首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modern tidal rhythmites deposited in a deep-water estuary   总被引:1,自引:0,他引:1  
 The sedimentary record in Muir Inlet, a macrotidal fjord in Alaska, is dominated by cyclic silt–mud rhythmites. Couplet thicknesses vary systematically in a vertical sequence and reflect a semidiurnal tidal regime. Semimonthly, monthly, bimonthly, and annual cycles can be identified both visually in cores and by spectral frequency analysis. An average annual sedimentation of 22.5 cmyr-1 occurs over a four-month meltwater season and is confirmed by 210Pb dating. These modern deep-water tidal rhythmites can be used to verify interpretations made on ancient rhythmites in the stratigraphic record, and they also provide a dating tool to interpret high latitude successions for high-resolution climate change. Received: 20 February 1997 / Revision received: 1 October 1997  相似文献   

2.
The sedimentary history of Kachchh offshore (central western Indian margin), especially since the eruption of the Deccan Traps (∼65 Ma), has remained scantily studied despite an area with promising resource potential. Of late, new marine surveys combined with industrial drilling along the Kachchh shelf are beginning to elucidate the depositional history of this region. Here, we attempt to synthesize interpretation of new offshore seismic data, along with borehole information and long-term sea-level variations to provide a coherent sedimentological and lithostratigraphic framework over the past ∼65 Ma in this area.  相似文献   

3.
Bernadette Tessier   《Marine Geology》1993,110(3-4):355-367
The Mont-Saint-Michel Bay constitutes a good present-day example of sedimentation and facies in an upper intertidal domain. The tangue, a specific sediment of this area, displays an alternated structure of sandy and silty-muddy beds generated by the dynamics of tidal currents. This tidal bedding is frequently characterized by a vertical organization determined by the cyclic evolution of tidal energy during a neap/spring cycle. The organisation mainly consists in thickness variation of the successive sand/mud couplets which represent the deposit of each semi-diurnal tidal cycle. This record of tidal cyclicity can be observed in a wide range of bedding from planar bedding to climbing ripple bedding. The investigations performed allowed to clarify the conditions of deposition and of short-term preservation of these tidal rhythmites. Most well recorded neap/spring cycles develop within protected environments and necessarily require high suspended sediment concentrations. Characteristic features of these modern tidal rhythmites, such as the number of tidal event recorded per neap/spring cycle, are discussed in order to select criteria for the recognition of tidal dynamics in ancient sediments. The use of such criteria should constitute a way to discriminate subtidal to upper intertidal deposits and to propose paleogeographic reconstructions.  相似文献   

4.
Reservoir in the Ormen Lange field, offshore Norway, is provided by Upper Cretaceous and Lower Paleocene turbidite sandstones deposited in a sand-rich submarine fan. Systematic vertical and down-fan changes in facies and section properties (thickness, percentage sand and percentage amalgamation) are documented. Bulk sediment accumulation rates are very low suggesting that the system was not directly delta-fed. Paucity of mud in the supply mix prevented the development of channel-overbank systems with strong segregation of sands in channel-fills and muds in overbank areas. The resultant architecture is externally tabular with internally varying degrees of erosional amalgamation between beds. A novel approach to 3D quantitative reservoir modelling has been taken. At a regional-scale (475×180×3 km3), 3D models integrate all well and structural information and provide a context for field-scale models. Nested within the regional models, high-resolution hierarchical reservoir models of the field have been generated. Models combine detailed sedimentological observations in core with petrophysical, pressure, seismic amplitude and structural data. Modelling rules are derived from partial analogues and a forward geometric model that addresses the nature of distal and lateral sandstone body terminations.  相似文献   

