首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generation, morphology, and distribution of authigenic minerals directly reflect sedimentary environment and material sources. Surface sediments were collected from the western Gulf of Thailand during 2011–2012, and 159 samples were analyzed to determine detrital minerals. Authigenic minerals, including siderite, pyrite, and glauconite, are abundant whereas secondary minerals, such as chlorite and limonite, are distributed widely in the study area. Siderite has a maximum content of 19.98 g/kg and appears in three types from nearshore to continental shelf, showing the process of forming-maturity-oxidation. In this process, the Mn O content in siderite decreases, but Fe_2O_3 and Mg O content increase. Colorless or transparent siderite pellets are fresh grains generated within a short time and widely distributed throughout the region; high content appears in coastal area where river inputs are discharged. Translucent cemented double pellets appearing light yellow to red are mature grains; high content is observed in the central shelf. Red-brown opaque granular pellets are oxidized grains,which are concentrated in the eastern gulf. Pyrite is mostly distributed in the central continental shelf with an approximately north–south strip. Pyrite are mainly observed in foraminifera shell and distributed in clayey silt sediments, which is similar to that in the Yangtze River mouth and the Yellow Sea. The pyrite in the gulf is deduced from genetic types associated with sulfate reduction and organic matter decomposition. Majority of glauconite are granular with few laminar. Glauconite is concentrated in the northern and southern parts within the boundary of 9.5° to 10.5°N and is affected by river input diffusion. The distribution of glauconite is closely correlated with that of chlorite and plagioclase, indicating that glauconite is possibly derived from altered products of chlorite and plagioclase. The K_2O content of glauconite is low or absent, indicating its short formation time.  相似文献   

2.
An integrated study involving sedimentology, mineral chemistry and spectroscopy highlights a distinctive compositional evolution of Cretaceous glauconite within the Ukra Hill Member. Glauconite occurs at the top part of transgressive systems tract deposits built on a marine shelf. The concentration of glauconite steadily increases towards the maximum flooding surface, maximizing around 50%, and sharply falls at the onset of progradation. Unlike most Phanerozoic examples, Ukra glauconite forms by the variable degree of replacement of quartz, feldspar and mica grains. XRD, FEG-SEM and spectroscopy of glauconite pellets indicate an ‘evolved’ stage of maturation. Mossbauer spectroscopy reflects a minor substitution of Al3+-Fe3+ (total) in tetrahedral sites and significant substitution of the same in octahedral sites. A consistently high value of K2O as well as Fe2O3 contradicts the two popular theories, ‘layer lattice’ and ‘verdissement’, and support replacement origin of glauconite in a high aSi+ and high aK+ pore water environment. Incipiently formed glauconite records a marginal increase in K2O content accompanied by release of Al2O3 and SiO2 to form evolved glauconite pellets; those forming within quartz grains involve an addition of Fe2O3 (total) content during maturation. The minimal increase in K2O content of incipiently formed glauconite, best exhibited by those formed within quartz grains is possibly related to stratigraphic condensation. Compositional evolution like this is exhibited by Precambrian glauconites involving abiotic substrates, but is unusual for the Phanerozoic. Original K2O and Fe2O3 (total) content of glauconites is reduced around peripheries and fractures during diagenesis, adding to compositional variability.  相似文献   

