首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper explores the suitability and advantages of combining the trenching technique with geophysical surveys [ground penetrating radar (GPR) and electrical resistivity tomography (ERT)] for sinkhole characterization in a mantled karst area. The approach is applied to two active sinkholes concealed by anthropogenic deposits and formed by contrasting subsidence mechanisms; collapse and sagging. The ERT section acquired across the collapse sinkhole images the clayey fill of the depression as an obvious low resistivity area, showing the approximate location of the sinkhole edges. Spatially dense GPR surveys provide information on the position of the boundaries of the concealed subsidence structures and their three‐dimensional (3D) internal geometry, revealing the dominant subsidence mechanism. We illustrate the impact of several factors on the quality of the GPR data such as sinkhole size, nominal frequency of the antennas, antenna shielding, and the presence of backfilled excavations and above‐surface objects. Trenches provided detailed information on the subsurface structure of the sinkhole, subsidence magnitude, partitioning of the strain, and the position of the sinkhole edges, especially when they are deep enough and excavated across the central sector and perpendicular to the boundaries. The stratigraphic and structural relationships observed in the trench were then used to infer the spatial evolution of the sinkholes (e.g. enlargement), their kinematic behavior (episodic versus progressive), and to differentiate discrete subsidence events and their associated magnitude. Numerical dates were used to estimate average subsidence rates and the recurrence of subsidence events. Such integrated data sets may be used as an objective basis to forecast the future behavior of potentially damaging sinkholes and to assess the associated hazard and risk. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The groundwater in shallow loess aquifers in high mountain–hills in the western Loess Plateau in China is almost the sole water resource for local residents. However, the question about how the loess groundwater naturally circulates in these high mountain–hills, characterized by low precipitation and high potential evaporation, remains unclear. The objectives of this study are to evaluate the application of hydrogen and oxygen isotopes to (1) examine temporal variations of the isotopic composition of precipitation and shallow groundwater and (2) uncover the mechanism of groundwater recharge in high mountain–hills. Results from 2 years of monitoring data show a difference in the stable isotopes for groundwater and local precipitation between the winter and summer periods. Similar to precipitation, stable isotopes in groundwater are observed to be depleted in winter and enriched in summer, particularly in oxygen isotope. A prominent characteristic is that H and O isotopes of groundwater show a very clear response to strong precipitation in the rainy season in 2013. The results highlight that local precipitation is the likely recharge source for groundwater in shallow loess aquifers. Annual recharge from local precipitation maintains the groundwater resource in the shallower loess aquifer. The mechanisms governing shallow loess groundwater recharge in high mountain–hills were evaluated. In addition to possible vertical slow percolation of soil water through the unsaturated zone, rapid groundwater recharge mechanisms have been identified as temporal preferential infiltration through sinkholes, slip surface or landslide surface and through the interface of loess layer and palaeo‐soils. Most groundwater can be recharged after a heavy rainy season. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Transient recharge to the water table is often not well understood or quantified. Two approaches for simulating transient recharge in a ground water flow model were investigated using the Trout Lake watershed in north-central Wisconsin: (1) a traditional approach of adding recharge directly to the water table and (2) routing the same volume of water through an unsaturated zone column to the water table. Areas with thin (less than 1 m) unsaturated zones showed little difference in timing of recharge between the two approaches; when water was routed through the unsaturated zone, however, less recharge was delivered to the water table and more discharge occurred to the surface because recharge direction and magnitude changed when the water table rose to the land surface. Areas with a thick (15 to 26 m) unsaturated zone were characterized by multimonth lags between infiltration and recharge, and, in some cases, wetting fronts from precipitation events during the fall overtook and mixed with infiltration from the previous spring snowmelt. Thus, in thicker unsaturated zones, the volume of water infiltrated was properly simulated using the traditional approach, but the timing was different from simulations that included unsaturated zone flow. Routing of rejected recharge and ground water discharge at land surface to surface water features also provided a better simulation of the observed flow regime in a stream at the basin outlet. These results demonstrate that consideration of flow through the unsaturated zone may be important when simulating transient ground water flow in humid climates with shallow water tables.  相似文献   

