首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Aerosol optical properties over Solar Village, Saudi Arabia have been studied using ground-based remote sensing observations through the Aerosol Robotic Network (AERONET). Our analysis covered 8 recorded years of aerosol measurements, starting from February 1999 through January 2007. The seasonal mean values of aerosol optical thickness (AOT), the Ångström wavelength exponent α and the surface wind speed (V), exhibit a one year cyclical pattern. Seasonal variations are clearly found in the shape and magnitude of the volume size distribution (VSD) of the coarse size mode due to dust emission. The Spring is characterized by dusty aerosols as the modal value of the exponent α was low ~ 0.25 while that of AOT was high ~ 0.3. The modal value of wind speed was the highest ~ 3.6 m/s in spring. The increase in wind speed is responsible for increasing the concentration of dust particles during Spring. Spring of 2003 has the highest mean values of AOT, V and VSD and the lowest mean value for the exponent α. The seasonal mean values of the exponent α are anticorrelated with those of the wind speed (r = − 0.63). The annual mean values of the exponent α are well correlated (r = 0.77) with those of the difference between the maximum and minimum values of temperature ΔT. They are anticorrelated (r = − 0.74) with the annual mean values of the relative humidity. Large aerosol particles and high relative humidity increase the radiative forcing. This results in reduction of the values of the temperature difference ΔT.  相似文献   

2.
Black carbon aerosols plays an important role in the earth's radiative balance and little is known of their concentrations, distributions, source strength, and especially the aerosol chemistry of the developing world. The present study addresses the impact of back carbon aerosols on different atmospheric species like CO and tropospheric ozone over an urban environment, namely Hyderabad, India. Ozone concentration varies from 14 to 63 ppbv over the study area. Diurnal variations of ozone suggest that ozone concentration starts increasing gradually after sunrise, attaining a maximum value by evening time and decreasing gradually thereafter. Black carbon (BC) aerosol mass concentrations varies from 1471 to 11,175 ng m−3. The diurnal variations of BC suggest that the concentrations are increased by a factor of 2 during morning (06:00–09:00 h) and evening hours (18:00 to 22:00 h) compared to afternoon hours. Positive correlation has been observed between BC and CO (r2=0.74) with an average slope of 6.4×10−3 g BC/g CO. The slope between black carbon aerosol mass concentration and tropospheric ozone suggests that every 1 μg m−3 increase in black carbon aerosol mass concentration causes a 3.5 μg m−3 reduction in tropospheric ozone. The results have been discussed in detail in the paper.  相似文献   

3.
The nocturnal structure of the lower troposphere is studied using aerosol profile data (50–2800 m AGL) obtained with a bistatic, continuous wave, Argon ion lidar system during October 1986–September 1989 at Pune (18°32 N, 73°51 E, 559m AMSL), India. The top of the nocturnal groundbased inversion is taken as the height above ground where the negative vertical gradient in aerosol concentration first reaches a maximum. During the post-sunset period over this station, this height is as low as 160m and frequently lies around 550m. Greater heights are observed in pre-monsoon months and smaller ones during the southwest monsoon season. Positive vertical gradients in aerosol concentration, indicative of stable/elevated layers, appear frequently around 750m. Temporal variations of aerosol concentration gradients in two adjacent air layers, 920–1000m and 100–1100m, provide evidence that stability increases downward in the early night hours.  相似文献   

4.
The sub-monthly evolution of the interannual variations of absorbing aerosols and related hydrometeorology over South Asia in the pre-monsoon period is investigated from the analysis of pentad-resolution observational datasets.It is shown that pre-monsoon (late April–early May) variations are characterized by increased aerosols, reduced cloudiness and precipitation, and increased downward shortwave radiation. Lead-lag regressions indicate the significant influence of synoptic scale advection (and related vertical motion) in simultaneously shaping the aerosol distribution and associated significant hydroclimate (precipitation, cloudiness, surface shortwave radiation, and 2-m air temperature) over the Indo-Gangetic Plain.The above findings can be interpreted as a manifestation of the aerosol “semi-direct” effect if one is not mindful of the prevailing circulation anomalies and their concurrent impact on aerosol and hydroclimate. The complex interplay among aerosols, dynamics and precipitation also shows the challenge of extracting the aerosol impact from an observational analysis. Finally, the analysis points to the pitfalls of a columnar, circulation-blind framework in investigating aerosol–monsoon interactions, a concern of relevance in analyses of the impact of long-term aerosol trends, as well.  相似文献   

