首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
黄河内蒙古段土壤风蚀特征模拟   总被引:1,自引:0,他引:1  
采集黄河内蒙古段风沙土、灰漠土、棕钙土和灌淤土,在室内进行土壤理化性质测定和风洞模拟试验。对比分析了4种土壤的理化性质和不同风速及含水量条件下的风蚀特征,并量化了不同土壤的风蚀强度与土壤理化性质间关系。结果表明:(1)相对于棕钙土和灌淤土,风沙土和灰漠土易蚀性颗粒含量较大,团聚体、有机质和碳酸钙含量较低,但相同风速和含水量条件下平均风蚀强度风沙土>棕钙土>灰漠土>灌淤土。(2)不同土壤风蚀强度与风速均呈较好的幂函数关系(R2≥0.85,P<0.05),尤其是风沙土和棕钙土,幂函数关系明显优于指数函数。(3)除灰漠土,土壤风蚀强度与土壤含水量均呈较好指数函数关系(R2>0.90,P<0.05),风沙土和灰漠土的风蚀强度突降的含水量临界点在4.5%左右,灌淤土和棕钙土无明显临界点。(4)不同土壤输沙率均随距地表高度的增加而急剧减少。在距地表10 cm范围内,不同土壤输沙率占总输沙率比例风沙土(82.67%)>灰漠土(80.77%)>灌淤土(74.07%)>棕钙土(73.77%),当距地表大于30 cm后,集沙仪中基本收集不到风沙土和灰漠土风蚀颗粒。当轴心风速为16 m·s-1时,不同土壤风沙流结构均表现为单峰曲线。(5)不同土壤风蚀强度与风速、含水量、团聚体、易蚀性颗粒和黏粒含量均呈较强的非线性相关关系(R2=0.76,P<0.05)。易蚀性颗粒含量是影响风蚀强度最主要的土壤属性,其次是干团聚体和黏粒含量。  相似文献   

2.
额济纳旗典型地表沙尘释放潜力及沙尘天气频发成因   总被引:1,自引:0,他引:1  
额济纳旗位于极端干旱的内陆河下游,绿洲退化严重,沙尘天气频发,已成为内蒙古西部主要沙尘源区。为揭示该区域沙尘频繁成因,对区域4种典型地表(富沙砾戈壁、富沙戈壁、绿洲退化地、绿洲)沉积物组分、风蚀强度、沙尘释放强度、多年平均月沙尘日数及大风日数等进行了综合分析。结果表明:以风沙活动为主要特征的绿洲退化地,粉沙黏土组分含量高,PM10沙尘释放强度大(0.2796 kg·d^-1·m^-2),为研究区强沙尘释放地表;富沙及富沙砾戈壁地表,风蚀强度大,但粉沙黏土组分含量低,PM10沙尘释放强度较大(0.1267kg·d^-1·m^-2,0.0672 kg·d^-1·m^-2);尽管绿洲地表粉沙黏土组分含量高,但由于植被、水分等因素的制约,其PM10沙尘释放强度最小(0.0240 kg·d^-1·m^-2)。额济纳旗绿洲被大面积强沙尘释放源(绿洲退化地和戈壁)包围,局地沙尘内循环过程中粉尘颗粒的富积,为当地高频沙尘天气提供了丰富的尘源,这是额济纳旗沙尘天气频发的主要原因。  相似文献   

3.
We analyzed the relationship between soil water content (SWC) dynamics in mobile dunes to a depth of 100 cm and precipitation patterns from June to July 2010 in the Horqin Sand Land. The precipitation was dominated by small events of 0.1–3.0 mm, which accounted for 52% of the total events. Precipitation >20 mm had the highest intensity, accounting for 50% of the total precipitation. SWC differed significantly among the soil layers: mean SWC was greatest from 80 to 100 cm and lowest from 40 to 60 cm. SWC from 0 to 100 cm was significantly affected by relative humidity, water barometric pressure and minimum temperature, and the SWC of 0–40 cm was obviously influenced by precipitation amount and wind velocity. Precipitation <5 mm did not replenish SWC, precipitation between 5 and 20 mm provided some replenishment to SWC from 0 to 40 cm, and precipitation >20 mm increased significantly SWC from 0 to 100 cm. In addition, precipitation intensity significantly affected the infiltration rate, with higher intensity leading to deeper and faster infiltration. At longer intervals between precipitation events, SWC in each soil layer decreased continuously over time; however, SWC from 0 to 80 cm changed little within the first 3 days, and SWC from 0 to 100 cm started to decrease greatly after 5 days.  相似文献   

4.
Soil moisture is a critical state affecting a variety of land surface and subsurface processes. We report investigation results of the factors controlling vertical variation of soil moisture and sand transport rate of three types of dunes on the southeastern margin of the Mu Us Sandy Land. Samples were taken from holes drilled to a depth of 4 m at different topographic sites on the dunes, and were analyzed for soil moisture, grain-size distribution and surface sediment discharge. The results show that: (1) The average soil moisture varies in different types of dunes, with the following sequences ordered from highest to lowest: in the shrubs-covered dunes and the trees-covered dunes the sequence is from inter-dunes lowland to windward slope to leeward slope. The average moisture in the bare-migratory sand dunes is sequenced from inter-dunes lowland to leeward slope to windward slope. (2) Vegetation form and surface coverage affect the range of soil moisture of different types of dunes in the same topographic position. The coefficient of variation of soil moisture for shrubs-covered dunes is higher than that of other types of dune. (3) The effect of shrubs on dune soil moisture is explained in terms of the greater ability of shrubs to trap fine-grained atmospheric dust and hold moisture. (4) The estimated sand transport rates over sand dunes with sparse shrubs are less than those over bare-migratory dunes or sand dunes with sparse trees, indicating that shrubs are more effective in inhibiting wind erosion in the sandy land area.  相似文献   

5.
Soil respiration is essential for the understanding of carbon sequestration of forest plantations. Soil respiration of poplar plantations at three developmental stages was investigated in 2007 and 2008. The results showed that mean soil respiration rate was 5.74, 5.10 and 4.71 μmol CO2 m−2 s−1 for stands of 2-, 7- and 12-year-old, respectively, during the growing season. Soil temperature decreased with increasing plantation age and canopy cover. As plantation matured, fine root biomass also declined. Multiple regression analysis suggested that soil temperature in the upper layer could explain 73-77% of the variation in soil respiration and fine root biomass in the upper layer could explain further 5-8%. The seasonal dynamics of soil respiration was mainly controlled by soil temperature rhythm and fine root growth since soil water availability remained adequate due to monthly irrigation. Spatial variability of soil respiration varied considerably among three age classes, with the coefficient of variation of 28.8%, 22.4% and 19.6% for stands of 2-, 7- and 12-year-old, respectively. The results highlight the importance of the development stage in soil carbon budget over a rotation, since both temporal and spatial variation in soil respiration displayed significant differences at different developmental stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号