4.
Groundwater is the principal water resource in semi‐arid and arid environments. Therefore, quantitative estimates of its replenishment rate are important for managing groundwater systems. In dry regions, karst outcrops often show enhanced recharge rates compared with other surface and sub‐surface conditions. Areas with exposed karst features like sinkholes or open shafts allow point recharge, even from single rainfall events. Using the example of the As Sulb plateau in Saudi Arabia, this study introduces a cost‐effective and robust method for recharge monitoring and modelling in karst outcrops. The measurement of discharge of a representative small catchment (4.0 · 104 m2) into a sinkhole, and hence the direct recharge into the aquifer, was carried out with a time‐lapse camera. During the monitoring period of two rainy seasons (autumn 2012 to spring 2014), four recharge events were recorded. Afterwards, recharge data as well as proxy data about the drying of the sediment cover are used to set up a conceptual water balance model. The model was run for 17 years (1971 to 1986 and 2012 to 2014). Simulation results show highly variable seasonal recharge–precipitation ratios between 0 and 0.27. In addition to the amount of seasonal precipitation, this ratio is influenced by the interannual distribution of rainfall events. Overall, an average annual groundwater recharge for the doline (sinkhole) catchment on As Sulb plateau of 5.1 mm has estimated for the simulation period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
It is very interesting and meaningful to investigate the rainfall-groundwater recharge process under the humid climatic condition of Japan, where mean annual precipitation is about 1600 mm. The present study has investigated soil water movement in the unsaturated zones of a volcanic ash layer, called the ‘Kanto Loam formation’, using environmental tritium as a tracer. The site selected is a flat ground surface on a terraced upland which has a deep unsaturated zone (about 20 m) with a relatively high water content (about 70 per cent) consisting of nearly uniform Kanto Loam formation. The tritium concentrations in groundwater, soil waters having different matric potentials, precipitation, and the seepage water moving through the formation into a man-made cave were measured to characterize the rainfall-groundwater recharge process and the effect of large pore spaces in the formation mentioned by previous studies. Because of the humid climate of Japan, there appears to be a unique soil water flow characteristic which may involve percolation through large pore spaces during heavy rainfall. However, in a fine grained and high water content soil like the Kanto Loam formation, the existence of this flow through large pore spaces does not have a significant effect upon the whole recharge process. The recharge model of displacement flow with dispersion is useful in estimating the tritium concentration profile of soil water. The calculated result shows a recharge rate of 2.5 mm/day. The value obtained reflects the hydrological characteristics of the uplands covered with volcanic ash.  相似文献   

