首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the absence of an externally applied stress, the segregation of small amounts of granitic or tonalitic melts from their residual mafic crystals is possible only if the melt forms an interconnected network phase. Accordingly, this research focuses on melt connectivity at low melt fraction (<4 wt% or 5 vol.%). Connectivity of granitic and tonalitic melts in amphibole-rich rock was assessed by performing two types of piston-cylinder experiments at 1 GPa and 800 °C. The first involved annealing samples that consisted of either alternating layers or homogeneous mixtures of calcic amphibole and metaluminous obsidian powder. The second type of experiment involved creating diffusion couples. Here, an upper cylinder of amphibole-saturated granitic or tonalitic melt was placed against a lower cylinder consisting of an amphibole-rich rock containing zero or a small melt (granitic or tonalitic) fraction. The upper part of the diffusion couple was doped with β emitter (151Sm or 14C) and functioned as an infinite melt reservoir. The lower part of the diffusion couple was considered to be the host rock. The experiments approached textural equilibrium which allowed us to characterize the wetting behaviour of the calcic amphibole by the hydrous silicic melt (granitic or tonalitic). These particular experiments also provided information concerning diffusive transport, because the β emitter could diffuse through the connected melt (liquid) in the amphibole-rich rock. The dihedral angle measurements show that melt connectivity was achieved. This conclusion is based on the fact that the dihedral angles, θ, consistently yielded median apparent values of 53°<θ<58° for an amphibole-rich rock/granitic melt system, and 46°<θ<48° for an amphibole-rich rock/tonalitic melt system. However, the frequency distribution of θ angles is found to be relatively broad. The results of the diffusion-couple experiments, assessed using the β radiographic technique, complement the dihedral (wetting) angle measurements by showing that melt connectivity is achieved at a melt fraction less than 4wt% (5 vol.%). Received: 15 April 1997 / Accepted: 23 September 1998  相似文献   

2.
 High-temperature creep behavior in Ni2GeO4 spinel was investigated using synthetic polycrystalline aggregates with average grain sizes ranging from submicron to 7.4 microns. Cylindrical samples were deformed at constant load in a gas-medium apparatus at temperatures ranging from 1223 to 1523 K and stresses ranging from 40 to 320 MPa. Two deformation mechanisms were identified, characterized by the following flow laws: where σ is in MPa, d is in μm and T is in Kelvin. These flow laws suggest that deformation was accommodated by dislocation creep and grain-boundary diffusion (Coble) creep, respectively. A comparison with other spinels shows that an isomechanical group can be defined for spinels although some differences between normal and inverse spinels can be identified. When creep data for olivine and spinel are normalized and extrapolated to Earth-like conditions, spinel (ringwoodite) has a strength similar to olivine in the dislocation creep regime and is considerably stronger than olivine in the diffusion creep regime at coarse grain size. However, when grain-size reduction occurs, spinel can become weaker than olivine due to its high grain-size sensitivity (Coble creep behavior). Analysis of normalized diffusion creep data for olivine and spinel indicate that spinel is weaker than olivine at grain sizes less than 2 μm. Received: 18 June 2000 / Accepted: 3 April 2001  相似文献   

3.
An experimental method of melt inclusion synthesis within olivine crystals has been developed to determine the composition of the melt present in a partially molten peridotite assemblage. Trace element doped peridotite was equilibrated with 5 wt% of a C-O-H volatile source at 20 kbar/1175 °C in a piston-cylinder apparatus under buffered oxygen and sulphur fugacity conditions [log(f O2) ∼ IW +1 log unit, log (f S2) ∼ Fe/FeS > +1 log unit]. A single crystal of olivine, which had been cut to a disc shape, was included in the sample capsule. At run conditions the peridotite charge formed olivine, orthopyroxene, clinopyroxene, Fe-Ni sulphide and a volatile-bearing melt. The melt phase is preserved as homogeneous glass inclusions up to 50 μm in size, trapped in situ in the olivine disc. The major element composition of the glass inclusions showed them to be of broadly basaltic character, but with a low Mg/(Mg + ΣFe), which is associated with precipitation of olivine from the melt inclusion onto the walls of the olivine disc during quenching. Thus the equilibrium melt composition has been calculated from the glass inclusion composition by addition of olivine component using the Fe/Mg exchange coefficient of Roeder and Emslie (1970); the desired Mg/(Mg + ΣFe) being determined from the composition of olivine formed at run conditions in the peridotite section of the charge. The melt composition obtained is close to the trend for dry melting established by Falloon and Green (1988), and it is evident that although the reduced volatiles in this case have induced a liquidus depression of some 250 °C, there has been only a small shift in melt composition. Trace element, carbon and hydrogen contents of thirteen melt inclusions have been determined by secondary ion mass spectrometry (SIMS). The trace element signature is consistent with ∼29% melting in equilibrium with a lherzolitic assemblage. The equilibrium melt has a C/H of 0.48 by weight. Carbon solubility in partial melts is thus significant under reducing conditions in the presence of dissolved “water components” and establishes a major melt fluxing role for carbon in the upper mantle. The ubiquitous presence of carbon and hydrogen in basaltic magmas underscores the importance of determining both the position of vapour-present solidi and the composition of melts generated, when developing petrogenetic models. Received: 1 July 1996 / Accepted: 25 June 1997  相似文献   