5.
The Kaimiro Formation is an early to middle Eocene, NE-SW trending reservoir fairway in Taranaki Basin, and comprises a range of coastal plain through to shallow marine facies. A time of regional transgression is observed across the Paleocene–Eocene transition, which is linked to a general global warming trend and to regional thermal relaxation-related subsidence in New Zealand. The earliest Eocene transgressive deposits pass upwards into a series of cyclically stacked packages, interpreted as 3rd and 4th order sequences. Maximum regression occurred within the early Eocene and was followed by punctuated retrogradational stacking patterns associated with shoreline retreat and subsequent regional transgression in the middle Eocene.The Kaimiro Formation is considered a good reservoir target along most of the reservoir fairway, which can largely be attributed to a consistently quartz-rich, lithic-poor composition and reasonably coarse sand grain size. Correlations demonstrate that within the early Eocene the main reservoir facies are channel-fill sandstones overlying candidate sequence boundaries in paleoenvironmentally landward (proximal) settings, and upper shoreface/shoreline sandstones in relatively basinward (distal) settings. Middle Eocene reservoir facies are not represented in distal wells due to overall transgression at this time, yet they form a significant target in more proximal well locations, particularly on the Taranaki Peninsula.Depositional facies is one of the principal controls on sandstone reservoir quality. However, while reservoir facies have been proven along the length of the reservoir fairway, it is evident that diagenesis has significantly impacted sandstone quality. Relatively poor reservoir properties are predicted for deeply buried parts of the basin (maximum burial >4.5 km) due to severe compaction and relatively abundant authigenic quartz and illite. In contrast, good reservoir properties are locally represented in reservoir facies where present-day burial depths are <4 km due to less severe compaction, cementation and illitisation. Within these beds (<4 km) the presence of locally occurring authigenic grain-coating chlorite (shallow marine facies) and/or well-developed secondary porosity are both favourable to reservoir quality, while pervasive kaolinite and/or carbonate are both detrimental to reservoir quality.These results illustrate how an interdisciplinary approach to regional reservoir characterisation are used to help reduce risk during prospect evaluation. Assessment of both reservoir distribution and quality is necessary and can be undertaken through integrated studies of facies, sequence stratigraphy, burial modelling and petrography.  相似文献   

6.
7.
Mapping geological details and interpreting three-dimensional geometries in a highly heterogeneous outcrop such as the exposure at Big Rock Quarry has been a continuous challenge especially because high vertical cliffs make access to most of the rocks difficult for direct geological observations. Previous interpretations of facies architecture were derived from gamma-ray profiles, a core and measurements made on two-dimensional photomosaics. This paper represents the first attempt of three-dimensional interpretation of the geometry and facies pattern of the Jackfork nested channel complex deposited at the base-of-slope.Examination of the photo real model of the outcrop with assigned lithologies allowed extraction of accurate 3-D qualitative, as well as quantitative (channel dimensions) geometric information. This facilitated interpretation and reconstruction of the submarine channel complex architecture making possible correlations of strata exposed on the two sides of the quarry.Most of the exposed vertically and laterally stacked channels are large, aggradational with well-defined axial regions overlain by matrix-supported breccia which grades upward into amalgamated sandstones. The thickness of the sandstone decreases toward the southeastern end of the quarry where more shale is present. The channel infill consists of thin-bedded sandstones interlayered with shale which overlain the breccia. The upper part of the quarry is made up of smaller, lateral migrating channels.Significant channel width and thickness variation can be recognized at outcrop scale. Thirty-eight identified channels are characterized by a relatively low aspect ratio (4:1 to 32:1) with channel dimensions ranging from 25 m to 314 m wide and 2 m-24 m deep. Bed thickness distributions of various facies show that the sandstone comprises a significant proportion (83%) of the total channel thickness, while shale and breccia represent about 8%, and 17% respectively. This yields a high net-to gross ratio of more than 80%.Compared to previous reconstructions our 3-D photo real model is more accurate and it can be used to calibrate simulation of processes in deep-water environments.  相似文献   