6.
A method for quantitatively assessing sinkhole susceptibility (spatial probability) and hazard (spatio‐temporal probability) has been developed and independently tested in a 50 km2 sector of the Ebro Valley evaporite karst. Three genetic types of sinkholes have been mapped in the floodplain and a terrace surface: 947 small cover‐collapse sinkholes (type 1, terrace), large collapse sinkholes (type 2, floodplain) and large subsidence depressions (type 3, floodplain). The type 1 sinkhole inventory includes two temporal populations: 447 sinkholes formed before 24 November 2005, and 500 between that date and 2 November 2006. Sinkhole susceptibility models have been elaborated analysing the statistical relationships between the sinkholes of the 2005 inventory and a set of potential conditioning factors. The independent evaluation (validation) of the susceptibility models by means of several strategies (random, sequentially excluded, and temporal) has allowed us to select the most significant variables for each sinkhole type and assess quantitatively the quality of models; which are reasonable for the three sinkhole types. Validation has also provided information on the contribution of specific variables and the effect of changing their accuracy to the prediction capability of models. Susceptibility models for type 3 sinkholes have been validated satisfactorily with the 2006 sinkhole inventory (temporal validation). The best susceptibility model has been transformed into a hazard map considering the frequency of sinkholes that occurred in each susceptibility class between 2005 and 2006, as well as their average size. The susceptibility and hazard models obtained could be used as an objective basis for the application of mitigation measures, either of preventive or corrective nature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A 1-month pumping test has been carried out during the summer of 1970 in order to study the desaturation of the cone of depression and the restoration of the water level and the re-wetting during the recovery phase. The observations were continued in order to evaluate the water movements during an annual cycle.The water flux resulting from a potential difference was evaluated. A slow and long-continued drainage is due to the low permeability of the water-bearing formations. Less than half the gravitational water was removed. The specific yields obtained from nuclear methods and other more classical methods based on transient flow formulae are quite different, being, in the latter case, 10–15 times smaller.The interaction between the saturated and unsaturated zones has been determined: contrary to what we would expect, in the unsaturated zone the capillary fringe has contributed only a small part to the water flux. Measurements of soil-water content show that in the cone of depression the resaturation is not complete.During the recharge period, we have noticed a water-level rise in the absence of vertical fluxes, due to an increase of the level in the river; the water movement is controlled by the nature of the formation and the influence of the water content on the permeability. The water balance obtained from the water content measurements is close to that found by the generalized Darcy law and it gives an acceptable approximation of infiltration and evapotranspiration components. The evapotranspiration estimated by this method is, however, very different from that derived from the climatic method.A continuous inflow to the water table has been determined, but it is often insignificant. Most of the groundwater recharge is obtained by a few periods of intense precipitation during which the daily fluxes reach values 100 times higher than normal inflow. Summer rains can reach the groundwater table when their intensity and timing create conditions favourable for downward flow in the upper soil horizons.  相似文献   

8.
Three types of sinkhole have been mapped in a 50 km2 stretch of the Ebro River valley downstream of Zaragoza: large collapse sinkholes, large shallow subsidence depressions and small cover-collapse sinkholes. The sinkholes relate to the karstification of evaporitic bedrock that wedges out abruptly downstream, giving way to a shale substratum. Twenty-three collapse sinkholes, up to 50 m in diameter by 6 m deep, and commonly hosting saline ponds, have been identified in the floodplain. They have been attributed to the upward stoping of dissolutional cavities formed within the evaporitic bedrock by rising groundwater flows. Twenty-four large shallow subsidence depressions were mapped in the floodplain. These may reach 850 m in length and were formed by structurally controlled interstratal karstification of soluble beds (halite or glauberite? and gypsum) by rising groundwater flow and the progressive settlement of the overlying bedrock and overburden sediments. A total of 447 small cover-collapse, or dropout, sinkholes have been recognized in a perched alluvial level along the southern margin of the valley. These sinkholes result from the upward propagation of voids through the alluvial mantle caused by the downward migration of detrital sediments into dissolutional voids. The majority of these sinkholes, commonly 1·5–2 m in diameter, are induced by human activities. Over the karstic bedrock, there is a significant increase in sinkhole density downstream. This is interpreted as being a result of the evaporitic bedrock wedging out and the convergence of the groundwater flow lines in the karstic aquifer. The collapse sinkholes in this area, locally with a probability of occurrence higher than 140 sinkholes/km2/year, cause substantial damage to the linear infrastructures, buildings and agriculture, and they might eventually cause the loss of human lives. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Hazardous sinkholes started to appear in alluvial fans and unconsolidated sediments along the western Dead Sea coast in 1990. Since then hundreds of sinkholes have appeared from north to south along the shoreline. The Electrical Resistivity Tomography (ERT) method was used to achieve a better understanding of the subsurface geoelectric structure at the sinkhole development sites, taking into account that electric parameters (such as resistivity or conductivity) are very sensitive to formation properties and their variations in time. Fifteen image lines were surveyed at the Ein Gedi area during a period of active sinkhole development (in 2001–2002) over an area of 300 × 550 m2. Resistivity cross-sections and maps were constructed from 2-D linear surveys. The process of sinkhole formation in the surveyed area is located in a strip 50–70 m wide and 300–500 m long, extending approximately in a north–south direction. The sinkholes are arranged along a tortuous line within this strip. On resistivity maps and sections this U-shaped zone appears as an alternation of high resistivity anomalies of 350–1000 Ωm (at sinkhole group locations) with narrow background resistivity zones of 50–100 Ωm. The large size of resistivity anomalies (250 × 300 m2), which are considerably greater than those of the sinkholes, form one of the features of the sinkhole sites in the Ein Gedi area. The anomalies continue down to the water table or even deeper (maximum of 25–35 m depth). A low resistivity layer of 1–8 Ωm underlies them. The combined analysis of the image results and other geophysical data shows that high resistivity anomalies are associated with the decompaction of the soil mass at the sinkhole development sites and surrounding areas. Recent studies have shown that sinkholes in the Ein Gedi area are developing along the salt western edge located at a depth of 50 m. The subsurface high resistivity anomaly conforms to the sinkhole line (and salt boundary). They are presumably located above the great dissolution caverns at the salt edge. The heterogeneity of the resistivity structure within the high resistivity anomaly (seen in both lateral and vertical planes) confirms that a disintegration of internal formation structure takes place. Away from the sinkhole sites the subsurface resistivity distribution is homogeneous.  相似文献   