4.
 Torsional forced-oscillation and microcreep methods have been employed in a study of the viscoelastic behaviour of fine-grained polycrystalline olivine at high temperatures (to 1300 °C), seismic frequencies and low strain amplitudes. The Fo90 specimens are of low porosity and low dislocation density. They vary in mean grain size from 8 to 150 μm and contain only trace amounts (≪0.1 vol%) of quenched melt glass. For T ≤ 900 °C, their behaviour is essentially elastic and the shear modulus G closely approaches that expected for a dense polycrystal from single-crystal elasticity data – confirming the suppression of thermal microcracking in␣this study. At higher temperatures, pronounced absorption-band dissipation and associated dispersion␣of the shear modulus provide evidence of linear viscoelastic behaviour. Both recoverable (anelastic) and permanent (viscous) strains are involved and the proportion of the latter increases with increasing temperature and decreasing frequency. Comparison of the results for the three specimens provides a clear indication that the viscoelastic behaviour, attributed to diffusional processes, is grain-size-sensitive with the dissipation and associated dispersion increasing with decreasing grain size. Both elastically accommodated and diffusionally accommodated grain-boundary sliding appear to be implicated. Received: 29 September 2000 / Accepted: 7 May 2001  相似文献   

5.
Grain growth rates in partially molten olivine aggregates were determined experimentally at a pressure of 1 GPa. The aim of the experiments with fine-grained starting material (solution–gelation derived Fo90 olivine with a grain size of ∼1 μm with 2 and 4 wt.% added basaltic glass) was to determine growth rates during steady-state grain growth. A series of experiments was conducted at a fixed temperature of 1,350°C for durations from 2 to 700 h, and a second series at fixed duration (168 h) at temperatures from 1,250 to 1,450°C. The resulting activation energy (E=390 kJ/mol) and growth exponent (n=4.3) are comparable to melt-free results (Nichols and Mackwell 1991). The observed grain size distributions are broader than those predicted for normal grain growth or Ostwald ripening and most similar to the Log-normal distribution. The observed melt distribution is influenced by the continuous rearrangement of neighboring grains during growth. The relatively large growth exponent observed in this study and by Nichols and Mackwell (1991) where secondary phases are present suggests that grain growth in the upper mantle is slower than predicted by Karato (1989).  相似文献   

6.
The normal grain growth behaviour of four different, but all nominally pure, calcite powders (99%+ analytic grade calcite, 99.7% chalk, 99.97% crushed Iceland Spar, 99.95%+ chelometric grade calcite) has been investigated as a function of temperature (550, 600, 650, 700 °C) and confining pressure (100, 190 MPa) under both “dry” and hydrostatic (P fluid = P total) conditions. The initial particle size of both the analytic grade and chelometric grade calcite was about 5 μm, and that of the chalk was about 3 μm, while the experiments on the Iceland Spar were conducted on powders of three different initial particle sizes (3.4, 7.5, 38.5 μm). On each material, at each pressure/temperature condition 6 to 15 experiments, equally spaced in log time from 15 minutes to 50 days, were conducted. Under dry conditions all four materials recrystallized to aggregates which contained less than 2% porosity and which had a grain size of between 4 and 20 μm (depending on the initial particle size). Subsequently the aggregates coarsened by normal grain growth, with the kinetics of the growth process being controlled by the rate at which the grain boundaries could drag the residual pores with them as they migrated. Under nominally identical conditions both the mechanism and rates of pore drag differed greatly for the different materials, implying that this process is highly sensitive to trace solute impurity concentrations. This sensitivity renders the task of providing a systematic account of dry calcite grain growth kinetics highly problematic. Under hydrostatic conditions all the powders followed the same normal grain growth kinetics in which the growth process was rate-controlled by diffusion through the pore fluid on the grain boundaries. An activation enthalpy of 162.6 kJ mol−1 and an activation volume of 34.35 cm3 mol−1 was obtained for this process. Received: 23 May 1996 / Accepted: 8 July 1997  相似文献   