5.
Lidar Measurements of Aerosols in the Tropical Atmosphere   总被引:3,自引:0,他引:3  
Measurements of atmospheric aerosols and trace gases using the Laser radar (lidar) techniques, have been in pro-gress since 1985 at the Indian Institute of Tropical Meteorology, Pune (18o32’N, 73o51’E, 559 m AMSL), India. These observations carried out during nighttime in the lower atmosphere (up to 5.5 km AGL), employing an Argon ion / Helium-Neon lidar provided information on the nature, size, concentration and other characteristics of the constituents present in the tropical atmosphere. The time-height variations in aerosol concentration and associated layer structure exhibit marked differences between the post-sunset and pre-sunrise periods besides their seasonal va-riation with maximum concentration during pre-monsoon / winter and minimum concentration during monsoon months. These observations also revealed the influence of the terrain of the experimental site and some selected me-teorological parameters on the aerosol vertical distributions. The special observations of aerosol vertical profiles ob-tained in the nighttime atmospheric boundary layer during October 1986 through September 1989 showed that the most probable occurrence of mixing depth lies between 450 and 550 m, and the multiple stably stratified aerosol lay-ers present above the mixing depth with maximum frequency of occurrence at around 750 m. This information on nighttime mixing depth / stable layer derived from lidar aerosol observations showed good agreement with the height of the ground-based shear layer / elevated layer observed by the simultaneously operated sodar at the lidar site.  相似文献   

6.
Summary This study reports a 37-year long record of direct beam spectral irradiance measurements made in Athens, Greece. An analysis of aerosol effects on the spectral distribution of solar radiation through effective optical depths, are presented. Thus, spectrally resolved aerosol optical depths were calculated and analyzed for the period 1954–1990. Summertime aerosol optical depths were found to be larger than winter values, while their seasonal variations were related to varying weather conditions throughout the year. The interrelationships between effective optical depths were found to be linear and were related strongly to microphysics of aerosol loading in the atmosphere. For the period 1962–1983 as wavelength exponent 0 values ranged between 0.76–1.14 the spectrally resolved optical depths were found to increase markedly with respect to remaining periods 1954–1961 and 1984–1990 in which 0 values ranged between 1.16–1.39. A minimum in aerosol optical depths, believed to be near background levels, was reached during period 1954–1957, while there was some indication that both optical depths continued to decrease reaching background levels at the end of the study period. From the long-term variation of aerosol effective optical depths some interesting information on the time evolution of air quality in Athens was gained. In addition, their frequency distribution, temporal daily variations and some remarks on photosynthetically active radiation for plant development, are presented and discussed.With 7 Figures  相似文献   

7.
Particle light absorption (bap), black carbon (BC), and elemental carbon (EC) measurements at the Fresno Supersite during the summer of 2005 were compared to examine the equivalency of current techniques, evaluate filter-based bap correction methods, and determine the EC mass absorption efficiency (σap) and the spectral dependence of bap. The photoacoustic analyzer (PA) was used as a benchmark for in-situ bap. Most bap measurement techniques were well correlated (r ≥ 0.95). Unadjusted Aethalometer (AE) and Particle Soot Absorption Photometer (PSAP) bap were up to seven times higher than PA bap at similar wavelengths because of absorption enhancement by backscattering and multiple scattering. Applying published algorithms to correct for these effects reduced the differences to 24 and 17% for the AE and PSAP, respectively, at 532 nm. The Multi-Angle Absorption Photometer (MAAP), which accounts for backscattering effects, overestimated bap relative to the PA by 51%. BC concentrations determined by the AE, MAAP, and Sunset Laboratory semi-continuous carbon analyzer were also highly correlated (r ≥ 0.93) but differed by up to 57%. EC measured with the IMPROVE/STN thermal/optical protocols, and the French two-step thermal protocol agreed to within 29%. Absorption efficiencies determined from PA bap and EC measured with different analytical protocols averaged 7.9 ± 1.5, 5.4 ± 1.1, and 2.8 ± 0.6 m2/g at 532, 670, and 1047 nm, respectively. The Angström exponent (α) determined from adjusted AE and PA bap ranged from 1.19 to 1.46. The largest values of α occurred during the afternoon hours when the organic fraction of total carbon was highest. Significant biases associated with filter-based measurements of bap, BC, and EC are method-specific. Correcting for these biases must take into account differences in aerosol concentration, composition, and sources.  相似文献   