8.
The South Caspian Basin contains major hydrocarbon reservoirs within the largely Early Pliocene Productive Series. This paper describes and contrasts outcrops of the uppermost ∼500 m of the series (the Surakhany Suite) deposited by two of the main fluvial systems that supplied the Azeri margin of the basin. Sedimentary facies and, for the first time from the Productive Series, palynological analyses document fluvial channel belt complexes, sheetflood overbank and flood plain to flood plain lake environments. The Productive Series on the Apsheron Peninsula, Azerbaijan, was supplied predominantly from the north by the palaeo-Volga river system. It displays an overall fining-upward trend, such that the Surakhany Suite at Lokbatan is dominated by mudstone. Siltstone and coarser-grained sediments make up 28% of the section. Channel bodies are on average 1.5 m thick and form 13% of the succession. In the sub-surface of the Apsheron Peninsula, ratty wireline log responses also indicate that siltstone and sandstone bodies are predominantly thin bedded, with SP-derived net-to-gross sand ratios of ∼0.35–0.40. The succession in the Kura Basin was sourced predominantly from the west by the palaeo-Kura river system. It displays a coarsening-upward trend, such that in the middle and upper Surakhany Suite at Babazanan siltstone and coarser sediments make up 52% of the section. It is characterised by numerous stacked and laterally continuous channel sandstone bodies that are on average 5.8 m thick and comprise 42% of the outcrop. In the sub-surface of the Kura Basin, wireline log responses of the Surakhany Suite have a blocky character and indicate SP-derived net-to-gross sand ratios of 0.26–0.38. These values are similar to calculated sandstone volumes at outcrop (44%). The palynological data, including multivariate analyses, show that the main controls on palynomorph distribution are the degree of fluvial or lacustrine influence, subaerial exposure and salinity. Despite their more lithic nature, Surakhany Suite sandstones derived from the palaeo-Kura river system along the Kurovdag-Babazanan-Neftchala trend have similar or better petrophysical properties than those derived from the palaeo-Volga river on the Apsheron Peninsula and its offshore continuation. This is probably due to their coarser-grain size. This, combined with their greater sandstone body thickness, would suggest that the axis of the Kura Basin forms the most promising part of the Azeri sector of the South Caspian Basin for exploration within the uppermost part of the Productive Series.  相似文献   

9.
Co-genetic debrite–turbidite beds are most commonly found in distal basin-plain settings and basin margins. This study documents the geometry, architectural association and paleogeographic occurrence of co-genetic debrite–turbidite beds in the Carboniferous Ross Sandstone with the goal of reducing uncertainty in the interpretation of subsurface data in similarly shaped basins where oil and gas is produced.The Ross Sandstone of western Ireland was deposited in a structurally confined submarine basin. Two outcrops contain co-genetic debrite–turbidite beds: Ballybunnion and Inishcorker. Both of the exposures contain strata deposited on the margin of the basin. An integrated dataset was used to characterize the stratigraphy of the Ballybunnion exposure. The exposure is divided into lower, middle, and upper units. The lower unit contains laminated shale with phosphate nodules, structureless siltstone, convolute bedding/slumps, locally contorted shale, and siltstone turbidites. The middle unit contains co-genetic debrite–turbidite beds, siltstone turbidites, and structureless siltstone. Each co-genetic debrite–turbidite bed contains evidence that fluid turbulence and matrix strength operated alternately and possibly simultaneously during deposition by a single sediment-gravity-flow event. The upper unit contains thin-bedded sandy turbidites, amalgamated sandy turbidites, siltstone turbidites, structureless siltstone, and laminated shale. A similar vertical facies pattern is found at Inishcorker.Co-genetic debrite–turbidite beds are only found at the basin-margin. We interpret these distinct beds to have originated as sand-rich, fully turbulent flows that eroded muddy strata on the slope as well as interbedded sandstone and mudstone in axial positions of the basin floor forming channels and associated megaflute erosional surfaces. This erosion caused the axially dispersing flows to laterally evolve to silt- and clay-rich flows suspended by both fluid turbulence and matrix strength due to a relative increase in clay proportions and associated turbulence suppression. The flows were efficient enough to bypass the basin center/floor, physically disconnecting their deposits from coeval lobes, resulting in deposition of co-genetic debrite–turbidite beds on the basin margin. The record of these bypassing flows in axial positions of the basin is erosional surfaces draped by thin siltstone beds with organic debris.A detailed cross-section through the Ross Sandstone reveals a wedge of low net-to-gross, poor reservoir-quality strata that physically separates sandy, basin-floor strata from the basin margin. The wedge of strata is referred to as the transition zone. The transition zone is composed of co-genetic debrite–turbidite beds, structureless siltstone, slumps, locally contorted shale, and laminated shale. Using data from the Ross Sandstone, two equations are defined that predict the size and shape of the transition zone. The equations use three variables (thickness of basin-margin strata, thickness of coeval strata on the basin floor, and angle of the basin margin) to solve for width (w) and trajectory of the basinward side of the low net-to-gross wedge (β). Beta is not a time line, but a facies boundary that separates sandy basin floor strata from silty basin-margin strata. The transition zone is interpreted to exist on lateral and distal margins of the structurally confined basin.Seismic examples from Gulf of Mexico minibasins reveal a wedge of low continuity, low amplitude seismic facies adjacent to the basin margin. Strata in this wedge are interpreted as transition-zone sediments, similar to those in the Ross Sandstone. Besides defining the size and shape of the transition zone, the variables “w” and “β” define two important drilling parameters. The variable “w” corresponds to the minimum distance a well bore should be positioned from the lateral basin margin to intersect sandy strata, and “β” corresponds to the deviation (from horizontal) of the well bore to follow the interface between sandy and low net-to-gross strata. Calculations reveal that “w” and “β” are related to the relative amount of draping, condensed strata on the margin and the angle of the basin margin. Basins with shallowly dipping margins and relatively high proportions of draping, clay-rich strata have wider transition zones compared to basins with steeply dipping margins with little draping strata. These concepts can reduce uncertainty when interpreting subsurface data in other structurally confined basins including those in Gulf of Mexico, offshore West Africa, and Brunei.  相似文献   