7.
An investigation was made of the effect of trace amounts of feldspar (Na and/or K) on dihedral angles in the quartz-H2O-CO2 system at 4 kbar and 450–1050°C. Quartz-quartz-H2O dihedral angles in feldspar-bearing quartz aggregates are observed to be the same as those in pure quartz aggregates at temperatures below 500°C. Above this temperature, they decrease with increasing temperature until the solidus. The final angle at the inception of melting is about 65° for microcline-quartz-H2O and microcline-albite-quartz-H2O, and much less than 60° (the critical value for formation of grain-edge fluid channels in an isotropic system) for the albite-quartz-H2O system. CO2 was observed to produce a constant quartz-quartz-fluid dihedral angle of 97° in feldspar-bearing quartz aggregates at all temperatures studied. Also examined were the dihedral angles for the two co-existing supersolidus fluids in quartz aggregates. In all systems the quartz-volatile fluid angle is greater than 60°, whereas the quartz-melt angle is lower than 60°. Both super-solidus angles decrease with increasing temperature. The transition from nonconnected to connected poro- sity with increasing temperature observed in the quartz-albite-H2O system some tens of degrees below the solidus (termed a permeability transition), if a common feature of rocks near their melting points, will play an important role in controlling the permeability of high-grade rocks to aqueous fluids. Received: 27 October 1993 / Accepted: 11 July 1994  相似文献   

8.
The Ballachulish igneous complex in the Scottish Highlands, part of a widespread group of late Caledonian calcalkaline intrusions, was emplaced at a depth of 10 km into Dalradian metasediments resulting in melting of the country rocks near the intrusive contact. The greatest extent of melting occurred in the Leven schist in the 400 m wide so-called Chaotic Zone which experienced infiltration of aqueous fluids from the pluton. In contrast, adjacent to the Chaotic Zone, the feldspar-bearing Appin quartzite underwent significant melting only within a few metres of the intrusion, despite both being in contact with the same fluid source as the Leven schist and having a similar (wet) melting point. The permeability of the Appin quartzite and quartz horizons in the Leven schist to pervasive grain-edge infiltration of aqueous fluids was determined by measuring the equilibrium quartz-H2O dihedral angle for the P-T conditions of contact metamorphism. Addition of powdered samples of both rock types to the pure quartz-H2O system results in a linear decrease of the quartz-H2O dihedral angle with increasing temperature. The rate of this decrease for the Leven schist is greater than that for the Appin quartzite, and the angle decreases below 60° some 30 °C below the wet solidus (670 °C at 0.3 GPa). Charges bearing Appin quartzite had dihedral angles greater than 60° at all temperatures below the wet solidus (690 °C at 0.3 GPa). These results demonstrate that quartz-rich horizons in the Leven schist would have been permeable to infiltration of aqueous fluids close to the solidus, permitting extensive H2O-fluxed melting to occur. The Appin quartzite would have remained impermeable to grain-edge flow, consistent with the observed differences in the extent of partial melting of the two lithologies. Received: 25 November 1996 / Accepted: 29 October 1997  相似文献   