10.
Isotope data of precipitation and groundwater in parts of the Voltaian Basin in Northern Ghana were used to explain the groundwater recharge regime in the area. Groundwater recharge is an important parameter in the development of a decision support system for the management and efficient utilization of groundwater resources in the area. It is therefore important to establish the processes and sources of groundwater recharge. δ18O and δ2H data for local precipitation suggest enrichment relative to the Global Meteoric Water Line (GMWL) and indicate that precipitation takes place at a relative humidity less than 100%. The groundwater data plot on an evaporation line with a slope of 5, suggesting a high degree of evaporative enrichment of the precipitation in the process of vertical infiltration and percolation through the unsaturated zone into the saturated zone. This finding is consistent with the observation of high evapotranspiration rates in the area and ties in with the fact that significant clay fraction in the unsaturated zone limits vertical percolation and thus exposes the percolating rainwater to the effects of high temperatures and low humidities resulting in high evapotranspiration rates. Groundwater recharge estimates from the chloride mass balance, CMB, method suggest recharge in the range of 1.8–32% of the annual average precipitation in the form of rainfall. The highest rates are associated with areas where open wells encourage significant amount of groundwater recharge from precipitation in the area. In the northern parts of the study area, groundwater recharge is lower than 12%. The recharge so computed through the application of the CMB methodology takes on a spatial distribution akin to the converse of the spatial pattern of both δ18O and δ2H in the area. As such, the locations of the highest recharge are associated with the most depleted values of the two isotopes. This observation is consistent with the assertion that low vertical hydraulic conductivities slow down vertical percolation of precipitation down to the groundwater water. The percolating precipitation water thus gets enriched in the heavier isotopes through high evapotranspiration rates. At the same time, the amount of water that finally reaches the water table is considerably reduced. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Groundwater systems in arid regions will be particularly sensitive to climate change owing to the strong dependence of rates of evapotranspiration on temperature, and shifts in the precipitation regimes. Irrigation use in these arid regions is typically a large component of the water budget, and may increase due to changes in soil moisture resulting from higher temperatures and changes in the timing of precipitation events. In this study, future predicted climate change scenarios from three global climate models (CGCM1 GHG+A1, CGCM3.1 A2, and HadCM3 A2) are used to determine the sensitivity of recharge to different climate models in an irrigated agricultural region. The arid Oliver region (annual precipitation 300 mm) in the Okanagan Basin, British Columbia, is used to demonstrate the approach. Irrigation return flow, as a contribution to total diffuse recharge, is simulated by calculating the daily applied irrigation based on estimates of seasonal crop water demand and the forecasted precipitation and evaporation data. The relative contribution of irrigation return flow to groundwater recharge under current and future climate conditions is modelled. Temperature data were downscaled using Statistical Downscaling Model (SDSM), while precipitation and solar radiation changes were estimated directly from the GCM data. Shifts in climate, from present to future predicted, were applied to a stochastic weather generator, and used to force a one-dimensional hydrologic model, HELP 3.80D. Results were applied spatially, according to different soil profiles, slope and vegetation, over a 22.5 km by 8.6 km region. Changes to recharge in future time periods for each GCM result in modest increases of recharge with the peak recharge shifting from March to February. Lower recharge rates and higher potential evapotranspiration rates are similarly predicted by all three models for the summer months. All scenarios show that the potential growing season will expand between 3 and 4 weeks due to increases in temperature. However, the magnitude of the change varies considerably between models. CGCM3.1 has the largest increases of recharge rates, CGCM1 has very minor increases, and HadCM3 is relatively stable (as indicated by the near-zero changes between climate states). The significant differences between these three models indicate that prediction of future recharge is highly dependent on the model selected. The minor increase of annual recharge in future predicted climate states is due the shift of peak recharge from increased temperature. Irrigation rates dominate total recharge during the summer months in this arid area. Recharge in irrigated areas is significantly higher than natural recharge, with irrigation return flow between 25% and 58%. A comparison of recharge results for the least efficient and the most efficient irrigation systems indicates that the latter are more sensitive to choice of GCM.  相似文献   

