首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three bitumen fractions were obtained and systematically analysed for the terpane and sterane composition from 30 Paleozoic source rocks and 64 bitumen-containing reservoir rocks within the Upper Sinian, Lower Cambrian, Lower Silurian, Middle Carboniferous, Upper Permian and Lower Triassic strata in the Sichuan Basin and neighbouring areas, China. These bitumen fractions include extractable oils (bitumen I), oil-bearing fluid inclusions and/or closely associated components with the kerogen or pyrobitumen/mineral matrix, released during kerogen or pyrobitumen isolation and demineralization (bitumen II), and bound compounds within the kerogen or pyrobitumen released by confined pyrolysis (bitumen III). In addition, atomic H/C and O/C ratios and carbon isotopic compositions of kerogen and pyrobitumen from some of the samples were measured. Geochemical results and geological information suggest that: (1) in the Central Sichuan Basin, hydrocarbon gases in reservoirs within the fourth section of the Upper Sinian Dengying Formation were derived from both the Lower Cambrian and Upper Sinian source rocks; and (2) in the Eastern Sichuan Basin, hydrocarbon gases in Middle Carboniferous Huanglong Formation reservoirs were mainly derived from Lower Silurian source rocks, while those in Upper Permian and Lower Triassic reservoirs were mainly derived from both Upper Permian and Lower Silurian marine source rocks. For both the source and reservoir rocks, bitumen III fractions generally show relatively lower maturity near the peak oil generation stage, while the other two bitumen fractions show very high maturities based on terpane and sterane distributions. Tricyclic terpanes evolved from the distribution pattern C20 < C21 < C23, through C20 < C21 > C23, finally to C20 > C21 > C23 during severe thermal stress. The concentration of C30 diahopane in bitumen III (the bound components released from confined pyrolysis) is substantially lower than in the other two bitumen fractions for four terrigenous Upper Permian source rocks, demonstrating that this compound originated from free hopanoid precursors, rather than hopanoids bound to the kerogen.  相似文献   

2.
The seismic, drilling and logging data reveal that a large-scale igneous intrusion with a width of 14 Km and a maximum thickness of 170 m intruded within the Paleogene Liushagang Formation in the Fushan Depression, Beibuwan Basin, South China Sea (SCS). In this study, we report the geochemistry and Sr-Nd-Pb-Hf isotopic compositions of the igneous rocks, and evaluate the thermal effect induced by this large-scale igneous intrusion on the host rocks. The analyzed igneous samples exhibit strong enrichment in light rare earth elements (LREE) and large-ion lithophile elements (LILE), having characteristics similar to intra-plate oceanic island basalts (OIB). The Sr-Nd-Pb-Hf isotopic data display narrow ranges (e.g. 87Sr/86Sri = 0.7042–0.7044, 143Nd/144Ndi = 0.5128–0.5129, 206Pb/204Pbi = 18.90–18.94, εHf(t) = +7.56∼+9.60). Geochemical and isotopic compositions suggest a mixed mantle source between depleted mid-ocean-ridge-basalt (MORB) mantle (DMM)-like mantle and enriched mantle type II (EMII, possibly the Hainan mantle plume). Vitrinite reflectance values, major mineralogical changes together with a maturity-related biomarker [Ts/(Ts + Tm)] all reveal significant thermal effect induced by the igneous intrusion. Vitrinite reflectance values of the host rock are up to 2.5% in the intrusion region, whereas lower reflectance values (0.62–0.73%) occur in the unaffected area of the same strata. Moreover, our results suggest that the host rocks above the igneous intrusion are characterised by higher maturity than below, which should be attributed to the different behavior of hydrothermal fluids. These observations suggest that the thermal effect of large-scale thick igneous intrusions is much more intense than that of thin igneous intrusions, and the behavior of hydrothermal fluids induced by magmatic intrusive events should be a critical impact factor during heat transfer process.  相似文献   