8.
Functional relationships linking at λ0=351 nm aerosol extinction αλ0aer and backscatter coefficient βλ0aer of maritime and desert type aerosols are determined to allow for inversion of the single-wavelength lidar signals. Such relationships are derived as mean behavior of 20,000 extinction versus backscatter computations, performed for aerosol size distributions and compositions whose describing parameters are randomly chosen within the naturally observed variability. For desert-type aerosols, the effect of the particle non-sphericity is considered and it is shown that the extinction to backscatter ratio of non-spherical dust particles can be up to 60% larger than the values obtained for spherical particles. Aerosol extinction and backscatter coefficient profiles obtained inverting the single-wavelength lidar signal with the modeled relationships are then compared to the same profiles measured by a combined elastic-Raman lidar operating at 351 nm. Analytical back trajectories and satellite images are used to characterize advection patterns during lidar measurements and to properly choose the modeled functional relationship. A good accordance between the two techniques is found for advection patterns over the lidar site typical of maritime and dust conditions. Maximum differences between the model-based αλ0aer and βλ0aer vertical profiles and the corresponding ones measured by the combined elastic-Raman lidar technique are of 30% and 40% in maritime and desert dust conditions, respectively. The comparison of elastic-Raman lidar measurements and model-based results also reveals that particle non-sphericity must be taken into account when mineral dust-type aerosols are directly advected over the measurement site.  相似文献   

9.
Carbon monoxide (CO), Ozone (O3) and Black Carbon (BC) aerosol mass concentrations in relation to planetary boundary layer (PBL) height measurements were analyzed from January–December, 2008 over tropical urban environment of Hyderabad, India. DMSP-OLS night-time satellite data were analyzed for fire occurrence over the region and its correlation with pollution concentrations over the urban region. Results of the study suggested considerable increase in CO and BC concentrations during early morning hours. Higher concentration of BC, CO and ozone was observed during pre-monsoon, post-monsoon and winter and lowest concentrations exhibited during monsoon season. NCEP/NCAR reanalysis winds suggested long range transport of aerosols and trace gases from forest fires are enhancing the pollutant concentrations over the study area.  相似文献   

10.
The microphysical structure, chemical composition and prehistory of aerosol are related to the aerosol optical properties and radiative effect in the UV spectral range. The aim of this work is the statistical mapping of typical aerosol scenarios and adjustment of regional aerosol parameters. The investigation is based on the in situ measurements in Preila (55.55° N, 21.00° E), Lithuania, and the AERONET data from the Gustav Dalen Tower (58 N, 17 E), Sweden.Clustering of multiple characteristics enabled to distinguish three aerosol types for clear-sky periods: 1) clean maritime–continental aerosol; 2) moderately polluted maritime–continental aerosol; 3) polluted continental aerosol. Differences between these types are due to significant differences in aerosol number and volume concentration, effective radius of volume distribution, content of SO4 ions and Black Carbon, as well as different vertical profiles of atmospheric relative humidity. The UV extinction, aerosol optical depth (AOD) and the Ångstrom coefficient α increased with the increasing pollution. The value α = 1.96 was observed in the polluted continental aerosol that has passed over central and eastern Europe and southern Russia. Reduction of the clear-sky UV index against the aerosol-free atmosphere was of 4.5%, 27% and 41% for the aerosol types 1, 2 and 3, respectively.  相似文献   

11.
The bulk transfer coefficient for latent heat flux (Ce) has been estimated over the Arabian Sea from the moisture budget during the pre-monsoon season of 1988.The computations have been made over two regions (A: 0–8 ° N; 60–68 ° E; B: 0–4 ° N; 56–60 ° E) with the upper computational boundary fixed at the 300 mb level. The precipitation amount (P) was negligible for region A while the observed values of P have been used for region B. The Ce estimates have been compared with those obtained with other available schemes (Kondo, 1975: Bunker, 1976). which are based on wind speed and atmospheric stability within the surface layer. Our value of Ce is higher in region A and lower in region B than the other estimates.  相似文献   