13.
Weiss M  Gvirtzman H 《Ground water》2007,45(6):761-773
The fraction of rain that is annually recharged to ground water is a function of the transient quantities of precipitation (wet vs. dry years) as well as other meteorological and geologic factors, and thus it is very difficult to estimate. In this study, we have used long records (20 to 30 years) of precipitation and spring discharge to reconstruct the transient character of yearly recharge. These data sets were used to calibrate numerical ground water flow models on the less than 3 km(2) scale for four separate perched karstic aquifers in the Judean and Samarian Mountains of Israel. The stratification and karstic character of the local carbonate rock aquifers cause ground water to flow through discrete dissolution channels and to discharge at isolated springs. An innovative, dual-porosity approach was used where a finite-difference solution simulates flow in the rock matrix, while the karstic channels are simulated using computationally simple drains. Perched conditions are also simulated innovatively using MODFLOW by treating the bottom unsaturated layer as if it is saturated, but by assuming zero pressure head throughout the "unsaturated" layer. Best fitting between measured and computed spring hydrograph data has allowed us to develop a set of empirical functions relating measured precipitation to recharge to the aquifer. The generic methodology presented gives insight into the suspected changes in aquifer recharge rates between particularly wet or dry years.  相似文献   

14.
Quantifying of direct recharge derived from precipitation is crucial for assessing sustainability of well‐irrigated agriculture. In the North China Plain, the land use is dominated by groundwater‐irrigated farmland where the direct recharge derived from precipitation and irrigation. To characterize the mean rate and historical variance of direct recharge derived from precipitation, unsaturated zone profiles of chloride and δ18O in the dry river bed of the Beiyishui River were employed. The results show that archival time scale of the profile covers the duration from 1980 to 2002 (corresponding to depths from 5 to 2 m) which is indicated by matching the δ18O peaks in the isotope profile with the aridity indexes gained by instrumental records of annual precipitation and annual potential evaporation. Using the chloride mass balance method, the mean rate of the direct recharge corresponding to the archival time scale is estimated to be 3·8 ± 0·8 mm year?1, which accounts for about 0·7% of the long‐term average annual precipitation. Further, the direct recharge rates vary from 2·1 to 6·8 mm year?1 since 1980. Despite the subhumid climate, the estimate of recharge rates is in line with other findings in semiarid regions. The low rate of direct recharge is considered as a result of the relative dry climate in recent decades. In dry river bed, unsaturated zone profiles of chloride and δ18O combined with instrumental records could offer valuable information about the direct recharge derived from precipitation during droughts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Hydrological and hydrochemical processes in the critical zone of karst environments are controlled by the fracture‐conduit network. Modelling hydrological and hydrochemical dynamics in such heterogeneous hydrogeological settings remains a research challenge. In this study, water and solute transport in the dual flow system of the karst critical zone were investigated in a 73.5‐km2 catchment in southwest China. We developed a dual reservoir conceptual run‐off model combined with an autoregressive and moving average model with algorithms to assess dissolution rates in the “fast flow” and “slow flow” systems. This model was applied to 3 catchments with typical karst critical zone architectures, to show how flow exchange between fracture and conduit networks changes in relation to catchment storage dynamics. The flux of bidirectional water and solute exchange between the fissure and conduit system increases from the headwaters to the outfall due to the large area of the developed conduits and low hydraulic gradient in the lower catchment. Rainfall amounts have a significant influence on partitioning the relative proportions of flow and solutes derived from different sources reaching the underground outlet. The effect of rainfall on catchment function is modulated by the structure of the karst critical zone (e.g., epikarst and sinkholes). Thin epikarst and well‐developed sinkholes in the headwaters divert more surface water (younger water) into the underground channel network, leading to a higher fraction of rainfall recharge into the fast flow system and total outflow. Also, the contribution of carbonate weathering to mass export is also higher in the headwaters due to the infiltration of younger water with low solute concentrations through sinkholes.  相似文献   