3.
The stable carbon isotopic ratios (δ13C) of methane (CH4) and carbon dioxide (CO2) of gas-rich fluid inclusions hosted in fracture-fill mineralization from the southern part of the Lower Saxony Basin, Germany have been measured online using a crushing device interfaced to an isotopic ratio mass spectrometer (IRMS). The data reveal that CH4 trapped in inclusions seems to be derived from different source rocks with different organic matter types. The δ13C values of CH4 in inclusions in quartz hosted by Carboniferous rocks range between −25 and −19‰, suggesting high-maturity coals as the source of methane. Methane in fluid inclusions in minerals hosted by Mesozoic strata has more negative carbon isotope ratios (−45 to −31‰) and appears to represent primary cracking products from type II kerogens, i.e., marine shales. There is a positive correlation between increasing homogenization temperatures of aqueous fluid inclusions and less negative δ13C(CH4) values of in co-genetic gas inclusions probably indicating different mtaturity of the potential source rocks at the time the fluids were released. The CO2 isotopic composition of CH4-CO2-bearing inclusions shows slight negative or even positive δ13C values indicating an inorganic source (e.g., water-rock interaction and dissolution of detrital, marine calcite) for CO2 in inclusions. We conclude that the δ13C isotopic ratios of CH4-CO2-bearing fluid inclusions can be used to trace migration pathways, sources of gases, and alteration processes. Furthermore, the δ13C values of methane can be used to estimate the maturity of the rocks from which it was sourced. Results presented here are further supported by organic geochemical analysis of surface bitumens which coexist with the gas inclusion-rich fracture-fill mineralization and confirm the isotopic interpretations with respect to fluid source, type and maturity.  相似文献   

4.
Gas occurrences consisting of carbon dioxide (CO2), hydrogen sulfide (H2S), and hydrocarbon (HC) gases and oil within the Dodan Field in southeastern Turkey are located in Cretaceous carbonate reservoir rocks in the Garzan and Mardin Formations. The aim of this study was to determine gas composition and to define the origin of gases in Dodan Field. For this purpose, gas samples were analyzed for their molecular and isotopic composition. The isotopic composition of CO2, with values of −1.5‰ and −2.8‰, suggested abiogenic origin from limestone. δ34S values of H2S ranged from +11.9 to +13.4‰. H2S is most likely formed from thermochemical sulfate reduction (TSR) and bacterial sulfate reduction (BSR) within the Bakuk Formation. The Bakuk Formation is composed of a dolomite dominated carbonate succession also containing anhydrite. TSR may occur within an evaporitic environment at temperatures of approximately 120–145 °C. Basin modeling revealed that these temperatures were reached within the Bakuk Formation at 10 Ma. Furthermore, sulfate reducing bacteria were found in oil–water phase samples from Dodan Field. As a result, the H2S in Dodan Field can be considered to have formed by BSR and TSR.As indicated by their isotopic composition, HC gases are of thermogenic origin and were generated within the Upper Permian Kas and Gomaniibrik Formations. As indicated by the heavier isotopic composition of methane and ethane, HC gases were later altered by TSR. Based on our results, the Dodan gas field may have formed as a result of the interaction of the following processes during the last 7–8 Ma: 1) thermogenic gas generation in Permian source rocks, 2) the formation of thrust faults, 3) the lateral-up dip migration of HC-gases due to thrust faults from the Kas Formation into the Bakuk Formation, 4) the formation of H2S and CO2 by TSR within the Bakuk Formation, 5) the vertical migration of gases into reservoirs through the thrust fault, and 6) lateral-up dip migration within reservoir rocks toward the Dodan structure.  相似文献   

5.
Gases were analyzed from well cuttings, core, gas hydrate, and formation tests at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, drilled within the Milne Point Unit, Alaska North Slope. The well penetrated a portion of the Eileen gas hydrate deposit, which overlies the more deeply buried Prudhoe Bay, Milne Point, West Sak, and Kuparuk River oil fields. Gas sources in the upper 200 m are predominantly from microbial sources (C1 isotopic compositions ranging from −86.4 to −80.6‰). The C1 isotopic composition becomes progressively enriched from 200 m to the top of the gas hydrate-bearing sands at 600 m. The tested gas hydrates occur in two primary intervals, units D and C, between 614.0 m and 664.7 m, containing a total of 29.3 m of gas hydrate-bearing sands. The hydrocarbon gases in cuttings and core samples from 604 to 914 m are composed of methane with very little ethane. The isotopic composition of the methane carbon ranges from −50.1 to −43.9‰ with several outliers, generally decreasing with depth. Gas samples collected by the Modular Formation Dynamics Testing (MDT) tool in the hydrate-bearing units were similarly composed mainly of methane, with up to 284 ppm ethane. The methane isotopic composition ranged from −48.2 to −48.0‰ in the C sand and from −48.4 to −46.6‰ in the D sand. Methane hydrogen isotopic composition ranged from −238 to −230‰, with slightly more depleted values in the deeper C sand. These results are consistent with the concept that the Eileen gas hydrates contain a mixture of deep-sourced, microbially biodegraded thermogenic gas, with lesser amounts of thermogenic oil-associated gas, and coal gas. Thermal gases are likely sourced from existing oil and gas accumulations that have migrated up-dip and/or up-fault and formed gas hydrate in response to climate cooling with permafrost formation.  相似文献   