9.
We carried out an experimental study to characterize the kinetics of Ostwald ripening in the forsterite-basalt system and in the plagioclase (An65)-andesite system. Eight experiments were done in each system to monitor the evolution of mean grain size and crystal size distribution (CSD) with time t; the experiments were performed in a 1-atmosphere quench furnace, at 1,250°C for plagioclase and 1,300°C for olivine. Very contrasted coarsening kinetics were observed in the two series. In the plagioclase series, the mean grain size increased as log(t), from ≈3 μm to only 8.7 μm in 336 h. The kinetic law in log(t) means that Ostwald ripening was rate-limited by surface nucleation at plagioclase-liquid interfaces. In the olivine series, the mean grain size increased as t 1/3, from ≈3 μm to 23.2 μm in 496 h. A kinetic law in t 1/3 is expected when Ostwald ripening is rate-limited either by diffusion in the liquid or by grain growth/dissolution controlled by a screw dislocation mechanism. The shape of olivine CSDs, in particular their positive skewness, indicates that grain coarsening in the olivine experiments was controlled by a screw dislocation mechanism, not by diffusion. As the degrees of undercooling ΔT (or supersaturation) involved in Ostwald ripening are essentially <1°C, the mechanisms of crystal growth identified in our experiments are expected to be those prevailing during the slow crystallisation of large magma chambers. We extrapolated our experimental data to geological time scales to estimate the effect of Ostwald ripening on the size of crystals in magmas. In the case of plagioclase, Ostwald ripening is only efficient for mean grain sizes of a few microns to 20 μm, even for a time scale of 105 years. It can, however, result in a significant decrease of the number of small crystals per unit volume, and contribute to the development of convex upwards CSDs. For olivine, the mean grain size increases from 2–3 μm to ≈70 μm in 1 year and 700 μm in 103 years; a mean grain size of 3 mm is reached in 105 years. Accordingly, the rate of grain size-dependent processes, such as compaction of olivine-rich cumulates or melt extraction from partially molten peridotites, may significantly be enhanced by textural coarsening.  相似文献   

10.
The sintering behavior of olivine and olivine-basalt aggregates has been examined at temperatures near 1,300° C. Experimental factors contributing to rapid sintering kinetics and high-density, fine-grained specimens include: (i) the uniform dispersion of basalt throughout the specimen, (ii) a very fine, uniform particle size for the olivine powder, (iii) oxygen fugacities near the high P O2 end of the olivine stability field, and (iv) rapid heating to the sintering temperature. Olivine-basalt specimens prepared from olivine particles coated with a synthetic basalt achieve chemical and microstructural equilibrium more rapidly, as well as produce higher density and finer grain-sized aggregates, than do specimens prepared by mechanical mixing of olivine and natural basalt powders. The grain boundary mobility for olivine, measured for olivine-basalt aggregates which have undergone secondary recrystallization, is on the order of 2×10?15 (m/s)/(N/m2) in the temperature range 1,300–1,400° C. Solution-precipitation (pressure-solution) processes make an important contribution to the development of the microstructure in olivine-basalt aggregates.  相似文献   

11.
The pore geometry of texturally equilibrated rocks is controlled by the interfacial energy ratio between grain boundaries and solid–liquid boundaries. Faceting at pore walls, which is a common feature of pore networks in rocks, strongly affects the liquid distribution. We investigated the effects of faceting on the equilibrium pore geometries based on image analysis of several systems with various degrees of faceting and dihedral angles. The degree of faceting was assessed by the F value, which is the ratio of the flat interface length at the pore wall to the length of total interfacial boundary between solid and liquid. The F values tend to increase with increasing liquid volume fraction. Little-faceted systems show relatively homogeneous liquid distribution. Moderately-faceted systems with a higher dihedral angle (∼55°) are characterized by development of large pores surrounded by faceted walls and complementary shrinkage of triple junction tubes, whereas strongly faceted systems with a low dihedral angle show no evidence of shrinking triple junction tubes, although most pores are surrounded by faceted pore walls. The faceted systems tend to produce more facet boundaries at the pore walls due to the difference of interfacial energies between the flat and curved surfaces. In the systems with the same degree of faceting, heterogeneity of liquid distribution tends to decrease with dihedral angle. For faceting systems, the permeability of texturally equilibrated rocks with low liquid fraction would be significantly decreased by the relative reduction of triple junction volumes or by closure of channels along grain edge due to the truncation of facet walls.  相似文献   

