首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We make use of the 'Next Generation' model atmospheres of Allard et al. and Hauschildt, Allard & Baron to compute theoretical models for low- and very-low-mass stars for selected metallicities in the range Z =0.0002 to 0.002. On this basis, we present theoretical predictions covering the sequence of H-burning stars as observed in Galactic globulars from the faint end of the main sequence up to, and beyond, the cluster turn-off. The role played by the new model atmospheres is discussed, showing that present models appear in excellent agreement with models by Baraffe et al. as computed on a quite similar physical basis. One finds that the theoretical mass–luminosity relations based on this updated set of models are in good agreement with the empirical data provided by Henry & McCarthy. Comparison with HST observation discloses that the location on the colour–magnitude diagram of the lower main sequence in Galactic globular clusters appears again in good agreement with the predicted sensitive dependence of these sequences on the cluster metallicity.  相似文献   

4.
5.
In this paper, a literal analytical solution is developed for the abundances differential equations of the helium burning phase in hot massive stars. The abundance for each of the basic elements 4He,12C,16O and 20Ne is obtained as a recurrent power series in time, which facilitates its symbolic and numerical evaluations. Numerical comparison between the present solution and the numerical integration of the differential equations for the abundances show good agreement.  相似文献   

6.
We present an extensive study of the double β model for the X-ray surface brightness profiles of clusters, and derive analytically the gas density and total masses of clusters under the hydrostatic equilibrium hypothesis. It is shown that the employment of the double β model instead of the conventional single β model can significantly improve the goodness-of-fit to the observed X-ray surface brightness profiles of clusters, which will in turn lead to a better determination of the gas and total mass distributions in clusters. In particular, the observationally fitted β parameter for the extended component in a double β model may become larger. This opens a new possibility of resolving the long-standing β discrepancy for clusters. Using an ensemble of 33 ROSAT PSPC observed clusters drawn from the Mohr, Mathiesen & Evrard sample, we find that the asymptotic value of β fit is 0.83±0.33 at large radii, consistent with both the average spectroscopic parameter β spec=0.78±0.37 and the result given by numerical simulations.  相似文献   

7.
8.
We develop a new method to estimate the redshift of galaxy clusters through resolved images of the Sunyaev–Zel'dovich effect (SZE). Our method is based on morphological observables which can be measured by actual and future SZE experiments. We test the method with a set of high-resolution hydrodynamical simulations of galaxy clusters at different redshifts. Our method combines the observables in a principal component analysis. After calibrating the method with an independent redshift estimation for some of the clusters, we show – using a Bayesian approach – how the method can give an estimate of the redshift of the galaxy clusters. Although the error bars given by the morphological redshift estimation are large, it should be useful for future SZE surveys where thousands of clusters are expected to be detected; a first preselection of the high-redshift candidates could be done using our proposed morphological redshift estimator. Although not considered in this work, our method should also be useful to give an estimate of the redshift of clusters in X-ray and optical surveys.  相似文献   

9.
In this paper, by assuming the equilibrium temperatures of RRab Lyrae variables defined by Carney, Storm & Jones as correct we show that temperatures derived from ( B − V ) colour (mean colour over the pulsational cycle calculated on the magnitude scale) transformations by Bessel, Castelli & Plez are consistent with the Carney et al. equilibrium temperatures within a probable error of δ  log  T e =±0.003 . As a consequence, it is shown that the pulsational temperature scale temperature–period–blue amplitude [ T eff= f ( P , A B )] relation provided by De Santis, who studied the ( B − V ) colour of about 70 stars of Lub's sample, is a suitable relation, being reddening- and metallicity-free, to calculate equilibrium temperatures for RRab variables. This relation is independent of variable mass and luminosity within a large range of period-shift from the mean period–amplitude relation valid for Lub's sample of variables. On the contrary, it is also shown that a temperature–amplitude–metallicity relation is strictly dependent on the period–amplitude relation of the sample used for calibrating it: we prove that this means it is dependent on both the mass and luminosity variations of variables.  相似文献   

10.
The dynamical friction experienced by a body moving in a gaseous medium is different from the friction in the case of a collisionless stellar system. Here we consider the orbital evolution of a gravitational perturber inside a gaseous sphere using three-dimensional simulations, ignoring however self-gravity. The results are analysed in terms of a 'local' formula with the associated Coulomb logarithm taken as a free parameter. For forced circular orbits, the asymptotic value of the component of the drag force in the direction of the velocity is a slowly varying function of the Mach number in the range 1.0–1.6. The dynamical friction time-scale for free decay orbits is typically only half as long as in the case of a collisionless background, which is in agreement with E. C. Ostriker's recent analytic result. The orbital decay rate is rather insensitive to the past history of the perturber. It is shown that, similarly to the case of stellar systems, orbits are not subject to any significant circularization. However, the dynamical friction time-scales are found to increase with increasing orbital eccentricity for the Plummer model, whilst no strong dependence on the initial eccentricity is found for the isothermal sphere.  相似文献   