6.
This study performed a detailed geochemical analyses of the components, stable carbon isotopes of alkane gas and CO2, stable hydrogen isotopes of alkane gas and helium isotopes of reproducing gas from the largest tight gas field (Sulige) and shale gas (Fuling) field in China. The comparative study shows that tight gas from the Sulige gas field in the Ordos Basin is of coal-derived origin, which is characterized by a positive carbon and hydrogen isotopic distribution pattern (δ13C1 > δ13C2 > δ13C3 > δ13C4; δ2H1 > δ2H2 > δ2H3), i.e., the carbon and hydrogen isotopes increase with increasing carbon numbers. Carbon dioxide from this field are of biogenic origin and the helium is crust-derived. Shale gas from the Fuling shale gas field belongs to oil-derived gas which has complete carbon and hydrogen isotopic reversal of secondary alteration origin (δ13C1 < δ13C2 < δ13C3; δ2H1 < δ2H2 < δ2H3), i.e., the carbon and hydrogen isotopes decrease with increasing carbon numbers. Such complete isotopic reversal distribution pattern is due to the secondary alteration like oil or gas cracking, diffusion and so on under high temperature. In that case, positive carbon or hydrogen isotopic distribution pattern will change into complete isotopic reversal as the temperature increases. Carbon dioxide is of abiogenic origin resulting from the thermal metamorphism of carbonates and helium is crust-derived.  相似文献   

7.
The Upper Cretaceous Mukalla coals and other organic-rich sediments which are widely exposed in the Jiza-Qamar Basin and believed to be a major source rocks, were analysed using organic geochemistry and petrology. The total organic carbon (TOC) contents of the Mukalla source rocks range from 0.72 to 79.90% with an average TOC value of 21.50%. The coals and coaly shale sediments are relatively higher in organic richness, consistent with source rocks generative potential. The samples analysed have vitrinite reflectance in the range of 0.84–1.10 %Ro and pyrolysis Tmax in the range of 432–454 °C indicate that the Mukalla source rocks contain mature to late mature organic matter. Good oil-generating potential is anticipated from the coals and coaly shale sediments with high hydrogen indices (250–449 mg HC/g TOC). This is supported by their significant amounts of oil-liptinite macerals are present in these coals and coaly shale sediments and Py-GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30. The shales are dominated by Type III kerogen (HI < 200 mg HC/g TOC), and are thus considered to be gas-prone.One-dimensional basin modelling was performed to analysis the hydrocarbon generation and expulsion history of the Mukalla source rocks in the Jiza-Qamar Basin based on the reconstruction of the burial/thermal maturity histories in order to improve our understanding of the of hydrocarbon generation potential of the Mukalla source rocks. Calibration of the model with measured vitrinite reflectance (Ro) and borehole temperature data indicates that the present-day heat flow in the Jiza-Qamar Basin varies from 45.0 mW/m2 to 70.0 mW/m2 and the paleo-heat flow increased from 80 Ma to 25 Ma, reached a peak heat-flow values of approximately 70.0 mW/m2 at 25 Ma and then decreased exponentially from 25 Ma to present-day. The peak paleo-heat flow is explained by the Gulf of Aden and Red Sea Tertiary rifting during Oligocene-Middle Miocene, which has a considerable influence on the thermal maturity of the Mukalla source rocks. The source rocks of the Mukalla Formation are presently in a stage of oil and condensate generation with maturity from 0.50% to 1.10% Ro. Oil generation (0.5% Ro) in the Mukalla source rocks began from about 61 Ma to 54 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 25 Ma to 20 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Mukalla source rocks began from 15 Ma to present-day.  相似文献   