10.
The Upper Triassic – Lower Jurassic Åre Formation comprising the deeper reservoir in the Heidrun Field offshore mid-Norway consists of fluvial channel sandstones (FCH), floodplain fines (FF), and sandy and muddy bay-fill sediments (SBF, MBF) deposited in an overall transgressive fluvial to lower delta plain regime. The formation has been investigated to examine possible sedimentary facies controls on the distribution of cementation and compaction based on petrography and SEM/micro probe analyses of core samples related to facies associations and key stratigraphic surfaces. The most significant authigenic minerals are kaolinite, calcite and siderite. Kaolinite and secondary porosity from dissolution of feldspar and biotite are in particular abundant in the fluvial sandstones. The carbonate minerals show complex compositional and micro-structural variation of pure siderite (Sid I), Mg-siderite (Sid II), Fe-dolomite, ankerite and calcite, displaying decreasing Fe from early to late diagenetic carbonate cements. An early diagenetic origin for siderite and kaolinite is inferred from micro-structural relations, whereas pore filling calcite and ankerite formed during later diagenesis. The Fe-dolomite probably related to mixing-zone dolomitization from increasing marine influences, and a regional correlatable calcite cemented layer has been related to a flooding event. Porosity values in non-cemented sandstone samples are generally high in both FCH and SBF facies associations averaging 27%. Differential compaction between sandstone and mudstone has a ratio of up to 1:2 and with lower values for MBF. We emphasize the role of eogenetic siderite cementation in reducing compactability in the fine-grained, coal-bearing sediments most prominent in MBF facies. This has implications for modeling of differential compaction between sandstone and mudstones deposited in fluvial-deltaic environments.  相似文献   

11.
Ground Penetrating Radar (GPR) surveys were conducted on Mesoproterozoic eolian, fluvial, deltaic, estuarine, and shallow marine successions in the Chapada Diamantina Basin. The subsurface continuation of facies and facies architecture exposed on road cuts was imaged using the GPR signal of a 400-MHz antenna penetrating 8 m in depth, even with mudstone intervals. Reflection patterns in the GPR profiles that were compared with photo mosaics of outcrops and supporting data from vertical sections and gamma ray logs, reveal sedimentary, stratigraphic, and structural features, such as sedimentary structures, the external geometry of architectural elements, stratigraphic surfaces, folds and tension gashes. The patterns most likely reflect the response from low-weathered, non-porous muscovite-illite-rich mudstone and quartzarenite sandstone in which authigenic and detrital illite and sericite are prevalent clay minerals.Measured vertical sections and radar stratigraphy indicate high-frequency cyclic successions of estuarine and shoreface intervals are present at the base of the Tombador Formation. The shoreface intervals are composed of heterolithic strata and offshore tidal bars deposits. The heterolithic shoreface strata exhibit tabular geometry that can be easily identified throughout the outcrop and in the subsurface. Such intervals represent the end of high-frequency transgressive cycles, and hence they are potential candidates for including the maximum flooding surfaces and for defining genetic sequences. Therefore, GPR proved to be an independent method for studying facies architecture and the establishment of a high-resolution stratigraphic framework even in the Precambrian.  相似文献   