11.
For the first time we propose a real physical mechanism for 'extra mixing' in red giants that can quantitatively interpret all the known star-to-star abundance variations in globular clusters. This is Zahn's mechanism. It considers extra mixing in a radiative zone of a rotating star as a result of the joint operation of meridional circulation and turbulent diffusion. It is shown that the only free parameter, the angular velocity at the base of the convective envelope, can be so adjusted as to fit the observed abundance correlations without leading to a conflict with available data on rotation velocities of blue horizontal branch stars in the same cluster. There are two critical assumptions in our model, that the top of the radiative zone is not in synchronous rotation with the stellar surface but rotates significantly faster and that the criterion for shear instability takes a particular form. These will eventually be tested by three-dimensional hydrodynamical simulations.  相似文献   

12.
13.
I present a simplified analytical model that simulates the evolution of the binary population in a dynamically evolving globular cluster. A number of simulations have been run spanning a wide range in initial cluster and environmental conditions by taking into account the main mechanisms of formation and destruction of binary systems. Following this approach, I investigate the evolution of the fraction, the radial distribution, the distribution of mass ratios and periods of the binary population. According to these simulations, the fraction of surviving binaries appears to be dominated by the processes of binary ionization and evaporation. In particular, the frequency of binary systems changes by a factor of 1–5 depending on the initial conditions and on the assumed initial distribution of periods. The comparison with the existing estimates of binary fractions in Galactic globular clusters suggests that significant variations in the initial binary content could exist among the analysed globular cluster. This model has been also used to explain the observed discrepancy found between the most recent N -body and Monte Carlo simulations in the literature.  相似文献   

14.
15.
It has become increasingly apparent that traditional hydrodynamical simulations of galaxy clusters are unable to reproduce the observed properties of galaxy clusters, in particular overpredicting the mass corresponding to a given cluster temperature. Such overestimation may lead to systematic errors in results using galaxy clusters as cosmological probes, such as constraints on the density perturbation normalization σ 8. In this paper we demonstrate that inclusion of additional gas physics, namely radiative cooling and a possible pre-heating of gas prior to cluster formation, is able to bring the temperature–mass relation in the innermost parts of clusters into good agreement with recent determinations by Allen, Schmidt & Fabian using Chandra data.  相似文献   

16.
We present results from two high-resolution hydrodynamical simulations of protocluster regions at   z ≃ 2.1  . The simulations have been compared to observational results for the so-called Spiderweb galaxy system, the core of a putative protocluster region at   z = 2.16  , found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with   M 200≃ 1014  h −1 M  (C1) and a rich cluster with   M 200≃ 2 × 1015  h −1 M  (C2) at   z = 0  . The simulated protoclusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared with the observed velocities. We argue that the Spiderweb complex resembles the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing active galactic nuclei feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.  相似文献   

17.
We investigate the history of galactic feedback and chemical enrichment within a sample of 15 X-ray bright groups of galaxies, on the basis of the inferred Fe and Si distributions in the hot gas and the associated metal masses produced by core-collapse and Type Ia supernovae (SNe). Most of these cool-core groups show a central Fe and Si excess, which can be explained by prolonged enrichment by SN Ia and stellar winds in the central early-type galaxy alone, but with tentative evidence for additional processes contributing to core enrichment in hotter groups. Inferred metal mass-to-light ratios inside r 500 show a positive correlation with total group mass but are generally significantly lower than in clusters, due to a combination of lower global intracluster medium (ICM) abundances and gas-to-light ratios in groups. This metal deficiency is present for products from both SN Ia and SN II, and suggests that metals were either synthesized, released from galaxies or retained within the ICM less efficiently in lower mass systems. We explore possible causes, including variations in galaxy formation and metal release efficiency, cooling out of metals, and gas and metal loss via active galactic nuclei (AGN) – or starburst-driven galactic winds from groups or their precursor filaments. Loss of enriched material from filaments coupled with post-collapse AGN feedback emerges as viable explanations, but we also find evidence for metals to have been released less efficiently from galaxies in cooler groups and for the ICM in these to appear chemically less evolved, possibly reflecting more extended star formation histories in less massive systems. Some implications for the hierarchical growth of clusters from groups are briefly discussed.  相似文献   

18.
19.
We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in modified Newtonian dynamics (MOND), using the N -body code n-mody , which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti, Londrillo & Nipoti. We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104 to  109 M  and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime  ( a i, a e≪ a 0)  , where the motion of stars is either dominated by internal accelerations  ( a i≫ a e)  or constant external accelerations  ( a e≫ a i)  . In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime  ( a i∼ a e∼ a 0)  . This allows for a much-improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal 14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号