12.
The equilibrium distribution of hydrous silicic melts in polycrystalline aggregates of quartz was characterized in a series of partial melting and melt distribution experiments in the systems quartz-albite-orthoclase-H2O and quartz-anorthite-H2O, at 650 to 1000 MPa and 800 to 900° C. Near-equilibrium textures in these experiments are characterized by very low quartz-quartz-melt wetting angles, and by a substantial number of thin melt films along grain boundaries. Wetting angles in the H2O-saturated experiments are as follows: 18° at 800° C-1000 MPa, and 12° at 900° C-1000 MPa in the granitic system; 18° at 850° C-650 MPa, 15° at 900° C-650 MPa, and 15° at 900° C-1000 MPa in the quartzanorthite system. In the granitic system at 900° C-1000 MPa, a decrease of H2O content in melt from 17 wt% (at saturation) to 6 wt%, results in a slight increase of wetting angle from 12° to 16°. These low wetting angles — and the observation that many grain boundaries are wetted by melt films-indicate that the ratio of quartz-quartz to quartz-melt interfacial energies (ss/s1) is high: 2. Secondary electron imaging of fracture surfaces of melt-poor samples provided a three-dimensional insight into the geometry of melt; at low melt fraction, melt forms an interconnected network of channels along grain edges, as predicted for isotropic systems with wetting angles below 60°. This high-permeability geometry suggests that the segregation of granitic melts is not as sluggish as previously anticipated; simple compaction calculations for a permeability range of 10-12 to 10-9 m2 indicate that segregation may operate at low to moderate melt fractions (below 30 vol. %), within relatively short time-scales, i.e., 105 to 106 years. Quartzmelt textures show significant deviations from the equilibrium geometries predicted for isotropic partially molten systems. The most consistent deviation is the pervasive development of crystallographically-controlled, planar faces of quartz; these faces provide definitive evidence for non-isotropic quartz-melt surface energy. For most silicates other than quartz, the grain-scale distribution of partial melts deviates even more significantly from equilibrium distributions in isotropic systems; accordingly, in order to describe adequately melt distributions in most natural source regions, the equilibrium model should be modified to account for anisotropy of solid-liquid interfacial energy.Contribution CNRS-INSU-DBT no 651  相似文献   

13.
In polycrystalline aggregates of olivine with mean grain sizes above 35 μm plus a low basaltic melt fraction, both wetted and melt-free grain boundaries are observed after equilibration times at high pressures and temperatures of between 15 and 25 days. In order to assess a possible dependence of the wetting behaviour on the relative orientation of neighbouring grains, a SEM based technique, electron backscatter diffraction (EBSD), is used to determine grain orientations. From the grain orientations relative orientations of neighbouring grains are calculated, which are expressed as misorientation axis/angle pairs. The distribution of misorientation angles and axes of melt-free grain boundaries differ significantly from a purely random distribution, whereas those of wetted grain boundaries are statistically indistinguishable from the random distribution. The relative orientation of two neighbouring grains therefore influences the character of their common grain boundary. However, no clustering towards special (coincident site lattice) misorientation axes is observed, with the inference that the energy differences between special and general misorientations are too small to lead to the development of preferred misorientations during grain growth. Received: 8 December 1997 / Revised, accepted: 6 April 1998  相似文献   

14.
Experiments have been conducted in a peralkaline Ti-KNCMASH system representative of MARID-type bulk compositions to delimit the stability field of K-richterite in a Ti-rich hydrous mantle assemblage, to assess the compositional variation of amphibole and coexisting phases as a function of P and T, and to characterise the composition of partial melts derived from the hydrous assemblage. K-richterite is stable in experiments from 0.5 to 8.0 GPa coexisting with phlogopite, clinopyroxene and a Ti-phase (titanite, rutile or rutile + perovskite). At 8.0 GPa, garnet appears as an additional phase. The upper T stability limit of K-richterite is 1200–1250 °C at 4.0 GPa and 1300–1400 °C at 8.0 GPa. In the presence of phlogopite, K-richterite shows a systematic increase in K with increasing P to 1.03 pfu (per formula unit) at 8.0 GPa/1100 °C. In the absence of phlogopite, K-richterite attains a maximum of 1.14 K pfu at 8.0 GPa/1200 °C. Titanium in both amphibole and mica decreases continuously towards high P with a nearly constant partitioning while Ti in clinopyroxene remains more or less constant. In all experiments below 6.0 GPa ΣSi + Al in K-richterite is less than 8.0 when normalised to 23 oxygens+stoichiometric OH. Rutiles in the Ti-KNCMASH system are characterised by minor Al and Mg contents that show a systematic variation in concentration with P(T) and the coexisting assemblage. Partial melts produced in the Ti-KNCMASH system are extremely peralkaline [(K2O+Na2O)/Al2O3 = 1.7–3.7], Si-poor (40–45 wt% SiO2), and Ti-rich (5.6–9.2 wt% TiO2) and are very similar to certain Ti-rich lamproite glasses. At 4.0 GPa, the solidus is thought to coincide with the K-richterite-out reaction, the first melt is saturated in a phlogopite-rutile-lherzolite assemblage. Both phlogopite and rutile disappear ca. 150 °C above the solidus. At 8.0 GPa, the solidus must be located at T≤1400 °C. At this temperature, a melt is in equilibrium with a garnet- rutile-lherzolite assemblage. As opposed to 4.0 GPa, phlogopite does not buffer the melt composition at 8.0 GPa. The experimental results suggest that partial melting of MARID-type assemblages at pressures ≥4.0 GPa can generate Si-poor and partly ultrapotassic melts similar in composition to that of olivine lamproites. Received: 23 December 1996 / Accepted: 20 March 1997  相似文献   