8.
The role of coastal lagoons and estuaries as sources or sinks of inorganic carbon in upwelling areas has not been fully understood. During the months of May–July, 2005, we studied the dissolved inorganic carbon system in a coastal lagoon of northwestern Mexico during the strongest period of upwelling events. Along the bay, different scenarios were observed for the distributions of pH, dissolved inorganic carbon (DIC) and apparent oxygen utilization (AOU) as a result of different combinations of upwelling intensity and tidal amplitude. DIC concentrations in the outer part of the bay were controlled by mixing processes. At the inner part of the bay DIC was as low as 1800 μmol kg−1, most likely due to high water residence times and seagrass CO2 uptake. It is estimated that 85% of San Quintín Bay, at the oceanic end, acted as a source of CO2 to the atmosphere due to the inflow of CO2-rich upwelled waters from the neighboring ocean with high positive fluxes higher than 30 mmol C m−2 d−1. In contrast, there was a net uptake of CO2 and HCO3 by the seagrass bed Zostera marina in the inner part of the bay, so the pCO2 in this zone was below the equilibrium value and slightly negative CO2 fluxes of −6 mmol C m−2 d−1. Our positive NEP and ΔDIC values indicate that Bahía San Quintín was a net autotrophic system during the upwelling season during 2005.  相似文献   

9.
In recent years, new oil reservoirs have been discovered in the Eocene tight sandstone of the Huilu area, northern part of the Pearl River Mouth basin, South China Sea, indicating good prospects for tight oil exploration in the area. Exploration has shown that the Huilu area contains two main sets of source rocks: the Eocene Wenchang (E2w) and Enping (E2e) formations. To satisfy the requirements for further exploration in the Huilu area, particularly for tight oil in Eocene sand reservoirs, it is necessary to re-examine and analyze the hydrocarbon generation and expulsion characteristics. Based on mass balance, this study investigated the hydrocarbon generation and expulsion characteristics as well as the tight oil resource potential using geological and geochemical data and a modified conceptual model for generation and expulsion. The results show that the threshold and peak expulsion of the E2w source rocks are at 0.6% vitrinite reflectance and 0.9% vitrinite reflectance, respectively. There were five hydrocarbon expulsion centers, located in the western, eastern, and northern Huizhou Sag and the southern and northern Lufeng Sag. The hydrocarbon yields attributed to E2w source rocks are 2.4 × 1011 tons and 1.6 × 1011 tons, respectively, with an expulsion efficiency of 65%. The E2e source rock threshold and peak expulsion are at 0.65% vitrinite reflectance and 0.93% vitrinite reflectance, respectively, with hydrocarbon expulsion centers located in the centers of the Huizhou and Lufeng sags. The yields attributed to E2e source rocks are 1.1 × 1011 tons and 0.2 × 1011 tons, respectively, with an expulsion efficiency of 20%. Using an accumulation coefficient of 7%–13%, the Eocene tight reservoirs could contain approximately 1.3 × 1010 tons to 2.3 × 1010 tons, with an average of 1.8 × 1010 tons, of in-place tight oil resources (highest recoverable coefficient can reach 17–18%), indicating that there is significant tight oil potential in the Eocene strata of the Huilu area.  相似文献   

10.
To unravel the mystery of the relationship between evaporates, Ca–Cl brines and accumulations of oil and N2 in the basins of ancient cratons, their N2, CH4 and He concentration ratios, as well as the isotopic composition (δ15N, δ13C and 3He/4He) were compared within the Volga-Ural basin. The study allowed subsalt fluids from Volga-Ural Basin to divide into two genetic groups. The first one is found within the basin's platform area. It includes Ca–Cl brines, high-viscosity heavy oil, bitumen and N2, which has concentrations higher than that of CH4 and positive values of δ15N. The second one is tied to the edge of the platform, the Ural Foredeep and Peri-Caspian Depression. In this group, only the oil and gas reservoirs, which have more CH4 than N2, and possibly negative values of δ15N, were discovered. Interaction of gas components in compared fluids indicates great role of degassing in the formation of their composition. It is suggested that the fluids of the first group (N2 > CH4) is what remains, and the second group (N2 < CH4) is what is disappears from the rocks during their metamorphism and degassing.  相似文献   