16.
17.
Previous studies have shown that shallow groundwater in arid regions is often not in equilibrium with near‐surface boundary conditions due to human activities and climate change. This is especially the case where the unsaturated zone is thick and recharge rate is limited. Under this nonequilibrium condition, the unsaturated zone solute profile plays an important role in estimating recent diffuse recharge in arid environments. This paper combines evaluation of the thick unsaturated zone with the saturated zone to investigate the groundwater recharge of a grassland in the arid western Ordos Basin, NW China, using the soil chloride profiles and multiple tracers (2H, 18O, 13C, 14C, and water chemistry) of groundwater. Whereas conventional water balance and Darcy flux measurements usually involve large errors in recharge estimations for arid areas, chloride mass balance has been widely and generally successfully used. The results show that the present diffuse recharge beneath the grassland is 0.11–0.32 mm/year, based on the chloride mass balance of seven soil profiles. The chloride accumulation age is approximately 2,500 years at a depth of 13 m in the unsaturated zone. The average Cl content in soil moisture in the upper 13 m of the unsaturated zone ranges from 2,842 to 7,856 mg/L, whereas the shallow groundwater Cl content ranges from 95 to 351 mg/L. The corrected 14C age of shallow groundwater ranges from 4,327 to 29,708 years. Stable isotopes show that the shallow groundwater is unrelated to modern precipitation. The shallow groundwater was recharged during the cold and wet phases of the Late Pleistocene and Holocene humid phase based on palaeoclimate, and consequently, the groundwater resources are nonrenewable. Due to the limited recharge rate and thick unsaturated zone, the present shallow groundwater has not been in hydraulic equilibrium with near‐surface boundary conditions in the past 2,500 years.  相似文献   

18.
Abstract

Accurate estimation of groundwater recharge is essential for the proper management of aquifers. A study of water isotope (δ2H, δ18O) depth profiles was carried out to estimate groundwater recharge in the Densu River basin in Ghana, at three chosen observation sites that differ in their altitude, geology, climate and vegetation. Water isotopes and water contents were analysed with depth to determine water flow in the unsaturated zone. The measured data showed isotope enrichment in the pore water near the soil surface due to evaporation. Seasonal variations in the isotope signal of the pore water were also observed to a depth of 2.75 m. Below that depth, the seasonal variation of the isotope signal was attenuated due to diffusion/dispersion and low water flow velocities. Groundwater recharge rates were determined by numerical modelling of the unsaturated water flow and water isotope transport. Different groundwater recharge rates were computed at the three observation sites and were found to vary between 94 and 182 mm/year (± max. 7%). Further, the approximate peak-shift method was applied to give information about groundwater recharge rates. Although this simple method neglects variations in flow conditions and only considers advective transport, it yielded mean groundwater recharge rates of 110–250 mm/year (± max. 30%), which were in the same order of magnitude as computed numerical modelling values. Integrating these site-specific groundwater recharge rates to the whole catchment indicates that more water is potentially renewed than consumed nowadays. With increases in population and irrigation, more clean water is required, and knowledge about groundwater recharge rates – essential for improving the groundwater management in the Densu River basin – can be easily obtained by measuring water isotope depth profiles and applying a simple peak-shift approach.