12.
泰国湾区域经历了前裂谷期、裂谷期、裂后期的构造演化阶段,形成了多个裂谷盆地。泰国湾区域东北部在渐新世经历了一次明显构造反转,较泰国湾区域大部分地区强烈。通过对比区内钻井,结合地震解释,对该区的沉积特征和构造演化进行了分析,认为这次反转构造导致了反转构造带上构造、沉积特征与邻区有较大的不同。由于这次反转构造,泰国湾东北部在新层系发育新类型的油气系统,即深部的始新统油气系统:烃源岩为中始新统湖相泥岩,储层为上始新统-渐新统三角洲相砂岩,盖层为下中新统三角洲前缘相泥岩和上中新统以上的海相泥岩。该油气成藏系统已被钻井钻遇油气显示,是本区有效油气成藏系统。  相似文献   

13.
The large-scale stratigraphic architecture of forced regressive deposits has been documented in many previous studies. Bed-scale facies architectural analyses of these deposits, however, are still very limited. The Cretaceous Ferron “Notom Delta” in southern Utah, U.S.A. contains a 20 km dip-oriented exposure of a stepped, forced regressive systems tract. The main focus of this paper is to reconstruct the paleogeography and depositional history of the systems tract based on detailed stratigraphic and facies architectural analysis using 23 geological sections, photomosaics, and walking out of beds.Internally, the systems tract consists of 6 parasequences, 11f to 11a from the oldest to the youngest. During the progradation of parasequences 11f to 11b the paleoshorelines were wave-dominated, as indicated by the abundance of HCS and/or SCS beds, wave-ripple cross-laminated beds, and the occurrence of diverse and robust ichnological suites attributable to the Skolithos and Cruziana Ichnofacies. Progradation of the wave-dominated shorelines resulted in more homogeneous and laterally continuous sand bodies. From 11b to 11a, however, there is a distinct change in paleoshoreline regime from wave-dominated to tide-influenced as indicated by the common occurrence of tidal facies in 11a, including: (1) lenticular, wavy, and flaser bedding and bidirectional dipping cross strata; (2) reactivation surfaces, double-mud drapes, and ripple cross lamination with opposing dips at the toe of large dune-scale cross sets; (3) inclined heterolithic strata (IHS) and sigmoidal bedding with tidal rhythmites; and (4) cyclic vertical variation in facies and bed thickness and the common occurrence of sand-mud couplets. These tide-influenced facies show overall lower bioturbation intensity (BI 0-3). Progradation of the tide-influenced shoreline results in more heterolithic delta-front facies. Tidal and/or tidal-fluvial channels further dissect delta-front sandstones, forming more isolated sand bodies.Data from this study, as well as previous work, show that width and thickness of the forced regressive parasequences are small, typically less than 5 km and 20 m respectively. In subsurface studies, identifying and correlating such small-scale parasequences using sparse data involve significant uncertainties. A combination of the diagnostic features indicating forced regression and different data sets is essential to better constrain the geometry and architecture these small-scale bodies.  相似文献   