11.
The Shoushan Basin is an important hydrocarbon province in the Western Desert, Egypt, but the origin of the hydrocarbons is not fully understood. In this study, organic matter content, type and maturity of the Jurassic source rocks exposed in the Shoushan Basin have been evaluated and integrated with the results of basin modeling to improve our understanding of burial history and timing of hydrocarbon generation. The Jurassic source rock succession comprises the Ras Qattara and Khatatba Formations, which are composed mainly of shales and sandstones with coal seams. The TOC contents are high and reached a maximum up to 50%. The TOC values of the Ras Qattara Formation range from 2 to 54 wt.%, while Khatatba Formation has TOC values in the range 1-47 wt.%. The Ras Qattara and Khatatba Formations have HI values ranging from 90 to 261 mgHC/gTOC, suggesting Types II-III and III kerogen. Vitrinite reflectance values range between 0.79 and 1.12 VRr %. Rock−Eval Tmax values in the range 438-458 °C indicate a thermal maturity level sufficient for hydrocarbon generation. Thermal and burial history models indicate that the Jurassic source rocks entered the mature to late mature stage for hydrocarbon generation in the Late Cretaceous to Tertiary. Hydrocarbon generation began in the Late Cretaceous and maximum rates of oil with significant gas have been generated during the early Tertiary (Paleogene). The peak gas generation occurred during the late Tertiary (Neogene).  相似文献   

12.
Petroleum hydrocarbon concentrations (PHC) of surface sediments along the Chennai coast, India, were measured by UV-Fluorescence (UVF) Spectroscopy and the results are expressed in terms of Chrysene equivalents. The concentration of PHC in sediment varies widely (from 1.88 ppm to 39.76 ppm) as compared to the baseline (1.88 ppm) with higher values obtained in the northern part of the study area. The highest magnetic susceptibility (96.8 × 10−8 m3kg−1) value was determined from the Chennai harbour area. The magnetic parameters show that the Chennai coastal sediments are dominated by ferrimagnetic minerals. The positive correlation (r2 = 0.86; p < 0.05) between petroleum hydrocarbon concentrations and magnetic susceptibility suggests that the magnetic minerals and petroleum hydrocarbons along the Chennai coast are derived from the same sources. Factor analysis shows that the magnetic concentration dependent parameters (χ, χARM and SIRM) covary with the petroleum hydrocarbon concentration, suggesting that large amounts of magnetic minerals originate from anthropogenic activities. It is evident that using magnetic measurements may be considered a simple, rapid, cheap and non-destructive method to determine petroleum hydrocarbon concentrations in coastal sediments. Furthermore, this technique may be applied to petroleum exploration studies. Magnetic susceptibility measurements in sediments have been proposed as complementary or alternative means of exploration and assessment of hydrocarbon reservoirs.  相似文献   

13.
A C25 highly branched isoprenoid (HBI) monoene hydrocarbon, designated IP25, has been proposed previously to originate from diatoms living in Arctic sea ice, while the presence of IP25 in sediments has been suggested to be a proxy for the occurrence of former Arctic sea ice. Here, we show that the 13C isotopic composition of IP25 in sea ice, in sediment trap material collected under sea ice, and in high latitude northern sediments, is distinctive (isotopically ‘heavy’) and distinguishable from that of organic matter of planktonic or terrigenous origin. Mean δ13C values for IP25 were − 22.3 ± 0.4‰ (sea ice), − 19.6 ± 1.1‰ (sediment traps) and − 19.3 ± 2.3‰ (sediments). These measurements, therefore, support further the proposed use of IP25 as an Arctic sea ice proxy.  相似文献   

14.
Eukaryotic phytoplankton such as diatoms and prymnesiophytes produce biogenic halocarbons in the ocean that serve as important sources of chlorine and bromine to the atmosphere, but the role of cyanobacteria in halocarbon production is not well established. We studied distributions of chloroform (CHCl3), carbon tetrachloride (CCl4), methylene bromide (CH2Br2) and bromoform (CHBr3) in relation to phytoplankton composition, determined from pigment analysis complemented by microscopic examination, for one month in coastal waters of the eastern Arabian that experienced a Trichodesmium bloom that typically occurs during the Spring Intermonsoon season. High concentrations of zeaxanthin (23 μg l−1), alpha beta betacarotene (6 μg l−1) and chlorophyll a (67 μg l−1) were found within the bloom whereas the marker pigment concentrations were low outside the bloom. CHCl3 and CCl4 occurred in relatively high concentrations in surface waters whereas CH2Br2 and CHBr3 were restricted to the subsurface layer. Chlorinated halocarbons were positively inter-correlated and with CHBr3. The observed spatial and temporal trends in brominated compounds appear to be related to the abundance of Trichodesmium although correlations between concentrations of brominated compounds with various marker pigments were poor and statistically non-significant. The results support the existence of multiple sources and sinks of halogenated compounds, which might obscure the relationship between halocarbons and phytoplankton composition.  相似文献   