12.
As a component of the Canadian Arctic Haze Study, held coincident with the second Arctic Gas and Aerosol Sampling Program (AGASP II), vertical profiles of aerosol size distribution (0.17 m), light scattering parameters and cloud particle concentrations were obtained with an instrumented aircraft and ground-based lidar system during April 1986 at Alert. Northwest Territories. Average aerosol number concentrations range from about 200 cm–3 over the Arctic ice cap to about 100 cm–3 at 6 km. The aerosol size spectrum is virtually free of giant or coarse aerosol particles, and does not vary significantly with altitude. Most of the aerosol volume is concentrated in the 0.17–0.50 m size range, and the aerosol number concentration is found to be a good surrogate for the SO4 = concentration of the Arctic haze aerosol. Comparison of the aircraft and lidar data show that, when iced crystal scattering is excluded, the aerosol light scattering coefficient and the lidar backscattering coefficient are proportional to the Arctic haze aerosol concentration. Ratios of scattering to backscattering, scattering to aerosol number concentration, and backscattering to aerosol number concentration are 15.3 steradians, 1.1×10–13 m2, and 4.8×10–15 m2 sr–1, respectively. Aerosol scattering coefficients calculated from the measured size distributions using Mie scattering agree well with measured values. The calculations indicate the aerosol absorption optical depth over 6 km to range between 0.011 and 0.018. The presence of small numbers of ice crystals (10–20 crystals 1–1 measured) increased light scattering by over a factor of ten.  相似文献   

13.
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m− 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m− 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day− 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

14.
Characterizations of urban and regional sources of particulate matter (PM) were performed in the Milan area (North of Italy) during Föhn and stagnant (non-Föhn) conditions. The measurements were performed at two different places: in an urban area North of Milan (Bresso) and in a regional area at the EMEP-GAW station in Ispra (about 65 km NW from Milan) during the winter periods of the years 2002–2007. Particle size distributions and chemical bulk analysis of aerosols are combined with single particle mass spectrometry to obtain information about the chemical content of the particles and their mixing state. Föhn conditions are characterized by extremely clean background air from which background aerosol is scavenged, and consequently local sources (here defined as sources between the sampling sites and the mountain range top about 100–150 km away depending on the wind direction) determine the aerosol properties.It was observed that during Föhn events the accumulation mode in the size range 50 nm < d < 300 nm practically disappears and that the size fraction below 50 nm dominates the total number distribution. The significant change in the number size distribution and the large decrease in PM10 mass during Föhn events are accompanied by a significant change in the chemical composition of the particles. Results from bulk chemical analysis showed high amounts of carbonaceous compounds and very low concentrations of ammonium nitrate (as indicator for secondary chemistry) during Föhn episodes, in contrast to stagnant conditions, when secondary components are dominating the aerosol composition. Single particle measurements confirm the high contribution of carbonaceous compounds in locally emitted particles.It was concluded that particles that originated in the urban area come mainly from combustion processes, especially direct traffic emissions, domestic heating and industrial activities, whereas the regionally emitted particles are different with much less traffic contribution.We estimate that under prevailing (non-Föhn) winter conditions, about 50–65% of the aerosol mass load in the city of Milan are caused by local emissions, and about 35–50% come from regional background. This finding suggests that in order to improve air quality in a big city like Milan, it is important to combine local traffic restriction interventions with other long-term regional scale air-quality-measures.  相似文献   

15.
The scavenging efficiency, E, of small hexagonal plate ice crystals for aerosol particles has been measured in a series of laboratory cloud experiments. The ice crystal diameters, D μm ranged from 35 to 150 μm with aerosol particles in the range 4 to 6 μm. An ice crystal replication technique made possible the individual examination of more than 43m500 individual crystals from which the relation: log10 E = 1.554 − 1.047 log10D was established with values of E in the range 0.2–0.9 corresponding to the range of crystal sizes investigated. For some crystal collectors, values of E extended above unity and this was attributed to wake capture, oscillations and the extended sweep out path of the ice crystals associated with their spiral fall pattern.  相似文献   

16.
Long-term record of global distribution of ozone during 1979 to 2001, from Total Ozone Mapping Spectrometer (TOMS), over a tropical urban environment has been analyzed and compared with ground measurements. Increase in atmospheric UV-absorbing aerosol loading has been observed after 1991. TOMS columnar ozone during 1979 to 2001 suggested a clear Gaussian pattern of minimum concentration in winter months and maximum in summer months. TOMS ozone showed good correlation with the ground measured columnar ozone during winter months and negative correlation with Sunburning Ultraviolet (SUV) (280–370 nm), UVA and aerosol optical depth (AOD).  相似文献   