14.
The Melut Basin is a rift basin in the interior Sudan linked to the Mesozoic-Cenozoic Central and Western African Rift System. The Paleocene Yabus Formation is the main reservoir deposited in heterogeneous fluvial/lacustrine environment. Delineation of channel sandstone from shale is a challenge in reservoir exploration and development. We demonstrate a detailed 3D quantitative seismic interpretation approach that integrates petrophysical properties derived from well logs analysis. A porosity transform of acoustic impedance inversion provided a link between elastic and rock properties. Thus, we used seismic porosity to discriminate between different facies with appropriate validation by well logs. At the basin scale, the results revealed lateral and vertical facies heterogeneity in the Melut Basin. Good reservoir quality is observed in the Paleocene Yabus Formation. The sand facies indicated high porosity (20%) corresponding to low acoustic impedance (20000–24000 g ft/(cm3.s)). However, lower quality reservoir is observed in the Cretaceous Melut Formation. The porosity of sand/shale facies is low (5%), corresponding to high acoustic impedance (29000–34000 g ft/(cm3.s)). This suggests that the Yabus Sandstone is potentially forming a better reservoir quality than Melut Formation. At the reservoir scale, we evaluated the facies quality of Yabus Formation subsequences using petrophysical analysis. The subsequences YB1 to YB3, YB4 to YB7 and YB8 to YB10 showed relatively similar linear regressions, respectively. The subsequence of YB4 to YB7 is considered the best reservoir with higher porosity (25%). However, subsequence YB1 to YB3 showed lower reservoir quality with higher shale volume (30%). This attributed to floodplain shale deposits in this subsequence. Similarly, the high porosity (20%) recognized in deeper subsequences YB6 to YB9 is due to clean sand facies. We learnt a lesson that appropriate seismic preconditioning, exhaustive petrophysical analysis and well log validation are important keys for improved reservoir quality prediction results in fluvial/lacustrine basins.  相似文献   

15.
Predicting the hydrodynamics, morphology and evolution of ancient deltaic successions requires the evaluation of the three-dimensional depositional process regime based on sedimentary facies analysis. This has been applied to a core-based subsurface facies analysis of a mixed-energy, clastic coastal-deltaic succession in the Lower-to-Middle Jurassic of the Halten Terrace, offshore mid-Norway. Three genetically related successions with a total thickness of 100–300 m and a total duration of 12.5 Myr comprising eight facies associations record two initial progradational phases and a final aggradational phase. The progradational phases (I and II) consist of coarsening upward successions that pass from prodelta and offshore mudstones (FA1), through delta front and mouth bar sandstones (FA2) and into erosionally based fluvial- (FA3) and marine-influenced (FA4) channel fills. The two progradational phases are interpreted as fluvial- and wave-dominated, tide-influenced deltas. The aggradational phase (III) consists of distributary channel fills (FA3 and FA4), tide-dominated channels (FA5), intertidal to subtidal heterolithic fine-grained sandstones (FA6) and coals (FA7). The aggradational phase displays more complex facies relationships and a wider range of environments, including (1) mixed tide- and fluvial-dominated, wave-influenced deltas, (2) non-deltaic shorelines (tidal channels, tidal flats and vegetated swamps), and (3) lower shoreface deposits (FA8). The progradational to aggradational evolution of this coastal succession is represented by an overall upward decrease in grain size, decrease in fluvial influence and increase in tidal influence. This evolution is attributed to an allogenic increase in the rate of accommodation space generation relative to sediment supply due to tectonic activity of the rift basin. In addition, during progradation, there was also an autogenic increase in sediment storage on the coastal plain, resulting in a gradual autoretreat of the depositional system. This is manifested in the subsequent aggradation of the system, when coarse-grained sandstones were trapped in proximal locations, while only finer grained sediment reached the coastline, where it was readily reworked by tidal and wave processes.  相似文献   

16.
The Ostreaelv Formation (latest Pliensbachian–Toarcian) of the Neill Klinter Group is exposed along a >105 km wide, ENE-trending section in Jameson Land, East Greenland. Deposition took place in a large embayment (Jameson Land Basin) that was connected to the proto-Norwegian-Greenland Sea. Lithofacies in the Ostreaelv Formation range from clean sandstone to muddy heterolithic facies typified by strong grain-size contrasts.The Ostreaelv Formation is divided into four distinct and overall retrograding allostratigraphic units each composed of a characteristic set of tide-influenced, tide-dominated and wave-influenced facies associations. The allostratigraphic units are bounded by subaerial unconformities, interpreted as sequence boundaries, and are up to 75 m thick and 16 to >20 km in width. The allostratigraphic units include a sandy heterolithic estuary bay-head delta succession overlain by two sandy tide-dominated estuary fill successions, interbedded with a muddy heterolithic offshore marine succession. Each of the three estuarine allostratigraphic units was accumulated in an incised valley formed during fall in relative sea level and filled during successive transgressions with sediment supplied from marine and reworked fluvial deposits.In the three incised valleys fluvial sediments were deposited on top of an initial subaerial unconformity surface (SU) and were later reworked by succeeding transgressive ravinement along a transgressive surface (TS), thus creating combined SU/TS sequence boundaries. The data from the Ostreaelv Formation also provides knowledge and conceptual understanding of valley infill processes (tidal current, wave and fluvial energy), and both lateral and vertical variations in lithofacies architecture within incised valleys.Moreover, the study provides quantitative input data, such as incised valley dimensions, sand-containing capacity, and geometry to subsurface reservoir characterisation and modelling efforts of estuary fill successions.  相似文献   

