yr. It is found to be a stable component of the global climate system, producing only ~ 3% (absolute) interannual changes in the predicted percentages of continental vegetation, together with globally-averaged continental temperature increases of up to + 1.5 °C and evaporation increases of 0 to 5 W m–2 and no discernible trends over the 67 months of integration. On the other hand, this interactive land biosphere causes regional-scale temperature differences of ± 10 °C and commensurate disturbances in other climatic parameters. Tuning, similar to the q-flux schemes used for ocean models, could improve the simulation of the present-day surface climate but, in the longer term, it will be important to focus on predicting the characteristics of the continental surface rather than simple vegetation classes. The coupling scheme will also have to allow for vegetation responses occurring over longer timescales so that the coupled system is buffered from sudden shocks.  相似文献   

13.
Summary The boundary-layer wind field during weak synoptic conditions is largely controlled by the nature of the landscape. Mesoscale (sub-synoptic) circulations result from horizontal gradients of sensible heat flux due to variation in local topography, variation in surface-cover, and discontinuities such as land-sea contrasts. Such flows are usually referred to as thermally-driven circulations, and are diurnal in nature and often predictable. In this paper we use a state-of-the-art non-hydrostatic computer model to shed light on the physical mechanisms that drive a persistent easterly wind that develops in the afternoon in the Mackenzie Basin, New Zealand. The easterly – Canterbury Plains Breeze (CPB) – is observed early in the afternoon and is often intense, with mean wind speeds reaching up to 12 m s−1. Although computer modelling in mountainous terrain is extremely challenging, the model is able to simulate this circulation satisfactorily. To further investigate the mechanisms that generate the Canterbury Plains Breeze, two additional idealized model experiments are performed. With each experiment, the effects of the synoptic scale wind and the ocean around the South Island, New Zealand were successively removed. The results show that contrary to previous suggestions, the Canterbury Plains Breeze is not an intrusion of the coastal sea breeze or the Canterbury north-easterly, but can be generated by heating of the basin alone. This conclusion highlights the importance of mountain basins and saddles in controlling near-surface wind regimes in complex terrain.  相似文献   

14.
Earlier GCM studies have expressed the concern that an enhancement of greenhouse warming might increase the occurrence of summer droughts in mid-latitudes, especially in southern Europe and central North America. This could represent a severe threat for agriculture in the regions concerned, where summer is the main growing season. These predictions must however be considered as uncertain, since most studies featuring enhanced summer dryness in mid-latitudes use very simple representations of the land-surface processes ("bucket" models), despite their key importance for the issue considered. The current study uses a regional climate model including a land-surface scheme of intermediate complexity to investigate the sensitivity of the summer climate to enhanced greenhouse warming over the American Midwest. A surrogate climate change scenario is used for the simulation of a warmer climate. The control runs are driven at the lateral boundaries and the sea surface by reanalysis data and observations, respectively. The warmer climate experiments are forced by a modified set of initial and lateral boundary conditions. The modifications consist of a uniform 3 K temperature increase and an attendant increase of specific humidity (unchanged relative humidity). This strategy maintains a similar dynamical forcing in the warmer climate experiments, thus allowing to investigate thermodynamical impacts of climate change in comparative isolation. The atmospheric CO 2 concentration of the sensitivity experiments is set to four times its pre-industrial value. The simulations are conducted from March 15 to October 1st, for 4 years corresponding to drought (1988), normal (1986, 1990) and flood (1993) conditions. The numerical experiments do not present any great enhancement of summer drying under warmer climatic conditions. First, the overall changes in the hydrological cycle (especially evapotranspiration) are of small magnitude despite the strong forcing applied. Second, precipitation increases in spring lead to higher soil water recharge during this season, compensating for the enhanced soil moisture depletion occurring later in the year. Additional simulations replacing the plant control on transpiration with a bucket-type formulation presented increased soil drying in 1988, the drought year. This suggests that vegetation control on transpiration might play an important part in counteracting an enhancement of summer drying when soil water gets limited. Though further aspects of this issue would need investigating, our results underline the importance of land-surface processes in climate integrations and suggest that the risk of enhanced summer dryness in the region studied might be less acute than previously assumed, provided the North American general circulation does not change markedly with global warming.  相似文献   

15.
Summary A formation of a cold air lake in a basin is studied with a mesometeorological model.A dynamic Boussinesq hydrostatic mesoscale numerical model is developed in a staggered orthogonal grid with a horizontal resolution of 1 km and with a varying vertical grid. The topography is presented in a block shape so that computation levels are horizontal.The mesometeorological model is tested in three idealized topography cases (a valley, a single mountain, a basin) and test results are discussed.In an alpine basin surrounded by mountains and plateaus the air is supposed to be stagnant at the beginning of the night. Due to differences in radiation cooling an inversion layer is formed in the basin and local wind circulation is studied by model simulations.With 14 Figures  相似文献   