3.
CTD and ADCP measurements together with a sequence of satellite images indicate pronounced current meandering and eddy activity in the western Black Sea during April 1993. The Rim Current is identified as a well-defined meandering jet stream confined over the steepest topographic slope and associated cyclonic–anticyclonic eddy pairs located on both its sides. It has a form of highly energetic and unstable flow system, which, as it propagates cyclonically along the periphery of the basin, is modified in character. It possesses a two-layer vertical structure with uniform upper layer speed in excess of 50 cm/s (maximum value ∼100 cm/s), followed by a relatively sharp change across the pycnocline (between 100 and 200 m) and the uniform sub-pycnocline currents of 20 cm/s (maximum value ∼40 cm/s) observed up to the depth of ∼350 dbar, being the approximate limit of ADCP measurements. The cross-stream velocity structure exhibits a narrow core region (∼30 km), flanked by a narrow zone of anticyclonic shear on its coastal side and a broader region of cyclonic shear on its offshore side. The northwestern shelf circulation is generally decoupled from the influence of the basinwide circulation and is characterized by much weaker currents, less than 10 cm/s. The southward coastal flow associated with the Danube and Dinepr Rivers is weak during the measurement period and is restricted to a very narrow coastal zone.The data suggest the presence of temperature-induced overturning prior to the measurements, and subsequent formation of the Cold Intermediate Water mass (CIW) within the Northwestern Shelf (NWS) and interior of the western basin. The newly formed shelf CIW is transported in part along the shelf by the coastal current system, and in part it flows downslope across the shelf and intrudes into the Rim Current convergence zone. A major part of the cold water mass, however, seems to be trapped within the northwestern shelf. The CIW mass, injected into the Rim Current zone from the shelf and the interior region, is then circulated around the basin.  相似文献   

4.
Source rock potential of 108 representative samples from 3 m intervals over a 324 m thick shale section of middle Eocene age from the north Cambay Basin, India have been studied. Variation in total organic carbon (TOC) and its relationship with loss on ignition (LOI) have been used for initial screening. Screened samples were subjected to Rock-Eval pyrolysis and organic petrography. A TOC log indicated wide variation with streaks of elevated TOC. A 30 m thick organic-rich interval starting at 1954 m depth, displayed properties consistent with a possible shale oil or gas reservoir. TOC (wt%) values of the selected samples were found to vary from 0.68% to 3.62%, with an average value of 2.2. The modified van Krevelen diagram as well as HI vs. Tmax plot indicate prevalence of Type II to Type III kerogen. Tmax measurements ranged from 425 °C to 439 °C, indicating immature to early mature stage, which was confirmed by the mean vitrinite reflectance values (%Ro of 0.63, 0.65 and 0.67 at 1988 m, 1954 m, and 1963 m, respectively). Quantification of hydrocarbon generation, migration and retention characteristics of the 30 m source rock interval suggests 85% expulsion of hydrocarbon. Oil in place (OIP) resource of the 30 m source rock was estimated to be 3.23 MMbbls per 640 acres. The Oil saturation index (OSI) crossover log showed, from a geochemical perspective, moderate risk for producing the estimated reserve along with well location for tapping the identified resource.  相似文献   

5.
The Xihu Depression in the East China Sea Shelf Basin is a large petroliferous sedimentary depression, in which oil and gas reservoirs were mainly discovered in the Pinghu Slope and the central inversion zone. The oil-gas source correlation in the Xihu Depression was analyzed by hydrocarbon generating thermal simulation data via gold-tube pyrolysis experiments. The results indicated that the oil and gas in the Xihu Depression were mainly derived from coal measure source rocks of the Eocene Pinghu Formation. Therefore, the identification of coal seams is extremely crucial for evaluating coal measure source rocks in the Pinghu Formation in the Xihu Depression. Geochemical and petrological characterization pointed to input of terrigenous organic matter and redox conditions of the depositional environment as factors that govern the ability of the coal measure source rocks in hydrocarbon generation in the Xihu Depression. In this regard, the sedimentary organic facies in the Pinghu Formation were classified into four predominantly terrigenous and one mixed-source subfacies, which all varied in carbon and hydrogen content. The coal measure source rocks in the carbon- and hydrogen-rich tidal flat-lagoon exhibited the highest hydrocarbon generation potential, whereas the mudstone in the neritic facies was the poorest in its hydrocarbon yield. These results suggested that the coal measure source rocks in the Pinghu Formation likely developed in the Hangzhou Slope and the Tiantai Slope, both representing promising sources for oil and gas exploration.  相似文献   