17.
均衡态:动力-沉积-地貌系统的跨尺度联系   总被引:2,自引:2,他引:0  
李炎 《海洋学报》2018,40(7):38-42
潮汐汊道P-A关系、岸线轮廓、浅海沙波剖面轮廓等3个海洋动力地貌学案例,属于能够同时满足"沿程能耗率处处相等,输沙率沿程递变处处相等,沉积速率处处相等"规律的动力-沉积-地貌系统均衡态。这种在流体力学、沉积动力学和动力地貌学时空尺度跨度很大的交集中涌现的均衡态,为引导出动力-沉积-地貌系统跨尺度联系,实现动力-沉积-地貌系统的跨尺度模拟,留下宝贵的理论研究与应用检验窗口。  相似文献   

18.
Exceptionally high shelf-subsidence rates (0.8–6.0+ mm/yr), a marked basinward stepping (to east and northeast) of the paleo-Orinoco shelf prism and post-Pliocene uplift of Trinidad all allow the sedimentary facies, process regime and the evolution of the Late Miocene Orinoco Delta to be evaluated from extensive outcrops along the southwest, and south coasts of Trinidad. The ca. 200 km easterly growth (late Miocene to present) of the Orinoco shelf-margin was generated by repeated cross-shelf, regressive–transgressive transits of the Orinoco Delta system. The studied Late Pliocene segment of this shelf-margin prism allows insight to how this margin was built. The Morne L'Enfer Formation (Late Pliocene) along Cedros Bay and Erin Bay in SW Trinidad, provides a window into the facies and process regime of the ca. 850 m-thick deltaic succession at an inner-shelf location some 100 km landward of the coeval shelf edge. Regressive facies associations include tide-influenced delta-front to prodelta deposits (FA1) within upward coarsening units, shoreface to offshore deposits, possibly with prograding mud cape deposits (FA2), and fluvial distributary channel infills (FA3), as well as muddy sediments of floodbasins and coastal embayments between the distributary channels (FA4), and tide-influenced bay-head delta deposits (FA5). Transgressive facies associations show an overall upward fining of grain size and include inner estuary distributary channels with minimal brackish-water or tidal influence (FA6), transition zone fluvial-tidal distributary channels (FA7), tide-dominated mid-outer estuary channel-bars (FA8), and intertidal to supratidal flat units (FA9). The tidal signals in both deltaic and estuarine units include bi-directional paleocurrents (channels), frequent mud drapes within stacked sets of cross-strata (delta-front), fluid mud layers, flaser, wavy and lenticular bedding, and ubiquitous spring-neap stratal bundling. The tide dominated nature of the paleo-delta in SW Trinidad was likely due to its location within an embayed proto-Columbus Channel, though by analogy with the modern Orinoco Delta, it is predicted that the same succession becomes wave dominated to the east as the delta emerged to the open ocean and approached the outer shelf and shelf-edge region. It is difficult to estimate how much of the abundant mud in the Pliocene deltaic sequences was derived from inner-shelf littoral currents with suspended Amazon River mud. The studied Late Pliocene Morne L'Enfer succession contains some 17 high-frequency transgressive–regressive sequences, each ca. 40–60 m thick, estimated to have an average time duration of 90–120 Ky. By analogy, the last glacial cycle on the Orinoco shelf saw the delta prograding across the 200 km-wide shelf to the shelf edge in ca. 100 Ky, then transgressing back to its present position in 20 Ky. A predicted model of the linkage between the study succession on SW Trinidad and its eastward continuation offshore towards the outer shelf and shelf edge in the Columbus Basin is suggested.  相似文献   