15.
Summary The investigated mantle section of the Leka ophiolite complex extends 1.4 km from and 1.1 km along the exposed Moho. The foliated peridotite contains numerous tabular and elongated dunite bodies, orthopyroxenite dikes, websterite veins, and dikes. The foliation of the peridotite is inclined by about 45° to the Moho. The dunite bodies and the dikes cut the foliation at low angles. The dunite bodies vary in width from 0.1 to 50 m and in length from 10 m to more than 1 km. Wider dunite bodies are commonly surrounded by 0 to 1.0 m wide margins of dunitized peridotite. Websterite veins may be present outside these margins. Apart from sporadic chromite layers the dunite is very homogenous. The dunite bodies are considered to have formed by deposition of olivine along the walls of dikes originally containing tholeiitic melt. The tholeiitic melt at first heated the peridotitic sidewalls so that they became partially molten and dunitized. The ascending magma then eroded the sidewalls and removed olivine as xenocrysts. When the ascent rate decreased, the temperature of the sidewalls decreased, so that olivine (Fo89–92) began to crystallize along the dike walls. There is also evidence for percolative melt migration along foliation planes, however, the largest proportion of the melts intruded along dikes. The websterite dikes are mostly 1 to 4 cm wide and 3 to 20 m long and dispersed with mutual distances of 20–50 m. The websterite veins and dikes probably originated from melts that were generated along the heated sidewalls of the dunite bodies. The 0.02 to 10 m wide orthopyroxenite dikes have exceptionally high MgO contents for their SiO2 contents; about 36 wt.% MgO and 50 wt.% SiO2. They may have formed as segregates from a SiO2-rich magma, although the parent magma does not appear to have been boninitic. The parent magma may instead have formed by second stage partial melting of depleted lherzolite.  相似文献   

16.
In the Grt-Bt-Sil restitic xenoliths of El Joyazo (Cerro de Hoyazo), hercynitic spinel is a minor phase commonly associated with biotite. The possible reaction relationships among biotite and spinel are studied in reaction textures developed around biotites at their contact with patches of fibrolitic sillimanite and rhyolitic melt. In these textures, resorbed biotite crystals about 1 mm long are rimmed by a layer of glass <200 μm thick containing spinel and ilmenite; the same glass also fills embayments in biotite. Spinel forms euhedral crystals <100 μm in size, and ilmenite occurs as smaller anhedral crystals or needles, often intergrown with spinel. The homogeneous felt-like melt-sillimanite aggregate (“mix”) is richest in glass close to the reaction rim around biotite. Plagioclase and garnet are located >5 mm away from the reaction texture. Biotite is chemically zoned. Cores (Bt 1 ) have XMg=0.35 ± 0.02 and Ti=0.58 ± 0.01 atoms; whereas the outer rims (Bt 2 ) have XMg=0.45 ± 0.01 and Ti up to 0.68 atoms. The hercynite-rich spinel (Spl) has low ZnO content (<0.80 wt%) and XMg=0.26 ± 0.04. The chemical compositions of the mix aggregate represent linear combinations between sillimanite and a silica-rich melt. This melt (melt 1 ) is different from that of the layer around biotite (melt 2 ), which is also richer in Ca and alkalis. Garnet rims (Grt) have low Ca and Mn, and XMg=0.14. Plagioclase is characterized by large homogeneous cores (Pl 1 , An31 ± 2) and more calcic rims (Pl 2 , An49 ± 6). Matrix analysis in the 9-component (Al-Ca-Fe-K-Mg-Mn-Na-Si-Ti), 9-phase (Bt1-Bt2-Grt-Spl-Ilm-melt2-mix-Pl1-Pl2) system provides the mass balance (in mole units):
This relationship is in excellent agreement with the observed textures and hence is considered a good model for the incongruent melting of biotite in the xenoliths. The mass-balance indicates that melt production is dominated by the availability of K from biotite, and that garnet and plagioclase must be involved as reactants, so that the reaction volume is larger than the melt production site. The melting of biotite, constrained at T=900–950°C and P ≥ 5 kbar, is not a terminal reaction, as its variance in the reduced 8-component multisystem is ≥3. Received: 1 June 1999 / Accepted: 8 February 2000  相似文献   