6.
The Upper Cretaceous Mukalla coals and other organic-rich sediments which are widely exposed in the Jiza-Qamar Basin and believed to be a major source rocks, were analysed using organic geochemistry and petrology. The total organic carbon (TOC) contents of the Mukalla source rocks range from 0.72 to 79.90% with an average TOC value of 21.50%. The coals and coaly shale sediments are relatively higher in organic richness, consistent with source rocks generative potential. The samples analysed have vitrinite reflectance in the range of 0.84–1.10 %Ro and pyrolysis Tmax in the range of 432–454 °C indicate that the Mukalla source rocks contain mature to late mature organic matter. Good oil-generating potential is anticipated from the coals and coaly shale sediments with high hydrogen indices (250–449 mg HC/g TOC). This is supported by their significant amounts of oil-liptinite macerals are present in these coals and coaly shale sediments and Py-GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30. The shales are dominated by Type III kerogen (HI < 200 mg HC/g TOC), and are thus considered to be gas-prone.One-dimensional basin modelling was performed to analysis the hydrocarbon generation and expulsion history of the Mukalla source rocks in the Jiza-Qamar Basin based on the reconstruction of the burial/thermal maturity histories in order to improve our understanding of the of hydrocarbon generation potential of the Mukalla source rocks. Calibration of the model with measured vitrinite reflectance (Ro) and borehole temperature data indicates that the present-day heat flow in the Jiza-Qamar Basin varies from 45.0 mW/m2 to 70.0 mW/m2 and the paleo-heat flow increased from 80 Ma to 25 Ma, reached a peak heat-flow values of approximately 70.0 mW/m2 at 25 Ma and then decreased exponentially from 25 Ma to present-day. The peak paleo-heat flow is explained by the Gulf of Aden and Red Sea Tertiary rifting during Oligocene-Middle Miocene, which has a considerable influence on the thermal maturity of the Mukalla source rocks. The source rocks of the Mukalla Formation are presently in a stage of oil and condensate generation with maturity from 0.50% to 1.10% Ro. Oil generation (0.5% Ro) in the Mukalla source rocks began from about 61 Ma to 54 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 25 Ma to 20 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Mukalla source rocks began from 15 Ma to present-day.  相似文献   

7.
The Middle Eocene deposits in the Fayoum Ranges are composed of complex alternative clastic (claystone and sandstone) and carbonate (limestone and dolostone) facies and dominated carbonate (limestone) facies. Facies are arranged mainly in regression and shallowing upward (emergence) cycles and sequences. Field stratigraphic and microfacies analysis of the study area permits recognition of four major sequences, reflecting 3rd-order cycles. Depositional sequences and cycles are bounded by subaerial erosive surfaces or caliche deposits, ferruginous crust, and by their correlative conformities. Sequence-1 consists of two shallowing-upward cycles (dominate carbonate facies), each of which starts with nummulitic wackestone, capped with nummulitic packstone including Globigerinatheka subconglobata subconglobata biozone. These cycles were deposited under tropical to subtropical conditions as evidenced by the carbonate nature of the rocks and the abundance of nummulites, which need warm conditions for their flourishing. Sequence-2 consists of four emergence cycles based with claystone and capped with wackestone including Morozovella lehneri biozone. The duration (Ma) of sequence-2 (Morozovella lehneri zone) is 3.05 Ma (44.25 Ma for the upper of TA3 3.3 to 41.2 Ma for the lower of TA3 3.5). Sequence-3 includes three rock units (includes Trucorotaloides rohri biozone). The lower unit involves lowstand systems tract, the middle unit contains transgressive systems tract and the upper rock unit includes highstand systems tract. The lowstand systems tract consists of emergence cycles of mixed clastic- carbonate facies, clays at the base and capped with wackestone and packstone facies. The transgressive systems tract consists of dominant carbonate facies, wackestone at the base and capped with packstone facies. Sequence 4 involves transgressive systems tract. The duration of both sequence-3 and sequence 4 has been estimated as 1.8 Ma.  相似文献   