16.
一次台风前部龙卷的多普勒天气雷达分析   总被引:12,自引:3,他引:12       下载免费PDF全文
通过分析2004年8月25日发生在浙江省宁波市的一次台风前部龙卷发生发展的环境特征, 发现该龙卷发生在台风前部风切变区里, 尽管当时涡度、散度等物理量对于深对流发展不是非常有利, 但下湿中干、强的垂直风切变及地形条件等还是有利于局地弱龙卷的产生; 在宁波新一代天气雷达产品上表现为强的钩状回波, 速度场上有相邻的正负速度中心及强的组合切变值等。通过多个反射率产品、剖面产品等综合分析了该风暴的三维结构, 初步了解此类弱龙卷的发生机理, 为以后的预报提供一些经验。  相似文献   

17.
Simultaneous particle-image velocimetry and laser-induced fluorescence combined with large-eddy simulations are used to investigate the flow and pollutant dispersion behaviour in a rural-to-urban roughness transition. The urban roughness is characterized by an array of cubical obstacles in an aligned arrangement. A plane fence is added one obstacle height h upstream of the urban roughness elements, with three different fence heights considered. A smooth-wall turbulent boundary layer with a depth of 10h is used as the approaching flow, and a passive tracer is released from a uniform line source 1h upstream of the fence. A shear layer is formed at the top of the fence, which increases in strength for the higher fence cases, resulting in a deeper internal boundary layer (IBL). It is found that the mean flow for the rural-to-urban transition can be described by means of a mixing-length model provided that the transitional effects are accounted for. The mixing-length formulation for sparse urban canopies, as found in the literature, is extended to take into account the blockage effect in dense canopies. Additionally, the average mean concentration field is found to scale with the IBL depth and the bulk velocity in the IBL.  相似文献   

18.
Energy transfer via resonance in a stratified fluid with a constant Brunt–Väisälä frequency is studied through the Manley–Rowe relation and direct numerical simulations. The objectives of this study are two-fold. One is to determine if there is a limitation on the lengthscale of small-scale waves to which primary energy can be effectively transferred. The other is to study factors affecting the growth of parametric subharmonic instability. Resonantly interacting modes are classified into three groups: local sum modes, quasi-subharmonic modes and remote parametric subharmonic instability modes (characterized by interaction with very small-scale waves). The latter two involve energy transfer from a primary wave to secondary waves with half the frequency. Most energy transfer is through local sum resonant modes and quasi-subharmonic modes. Energy cannot effectively transfer to higher wavenumber modes since dynamical systems are altered as wavenumbers of excited modes increase. In the remote modes, the solution is sinusoidal with high angular frequency and very small energy capacity. As a consequence, these modes are inactive in energy transfer despite their high energy growth rates. Effects of non-uniform white noise amplitude and primary mode propagation angle on the quasi-subharmonic modes are also investigated. Implications for energy transfer in the ocean are discussed.  相似文献   

19.
《Climate Policy》2013,13(6):652-668
Sectoral approaches have been gaining currency in the international climate debate as a possible remedy to the shortfalls of the Kyoto Protocol. Proponents argue that a sector-based architecture can more easily invite the participation of developing countries, address competitiveness issues, and enable immediate emissions reductions. However, given the numerous proposals, much confusion remains as to what sectoral approaches actually are. This article provides a simple, yet comprehensive, taxonomy of the various proposals for sectoral approaches. Based on the dual criteria of content and actors, three such types are identified and described: government targets and timetables; industry targets and timetables; and transnational technology cooperation. For each of these types, existing proposals and ongoing initiatives are discussed. In a second step, the article analyses the political landscape in which sectoral approaches are being debated, identifying the interests of their key advocates as well as the concerns of their critics. The Japanese government and energy-intensive manufacturing industries represent the main proponents of sectoral approaches to address the problems of carbon leakage and economic competitiveness. Developing countries, on the other hand, are wary of attempts to impose emissions reduction targets on their economies through sectoral target-setting. They, therefore, interpret sectoral approaches as sector-based forms of technology cooperation and technology transfer.  相似文献   

20.
Frequent fog severely restricts evaporation from blanket bogs in Newfoundland because it more than halves the radiant energy input, and it eliminates the vapor pressure deficit, resulting in evaporation at the equilibrium rate (average = 0.99 during fog). During these periods, there is no surface resistance to evaporation because the bog has been wetted by fog drip, and although the latent heat flux dominates over sensible heat (average = 0.8), both are small. In contrast, the surface dries during clear periods, increasing the surface resistance to evaporation so that sensible heat becomes more important ( = 1.05). When the mosses are dry, evaporation is below the equilibrium rate ( = 0.87), although the higher available energy ensures that actual evaporation is higher. During clear periods, daily evaporation averaged 2.5 mm, compared to 1.1 and 0.7 mm for fog and rain, respectively. The suppressed evaporation at this site is important in maintaining appropriate hydrological conditions for blanket bog development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号