17.
 Investigations of peridotite xenolith suites have identified a compositional trend from lherzolite to magnesian wehrlite in which clinopyroxene increases at the expense of orthopyroxene and aluminous spinel, and in which apatite may be a minor phase. Previous studies have shown that this trend in mineralogy and chemical composition may result from reaction between sodic dolomitic carbonatite melt and lherzolite at pressures around 1.7 to 2 GPa. This reaction results in decarbonation of the carbonatite melt, releasing CO2-rich fluid. In this study, we have experimentally reversed the decarbonation reaction by taking two natural wehrlite compositions and reacting them with CO2 at a pressure of 2.2 GPa and temperatures from 900 to 1150° C. Starting materials were pargasite-bearing wehrlites, one with minor apatite (composition 71001*) and one without apatite (composition 70965*). At lower temperatures (900° C) the products were apatite+pargasite+magnesite harzburgite for runs using composition 71001*, and pargasite+dolomite lherzolite for runs using composition 70965*. At and above 1000° C, carbonatite melt with harzburgite residue (olivine+orthopyroxene+spinel) and with lherzolite residue (olivine+orthopyroxene+clinopyroxene+ spinel) were produced respectively. Phase compositions in reactants and products are consistent with the documented carbonatite/lherzolite reactions, and also permit estimation of the carbonatite melt compositions. In both cases the melts are sodic dolomitic carbonatites. The study supports the hypothesis of a significant role for ephemeral, sodic dolomitic melts in causing metasomatic changes in the lithosphere at P≤2 GPa. The compositions of wehrlites imply fluxes of CO2, released by metasomatic reactions, which are locally very large at around 5 wt% CO2. Received: 15 December 1995/Accepted: 14 February 1996  相似文献   

18.
A systematic characterization of the chemical factors that control calcium partitioning between olivine and melt in a magmatic environment was undertaken using experiments performed on compositionally simple systems (CaO-MgO-SiO2, CaO-MgO-Al2O3-SiO2, CaO-MgO-Al2O3-SiO2-Cr2O3, CaO-MgO-Al2O3-SiO2-TiO2, CaO-MgO-Al2O3-SiO2-Na2O, CaO-MgO-Al2O3-SiO2-FeO, CaO-MgO-Al2O3-SiO2-FeO-Na2O) over a wide range of temperature (1050–1530 °C) at one bar pressure. The calcium concentration of olivines is shown to be dependent not only on the forsterite content of the olivine but to a large extent on melt composition. For a fixed CaO content of the melt, these results show that the CaO concentration of olivine is strongly sensitive to the amount of alumina, alkali and ferrous iron present in the coexisting melt. Oxygen fugacity and temperature are not found directly to affect Ca partitioning. It is thus proposed that the systematic variations of the calcium content of olivine may be used as an “in-situ chemical potentiometer” of the lime activity of the melt. Based upon these data in synthetic systems, an empirical model describing Ca partitioning between olivine and melt is developed. When applied to natural olivines this model reproduces their Ca content, where melt composition is known, to within ±10% relative. The model may therefore be used to predict changes in melt composition during olivine crystallization and/or to assess whether an olivine is in equilibrium with its host magma. Finally, the wide range of Ca partitioning observed at fixed crystal composition confirms that minor element partitioning between crystal and melt cannot be predicted from the physical characteristics of the crystal alone, and that the non-ideality of the melt has to be taken into account. Received: 12 June 1998 / Accepted: 1 February 1999  相似文献   