8.
Tidal sand bars and tidal sand ridges are extensively developed in the macrotidal Gulf of Khambhat, offshore western India. The inner and outer regions of the gulf are characterised by the development distinct tidal sand bodies with discrete geometries and dimensions. The outer gulf ridges are long, narrow, curvilinear and several metres high (∼20 m). They are asymmetric in cross-section and migratory in nature, forming ‘ribbon’ like sand bodies separated by tidal channels. Active dunes on these ridges indicate the presence of sand and their orientation parallel to palaeo-shorelines supports a tidal origin. In contrast to the outer gulf tidal sand ridges, sand bars associated with macrotidal estuaries flanking the Gulf of Khambhat typically have an elongate to diamond shape and are only hundreds of metres in width and a few kilometres length. These tidal sand bars occur in the estuary mouths and within the tidally influenced fluvial reaches of the rivers flowing into the gulf. The height of these sand bars is in the range ∼1–3 m. Due to high tidal ranges and bi-directional flow the sand bars do not develop significant height and are formed between the mutually evasive ebb and flow channels. Their bi-directional foresets and the presence of abundant mud drapes associated with the dunes within in-channel sand bars indicate a tidal origin.The Gulf of Khambhat acquired the present configuration in the last few thousand years since the Pleistocene sea-level lowstand (last glacial maximum, ∼18 ka) when the entire continental shelf was subaerially exposed and rivers down-cut into the coastal plain. With increasing sea-level rise, the exposed shelf was drowned, flooding parts of the Modern western Indian peninsula, and large tidal sand ridges formed in the outer gulf. After the fall of sea-level at 2 ka the gulf acquired the Modern configuration with multiple estuaries on both coastlines, rivers supplied the embayment with sandy sediment, and tidal sand bars formed in the Modern estuaries.Quantitative data gathered from the Modern Gulf of Khambhat indicates that for the P50 case, a vertical drill hole will encounter tidal sand bodies (ridges and bars combined) of approximate dimensions 1700 m long, 470 m wide and 1.5 m high, with a spacing of 400 m. In subsurface hydrocarbon reservoirs, where data is sparse and only limited amount of core is available, this quantitative dataset can be useful to constrain subsurface geocellular models. Also, the overall geometry, distribution and aspect ratio of the tidal sand ridges and tidal sand bars can be used to identify ancient counterparts through seismic geomorphology or in core.  相似文献   

9.
Reservoir characterization based on geostatistics method requires well constraints (e.g. seismic data with high quality) to predict inter-well reservoir quality that is conformed to geological laws. Nevertheless, the resolution of seismic data in multiple basins or reservoirs is not high enough to recognize the distribution of different types of sand bodies. In this paper, we propose a new method to improve the precision of reservoir characterization: reservoir modeling with the constrains of sedimentary process model and sedimentary microfacies. We employed stratigraphic forward modeling, a process-based method, to constrain the reservoir modeling in one oil-bearing interval of the third member of Eocene Shahejie Formation in J-Oilfield of Liaoxi Sag, Bohai Bay Basin.We divide reservoir modeling into two orders using different types of constrains. In the first order, we use the simulated shale model from stratigraphic forward model that is corrected by wells data as a 3D trend volume to constrain the reservoir sand-shale modeling. In the second order, different types of sedimentary microfacies in the sandy part of the model are further recognized and simulated within the constrains of sedimentary microfacies maps. Consequently, the porosity, permeability and oil saturation are modeled under the control of precise sedimentary microfacies model. The high-resolution reservoir model shows that the porosity, permeability and oil saturation of distributary channel is generally above 20%, 10md and 50%, respectively, which are much higher than that of other types of sedimentary microfacies. It can be concluded that comparing to other types of sedimentary facies, distributary channel has better physical properties and more oil accumulation in the fan-delta front and therefore is the most favorable zones for petroleum development in the research area.  相似文献   

10.
1 IntroductionAs is well known, the increasing greenhousegas and SO2extricated into the atmosphere due to hu-man activities have alreadyresulted in the global sur-face air temperature (SAT) and sea surface temper-ature (SST) rising. The globally mean surf…  相似文献   