19.
Chengdao is an offshore area in the Bohai Bay Basin that contains approximately 25.7 × 108 bbl of oil and gas reserves within the sandstone reservoirs in Neogene strata. However, previous predictions of hydrocarbon accumulation in Neogene traps are inaccurate, resulting in a current failure rate of 50% when drilling for hydrocarbons in this area. To build an improved exploration model for Neogene traps, we select 92 traps from Neogene strata in the Chengdao area to quantify the filling degree, which is an indicator of hydrocarbon accumulation efficiency. The quantified filling degree is based on actual geological and exploration data and differs significantly among various trap types. The filling degree of traps also varies significantly with their structural locations and decreases generally from the northwest to the southeast along the Chengbei Fault zone. Vertically, the filling degree is highly heterogeneous, initially increasing from the bottom to the middle of Neogene strata and then decreasing towards the top of the strata. These Neogene hydrocarbon reservoirs are sourced from the Paleogene, and as they lay vertically away from the source rocks, their hydrocarbon enrichment is constrained largely by hydrocarbon migration distance and vertical migration pathways. The sealing capacity of faults and cap rocks, sandbody orientation and reservoir sedimentary facies determine the maximum column height, which in turn affects the amount of hydrocarbon accumulation within these traps. A scatter plot analysis of individual controls and volumetric filling for each trap type is compiled using multivariate linear regression analysis to quantify controls and the dominant control of hydrocarbon accumulation is determined.  相似文献   

20.
The Late Devonian to Early Mississippian Bakken Formation in the Williston basin of North Dakota, USA, shows a tri-partite subdivision: a middle mixed carbonate-siliciclastic member is sandwiched in-between two black siliciclastic mudstones, the lower and upper Bakken member shales. However, the transition from the lower shale member to the middle member does not represent a gradual coarsening but contains in places several millimeter - to centimeter-thick siliciclastic mudstones and carbonates that consist of three facies: (1) a glauconitic carbonate-rich siliciclastic mudstone, (2) a carbonate mud-to wackestone, and (3) an echinoderm wacke-to packstone with shell fragments. These three facies are present in many (all?) of the cores close and directly in the basin center in Mountrail County, North Dakota. At least one of these three facies is present in all 23 cores included in this study.This thin carbonate unit at the transition between the lower and the middle Bakken members is interpreted as representing the remnants of the transgressive systems tract. It is assumed that relative sea-level fell before deposition of the middle Bakken member establishing a proximal coarse-grained to distal fine-grained depositional transect that successively migrated into the basin. During the subsequent transgression, the siliciclastic input was low to absent, and the entire sedimentary system switched to depositing carbonates. The proximal to distal transect during this time showed coarse-grained packstones (and grainstones?) close to the shoreline, and a fining outwards towards the distal parts of the basin. This transgression also eroded what remained of the regressive and most of the subsequent transgressive sediments, leaving only the thin carbonate layer behind. Evidence for the regression, even though no sediment is directly preserved along the lower to middle Bakken member contact, comes from the fill of clastic dykes that cut through the lower Bakken member shale. The fill of the clastic dykes is partly siliciclastic and partly carbonate and not similar to any of the surrounding sediment. This indicates that these dykes must have originated before the middle Bakken member was deposited, yet the overlying sediment must have been carbonate at some point and siliciclastic another time. As it is not present anymore, this sediment must have been entirely removed by erosion.The here presented model suggests that the Bakken Formation reflects two entire sea-level oscillations. The first encompasses the lower Bakken member shale and the siliciclastic regressive portion of the lowstand only preserved as infill of the clastic dykes. The subsequent transgression deposited the carbonates now blanketing the lower to middle Bakken member transition, and the highstand and subsequent regression plus lowstand are represented by the middle Bakken member. The transgressive surface and therewith the onset of the topmost Bakken transgression is marked by the transition from the middle to the upper Bakken shale member.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号