19.
The 150 m thick late Miocene Graveyard Point sill (GPS) is situated at the Idaho-Oregon border near the southwestern edge of the western Snake River Plain. It records from bottom to top continuous fractional crystallization of a tholeiitic parent magma (lower chilled border, FeO/(FeO+MgO) = 0.59, Ni = 90 ppm) towards granophyres (late pods and dikes, FeO/(FeO+MgO) = 0.98, 78 wt% SiO2 3.5 wt% K2O, <4 ppm Ni) showing a typical trend of Fe and P enrichment. Fractionating minerals are olivine (Fo79-Fo2), augite (X Fe = 0.18−0.95), feldspars (An80Or1-An1Or62), Fe-Ti oxides (Ti-rich magnetite and ilmenite), apatite and in two samples super-calcic pigeonite (Wo18–28 Fs41–54). The granophyres may bear some quartz. Compositionally zoned minerals record a large interval of the fractionation process in every single sample, but this interval changes with stratigraphic height. In super-calcic pigeonite-bearing samples, olivine is scarce or lacking and because super-calcic pigeonite occurs as characteristic overgrowths on augite, its formation is interpreted to be related to the schematic reaction: augite + olivine (component in melt) + SiO2 (in melt) = pigeonite, that defines the cotectic between augite and pigeonite in olivine-saturated basaltic systems. Line measurements with the electron microprobe reveal that the transition from augite to super-calcic pigeonite is continuous. However, some crystals show an abrupt “reversal” towards augite after super-calcic pigeonite growth. Two processes compete with each other in the GPS: fractional crystallization of the bulk liquid (the bulk melt separates from solids and interstitial liquids in the solidification front) and fractional crystallization of interstitial melt in the solidification front itself. Interplay between those two processes is proposed to account for the observed variations in mineral chemistry and mineral textures. Received: 25 November 1998 / Accepted: 14 June 1999  相似文献   

20.
Liquidus phase relations in the system diopside–kalsilite–forsterite–quartz with 3 wt% F were examined at 1 bar and the locations of important invariant points were determined at 18 kbar. At all pressures within this range a large liquidus field for fluorphlogopite (Phl) exists, and has a large influence on both melting and fractionation processes. One eutectic point was found to the silica-rich side of the plane Lc–Fo–Di at Di1Ks30Fo2Qz67, where a melt coexists with San, Qz, Phl and Di at 840 °C and 1 bar. Another eutectic point must exist in the silica-poor part of the system because the phase topology determines that thermal barriers must exist. At this point a feldspathoid, either Lc or Ks, must coexist with Fo, Phl and a Ca-bearing phase such as Di. The exact location and phase assemblage were not determined, but the equilibrium melt must have a composition rich in Di (>29 wt%) and extremely poor in Qz (<8 wt%). The composition of the first eutectic moves towards lower SiO2 contents with increasing pressure (Di3Ks40Fo1Qz56 at 18 kbar), whereas the second does not exist at 18 kbar due to the disappearance of Lc as a stable liquidus phase. Liquids which coexist with mafic minerals such as En, Fo, Phl and Di are important for the genesis of potassium-rich mafic rocks by partial melting in the mantle and for the early stages of fractional crystallisation. The equilibrium melt at the invariant point Fo + En + Phl + Di + L at 1125 °C is very poor in Fo and Di components at atmospheric pressure (Di5Ks37Fo5Qz53), whereas at 18 kbar the melt contains large amounts of Fo and Di (Di19Ks31- Fo28Qz21), and has a composition close to that of natural lamproites. Kamafugites do not correspond to melts in this system under any of the studied conditions, and appear to require CO2 in the source. Fractionation processes from primitive potassic basanite melts are controlled principally by the size (and not the mere presence) of the liquidus phase field for phlogopite: at high pressures where the Phl field is large, olivine is eliminated early from the fractionating assemblage and Cpx + Phl fractionation may lead to relatively silica-rich rock differentiates such as trachytes. At low pressures, extensive olivine and restricted Phl crystallisation prevents silica enrichment in the melt, resulting in phonolitic differentiates. Later crystallisation of alkali feldspar accentuates the trends laid down in the early stages of fractionation. Received: 2 February 1999 / Accepted: 14 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号