11.
In order to gain insight into the formation dynamics of mudbanks off the Kerala coast of India, extensive surveying of the nearshore bathymetry along with sediment characterization was undertaken. The textural and geotechnical properties of the surficial sediments of a mudbank were determined during pre-monsoon, monsoon, and post-monsoon periods. The mudbank sediments were clayey silts with high water and organic carbon contents, high Atterberg limits, and low bulk density, and therefore very susceptible to entrainment. During the monsoon, the mudbank regime was characterised by enhanced turbidity and a benthic fluff layer, triggered by the increasing swell of the early monsoon period. Re-suspension exposed a more consolidated, previously sub-bottom, layer which exhibited lower water content and greater shear strength than the pre-monsoon seabed. Texturally, the monsoon seabed was similar to the pre-monsoon seabed, with the same modal grain size, but the proportions of sand and coarse silt increased nearshore, while the proportions of fine and very fine silt increased offshore. There was a seaward-fining textural gradient at all times, but this became pronounced during the monsoon period. Paradoxically, the monsoonal seabed displayed greatly reduced wet bulk density. It is hypothesized that this was due to the presence of gas, probably methane, in the sediments (while the pre-monsoon sediments were fully saturated, the monsoon sediments were only 83% saturated). We speculate that the gas was forced into the surficial sediments either by wave pumping (at the onset of the monsoon) or by seaward-flowing subbottom freshwater (derived from monsoonal rains). With the waning of the monsoon, the benthic fluid mud layer rapidly disappeared and the seabed returned to its pre-monsoon state as suspended sediments were redeposited. The mudbank regime is therefore essentially an in situ phenomenon. It is suggested that the mudbanks are palimpsest, marshy, lagoonal deposits, rich in organic matter and derived gas, that were submerged after a marine transgression. The surficial sediment is annually entrained during the monsoon, but erosion is limited by the formation of the benthic fluid mud layer, which attenuates wave generated turbulence. Although some fine sediment disperses alongshore and offshore, most is returned to the seabed as the monsoon declines.  相似文献   

12.
1997年爆发了20世纪以来最强的一次厄尔尼诺事件。此次ElNin~o事件的发生,与赤道中、西太平洋地区大气季节内振荡(ISO)在1996年冬到1997年春的异常增强有重要关系。西太平洋暖池次表层海温(SOT)正距平沿温跃层东传到赤道东太平洋并向海洋表层扩展是ElNin~o事件爆发的直接原因。1997~1998年的ElNin~o事件爆发后,引起全球大气环流和世界许多地区的气候异常,导致一些国家和地区多雨洪涝,另外一些国家和地区高温少雨和严重干旱。  相似文献   

13.
The Xujiajuan Formation of the Lower Xiangshan Group in Ningxia, China, is composed of grayish-green to yellowish-green, fine- to medium-grained sandstone, calcareous sandstone, siltstone, and shale. The upper part is thin-bedded limestone. At the top of the second and third members of the formation, a number of beds intercalated between turbidites and deep-water shale show well-developed cross-bedding. These beds are composed mainly of thin- to medium-bedded calcareous siltstone, fine-grained sandstone, fine-grained calcisiltitic limestone, and silty shale. All bedding types reflect traction-current action. The laminae of the bidirectional and unidirectional cross-bedded units tend to dip either opposite to or at a large angle to the regional slope. The units vary in shape and orientation in both upslope and downslope directions. A comprehensive evaluation of the sedimentary structures and inferred paleocurrents suggests that the cross-bedded intervals were not formed by contour currents or turbidity currents, but most probably represent internal-wave and internal-tide deposits.  相似文献   