Citation Adomako, D., Maloszewski, P., Stumpp, C., Osae, S. & Akiti, T. T. (2010) Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol. Sci. J. 55(8), 1405–1416.  相似文献   

19.
Abstract

Many of the hydrological and ecological functions of alluvial flood plains within watersheds depend on the water flow exchanges between the vadoze soil zone and the shallow groundwater. The water balance of the soil in the flood plain is investigated, in order to evaluate the main hydrological processes that underlie the temporal dynamics of soil moisture and groundwater levels. The soil moisture and the groundwater level in the flood plain were monitored continuously for a three-year period. These data were integrated with the results derived from applying a physically-based numerical model which simulated the variably-saturated vertical water flow in the soil. The analysis indicated that the simultaneous processes of lateral groundwater flow and the vertical recharge from the unsaturated zone caused the observed water table fluctuations. The importance of these flows in determining the rises in the water table varied, depending on soil moisture and groundwater depth before precipitation. The monitoring period included two hydrological years (September 2009–September 2011). About 13% of the precipitation vertically recharged the groundwater in the first year and about 50% in the second. The difference in the two recharge coefficients was in part due to the lower groundwater levels in the recharge season of the first hydrological year, compared to those observed in the second. In the latter year, the shallow groundwater increased the soil moisture in the unsaturated zone due to capillary rise, and so the mean hydraulic conductivity of the unsaturated soil was high. This moisture state of soil favoured a more efficient conversion of infiltrated precipitation into vertical groundwater recharge. The results show that groundwater dynamics in the flood plain are an important source of temporal variability in soil moisture and vertical recharge processes, and this variability must be properly taken into account when the water balance is investigated in shallow groundwater environments.

Citation Pirastru, M. and Niedda, M., 2013. Evaluation of the soil water balance in an alluvial flood plain with a shallow groundwater table. Hydrological Sciences Journal, 58 (4), 898–911.  相似文献   

20.
The Northern Guam Lens Aquifer is an island karst aquifer in uplifted young, highly conductive limestone. Calculations of recharge based on differences between daily rainfall and daily pan evaporation suggest that the maximum annual mass of water delivered to the freshwater lens is about 67% of mean annual rainfall. Hydrographs of daily well-level responses plotted against daily rainfall indicate that the rate at which water is delivered to the lens is a function of rainfall intensity and the relative saturation of the vadose zone. Together, these variables determine the degree to which stormwater is shunted into fast flow through preferred pathways that bypass the bedrock matrix, rather than percolating slowly through the bedrock matrix.

Data from the 40-year interval from 1956 to 1995 show that some 17% of rainfall on northern Guam arrives in small amounts (<0.6 cm/day). Most of this light rainfall is probably lost to evapotranspiration. At least another 20% of total rainfall on Guam arrives at very high intensities (>5.0 cm/day), which tend to promote fast flow at the expense of percolation. Rapid recovery of the water table from rapid recharge suggests that the lens either takes such recharge into storage very rapidly, discharges it rapidly without taking it into storage, or some combination of both. Significant vadose buffering of recharge to the lens is indicated by the fact that simulations assuming that the recharge from precipitation received in any given month is transmitted to the lens during the same month consistently over-predict observed peak mean monthly water levels and under-predict the minima.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号