17.
In this study, two universal turbidity parameters, the Angstrom turbidity coefficient and Linke turbidity factor, are applied to study the atmospheric turbidity characteristics of Taichung Harbor. Meteorological parameter values were measured during 2004 and 2005 at the Wuchi weather station of the Taiwan Central Weather Bureau, near the Taiwan Strait. Results based on the Angstrom turbidity models (βLou, βPin, and βVis) indicated that annual mean values of the Angstrom turbidity coefficients were 0.174, 0.21 and 0.201, respectively. Four sets of Linke turbidity factors (TLin, TLou, TPin and TVis) were calculated using the original Linke method and the Dogniaux method, incorporating the computed Angstrom turbidity coefficients (βLou, βPin and βVis); the resultant values were 4.30, 6.40, 7.10 and 6.95, respectively. The monthly average values, frequency of occurrence, and cumulative frequency distributions were calculated using different models to describe the clear-sky atmospheric conditions at Taichung Harbor. The frequency results show that for over 50% of the dataset, three sets of Angstrom turbidity coefficients fell between 0.15 and 0.18, and four sets of Linke turbidity factors (TLin, TLou, TPin and TVis) fell between 4.0 and 6.5. Thus, for 50% of cloudless days, the sky can be between turbid and clear over Taichung Harbor. Furthermore, the results reveal that for 30% of the dataset, three Angstrom sets of turbidity coefficients (βLou, βPin, and βVis) exceed 0.2 and four sets of Linke turbidity factors (TLin, TLou, TPin and TVis) exceed 5.0. This indicates that 30% of cloudless sky conditions can be considered turbid to very turbid.  相似文献   

18.
An extensive aerosol sampling program was conducted during January-December 2006 over Kolkata (22o33?? N and 88o20?? E), a mega-city in eastern India in order to understand the sources, distributions and properties of atmospheric fine mode aerosol (PM2.5). The primary focus of this study is to determine the relative contribution of natural and anthropogenic as well as local and transported components to the total fine mode aerosol loading and their seasonal distributions over the metropolis. The average concentrations of fine mode aerosol was found to be 71.2?±?25.2???gm-3 varying between 34.5???gm-3 in monsoon and 112.6???gm-3 in winter. The formation pathways of major secondary aerosol components like nitrate and sulphate in different seasons are discussed. A long range transport of dust aerosol from arid and semi-arid regions of western India and beyond was observed during pre-monsoon which significantly enriched the total aerosol concentration. Vehicular emissions, biomass burning and transported dust particles were the major sources of PM2.5 from local and continental regions whereas sea-salt aerosol was the major source of PM2.5 from marine source regions.  相似文献   

19.
Thermal and optical techniques were used at Barrow, Alaska during AGASP II (3/20/86–4/7/86) to measure in-situ variability of major aerosol components present in Arctic Haze. The experiment provided continuous data on the concentration, size distribution and relative proportions of sulfate species and refractory aerosol for particle diameters of 0.15 to 5 m. Filter samples were also taken for determination of aerosol optical absorption due to soot (EC-elemental carbon). Although pronounced haze events were absence during this period the haze aerosol present varied in concentration between 2 and 6 g/m3 but showed little change in relative constituents. Apart from local influences, the optical data indicated a persistent fine-mode sulfate aerosol with a NH4 +/SO4 molar ratio of about 0.4 and a refractory component of somewhat less than 10% by mass. A preliminary comparison of soot estimates determined from the light absorption data with the size distributions of refractory aerosol observed independently by the optical particle counter showed good agreement during the sample period. In the absence of local pollution, values of single scatter albedo derived from light scattering and light absorption showed similar variation about the average value of 0.86 found by us during flights north of Barrow three years earlier during AGASP I.  相似文献   

20.
Aerosol size spectra (d=10 nm–10 μm) were measured with an electrical aerosol spectrometer (EAS) at Mace Head on the west coast of Ireland. Several small aerosol particle (diameter 10–32 nm) concentration bursts were observed during the measurement period. Relationships between the events, air mass trajectories, tide height, and meteorological parameters are examined. Series of bursts were observed when a spectral transformation due to subsequent particle growth from 10 to 56–100 nm can be identified in an Eulerian experiment. Particle growth rates of between 1 and 3 nm/h were determined. These bursts appear in cold and comparatively clean arctic or polar air masses with temperature and relative humidity fluctuations, and do not correlate with low tide in some cases. These episodes, similar to those frequently found in the continental boundary layer, are thought to occur over a wide area and, for clear detection, require stable airflow for a few days. Elevated small-particle concentration events are more common during low tide or shortly after, and are typically associated with low wind speeds. Here, the increased shore exposure during low tide is thought to influence the nucleation and the subsequent growth of these aerosol particles. The occurrences of the bursts are found to depend on local wind direction. The highest d=10–32 nm particle concentrations appeared for wind sectors furthest from the tidal regions when the wind direction was 150–160°(south-easterly). Most of the events occurred during daytime when solar irradiation is most intense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号