14.
侏罗纪洋壳为现存最古老的海洋地壳, 残留在地球表面上很少, 目前对于侏罗纪洋壳的断裂特征和构造变形了解很少。本文利用高分辨率的反射地震剖面精细解释了位于西太平洋的侏罗纪洋壳基底、沉积地层和断裂结构, 发现在研究区存在基底断层、沉积断层和垮塌断层三种类型的断裂构造, 并对其走向、倾角、断距等几何参数与变形特征进行了推测和定量研究。研究还发现, 基底断层是洋壳受到板块伸展拉张而产生的, 在后期海底沉积过程中持续发育并错断上覆沉积物, 在海底形成明显的断层陡坎。沉积断层是沉积地层自身重力作用的产物,受到沉积地层岩石性质的控制。垮塌断层是岩浆侵出或者侵入形成海山, 导致洋壳及其上覆沉积局部抬升并向两侧推移, 引起先存的基底断层和沉积断层重新错动产生的。研究区内切断洋壳基底和上覆沉积的活动断层的推测走向大体符合侏罗纪洋壳基底面起伏、重力异常骤变界面以及地磁异常条带等的走向, 表明这些断裂从侏罗纪洋中脊的海底扩张中演变而来, 并且持续活动至今。这些发育在古老洋壳上的断层能够长时间让水进入岩石圈并进入俯冲带及地球内部, 从而促进地球水循环。尽管目前尚未发现这些断裂产生大地震, 但这些断层可能随着板块俯冲而演变成俯冲带地震大断裂, 今后研究应该关注这类断层在靠近海沟之前的演化规律和潜在地震风险。  相似文献   

15.
The most commonly used marker for the investigation of gas-hydrates is the bottom simulating reflector (BSR), which is caused by gas-hydrate laden sediment underlain by either brine or gas-saturated sediment. A BSR has been identified by seismic experiment in the Kerala-Konkan Basin of the western continental margin of India. Here we perform AVA modeling of seismic reflection data from a BSR to investigate the seismic velocities for quantitative assessment of gas-hydrates and to understand the origin of the BSR. The result reveals a P-wave velocity of 2.245 km/s and an S-wave velocity of 0.895 km/s for the sediments above the BSR. This corresponds to a Poisson ratio of 0.406 and hydrates saturation of ∼30% in the study area. The comparison of estimated P-wave velocity (1.77 km/s) above the hydrates-bearing sediment to that (1.78 km/s) below the BSR implies that the origin of the BSR is mainly due to gas-hydrates, as the presence (even in small quantities) of free-gas reduces the P-wave velocity considerably.  相似文献   

16.
The Eocene Niubao Formation of the Lunpola Basin, a large Cenozoic intermontane basin in central Tibet, is an important potential hydrocarbon source and reservoir unit. It represents ∼20 Myr of lacustrine sedimentation in a half-graben with a sharply fault-bounded northern margin and a low-angle flexural southern margin, resulting in a highly asymmetric distribution of depositional facies and sediment thicknesses along the N-S axis of the basin. An integrated investigation of well-logs, seismic data, cores and outcrops revealed three third-order sequences (SQ1 to SQ3), each representing a cycle of rising and falling lake levels yielding lowstand, transgressive, and highstand systems tracts. Lowstand systems tracts (LST) include delta and fan delta facies spread widely along the gentle southern margin and concentrated narrowly along the steep northern margin of the basin, with sublacustrine fan sand bodies extending into the basin center. Highstand systems tracts (HST) include expanded areas of basin-center shale deposition, with sublacustrine fans, deltas and fan deltas locally developed along the basin margins. Sequence development may reflect episodes of tectonic uplift and base-level changes. The southern margin of the basin exhibits two different structural styles that locally influenced sequence development, i.e., a multi-step fault belt in the south-central sector and a flexure belt in the southeastern sector. The sedimentary model and sequence stratigraphic framework developed in this study demonstrate that N2 (the middle member of Niubao Formation) exhibits superior hydrocarbon potential, characterized by thicker source rocks and a wider distribution of sand-body reservoirs, although N3 (the upper member of Niubao Formation) also has good potential. Fault-controlled lithologic traps are plentiful along the basin margins, representing attractive targets for future exploratory drilling for hydrocarbons.  相似文献   

17.
The Naxiang Basin, located within the Qin-and-Dabie Mountains orogenic belt in central China, is a small intermountain faulted basin, in which the late Eocene Hetaoyuan Formation in the Anpeng Oilfield is the low porosity and ultra-low permeability glutenite reservoirs. The large-scale fractures are mainly developed in the thick-bedded conglomerates and gravel-bearing gritstones, the small-scale jointed-fractures bounded by layer are mainly developed in the medium-granular and fine sandstones between the conglomerates or gravel-bearing gritstones. There also developed three kinds of micro-fractures, namely intergranular fractures, intragranular fractures and transgranular fractures, in the tight glutenites. The fractures in the glutenite reservoirs are of chiefly high dip-angles. They assume chiefly the E-W strikes, next are the NE-SW and NW-SE strikes. On the log curve, fractures usually show such responses as a decrease of the deep and shallow lateral resistivities, an increase of the acoustic time difference, a reduction of the density, an increase of the compensation neutrons, an occurrence of middle and high gamma ray and an expansion of the calipers. Fractures make contributions to the low porosity and ultra-low permeability glutenite reservoirs by improving the permeability and then porosity. Micro-fractures are the important channels connecting intergranular and intragranular solution pores, thereby making better the connectivity within the tight glutenite reservoirs. The small- and medium-scale fractures serve as the flow channels within the layers of fine and medium-granular sandstones, while the large-scale fractures serve as the main flow channels for the whole reservoir. Under the impact of the present-day stress, the NE-SW fractures perpendicular to the minimum principal stress assume a tensile state and have good connectivity, large apertures and high permeability, and are the major direction for fluid flow, thereby providing a major basis for a further development.  相似文献   

18.
Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in the continental slope area of the western South China Sea. Based on the interpretation and analysis of multi-beam bathymetry and two-dimensional multi-channel seismic data, the geology of the canyons has however not been studied yet. In this paper, the morphology and distribution cha...  相似文献   

19.
Havstens Fjord on the Swedish west coast is a silled fjord that is characterized by strong stratification and stagnant bottom-water with periodically occurring hypoxic (0–2 ml l−1) or anoxic (≤0 ml l−1) conditions. Renewal of Havstens Fjord's deep-water occurs every year, mostly during winter or spring. The aim of this study was to discover how living benthic Foraminifera respond to hydrographic variations, periodic oxygen deficiency and variations in primary production. A long series of monthly hydrographic measurements combined with sediment sampling were performed from August 1993 to December 1994. Sampling was carried out at four different sites along a depth transect (12, 20, 30 and 40 m). Monthly values of chlorophyll a from the water surface down to 15 m were obtained. With increasing water depth, the foraminiferal fauna changed from a low diverse brackish fauna, through a diverse and abundant fauna, to a low diversity and sparse fauna characterized by species tolerant of oxygen depletion. At the deepest site (40 m) Elphidium magellanicum and Stainforthia fusiformis survived five months of anoxic or near anoxic conditions. At 30 m the periodic hypoxic conditions were severe enough to prevent a rich benthic macrofauna establishing, but there was enough oxygen for an abundant and diverse foraminiferal fauna to thrive. Under oxic conditions, freshly sedimented phytoplankton seem to be an important food source for the Foraminifera.  相似文献   

20.
基于1951—2018年哈德里中心海温资料、美国气象环境预报中心和美国国家大气研究中心再分析资料和第四代欧洲中心汉堡模式, 针对1994年、2018年等西北太平洋热带气旋(TC)生成异常多的年份, 研究了引起TC增加的海表温度异常(SSTA)模态及其影响机制。结果表明, 北半球热带中太平洋增暖与印度洋变冷是夏季西北太平洋TC生成频数增加的主要原因, 北大西洋负三极型式SSTA促使TC生成的进一步增加。热带中太平洋增暖与印度洋冷却在菲律宾以东激发出西风异常和气旋性环流异常。北大西洋负三极型式SSTA在我国南海、菲律宾至东南沿岸激发出气旋性环流异常。前者在西北太平洋中部, 后者在南海产生有利于TC生成的局地环境。1994年和2018年夏季热带中太平洋出现暖SSTA、印度洋为冷SSTA、北大西洋呈现负三极型式SSTA, 西北太平洋TC生成频数极端增多。近30年来, 当出现热带中太平洋增暖和印度洋冷却时, 北大西洋表现出比1989年以前更强的负三极型式SSTA, 使西北太平洋TC生成频数和北半球热带印度洋-太平洋SSTA梯度的线性相关更显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号