15.
The petroleum charge history of the Barrandian basin was investigated by analysing quartz and calcite and organic phases that occur in veins and fractures cutting dolerite sills within the Liteň Formation (Silurian). The geochemical characteristics of fluid inclusions trapped in vein quartz and calcite, vein bitumens and adjacent potential source rocks when combined with burial and thermal history data reflect the presence of at least three separate hydrocarbon charge episodes. Solid highly reflecting (Rmax = 0.92–1.49%) bitumen provides information on the first and oldest episode of oil migration. The precursor oil was probably derived relatively early during diagenesis from nearby organic-rich sediments and was subsequently thermally altered to form the solid bitumen.  相似文献   

16.
The spatial spring distribution of Eurytemora affinis (adults and C5) in the Scheldt estuary (Belgium) brackish and freshwater reaches was studied in between 1996 and 2007. The bulk of the E. affinis population being generally situated in the brackish water reach (salinity > 0.5); we studied which environmental factors are responsible for its recent sporadic occurrence in the freshwater estuarine reach. Using PLS analysis, it is shown that its presence upstream is limited by a sufficient oxygen concentration (>4 mg l−1) that is associated with temperature. Not only are the environmental conditions in the upstream zone important, but also the frequent presence of an O2 minimum zone in the mid-estuary (O2 min < 1.3 mg l−1) seems to block the movement of the downstream E. affinis population in an upstream direction. Occasionally, the bulk of the population is however situated upstream. During these periods, high E. affinis abundance was also observed in the Durme tributary. Our findings suggest the possibility to use E. affinis as an “indicator” species of water quality, but also lead us to stress the necessity to consider conditions over the entire estuary when studying restoration effects, not exclusively in the zone of interest.  相似文献   

17.
Organic carbon fluxes through the sediment/water interface in the high-latitude North Atlantic were calculated from oxygen microprofiles. A wire-operated in situ oxygen bottom profiler was deployed, and oxygen profiles were also measured onboard (ex situ). Diffusive oxygen fluxes, obtained by fitting exponential functions to the oxygen profiles, were translated into organic carbon fluxes and organic carbon degradation rates. The mean Corg input to the abyssal plain sediments of the Norwegian and Greenland Seas was found to be 1.9 mg C m−2 d−1. Typical values at the seasonally ice-covered East Greenland continental margin are between 1.3 and 10.9 mg C m−2 d−1 (mean 3.7 mg C m−2 d−1), whereas fluxes on the East Greenland shelf are considerably higher, 9.1–22.5 mg C m−2 d−1. On the Norwegian continental slope Corg fluxes of 3.3–13.9 mg C m−2 d−1 (mean 6.5 mg C m−2 d−1) were found. Fluxes are considerably higher here compared to stations on the East Greenland slope at similar water depths. By repeated occupation of three sites off southern Norway in 1997 the temporal variability of diffusive O2 fluxes was found to be quite low. The seasonal signal of primary and export production from the upper water column appears to be strongly damped at the seafloor. Degradation rates of 0.004–1.1 mg C cm−3 a−1 at the sediment surface were calculated from the oxygen profiles. First-order degradation constants, obtained from Corg degradation rates and sediment organic carbon content, are in the range 0.03–0.6 a−1. Thus, the corresponding mean lifetime of organic carbon lies between 1.7 and 33.2 years, which also suggests that seasonal variations in Corg flux are small. The data presented here characterize the Norwegian and Greenland Seas as oligotrophic and relatively low organic carbon deep-sea environments.  相似文献   

18.
The Ria of Vigo, one of the classical rias of SW Europe, is an environment of high production of organic matter naturally induced by the Galician upwelling. The organic matter is partly supplied by small rivers but mainly by sewage plants along the ria shoreline; jointly they contribute 725 t y−1 of POC, of which 72% is of anthropogenic origin. The freshwater flux is equivalent to a supply of 5 g m−2 yr−1 of allochtonous POC to the ria floor. However the rate of accumulation of POC is dominated by the order of magnitude higher supply of autochthonous material from the net primary production. The present accumulation rate of organic matter (49-58 gPOC m−2 yr−1) is lower than the average supply, estimated from the sedimentary record, to the ria since the middle of the nineteen Century (>60 gPOC m−2 yr−1). This difference may be due to anthropogenic activity or changes in the upwelling pattern. The composition of the organic matter in the sediment reflects the relative importance of the various sources (terrestrial-marine). While terrestrial woody materials dominate the inner ria, phytoplankton remains dominate the remainder of the ria. Rock-Evaluation analysis indicates the inner ria is the site of deposition of gas-prone material and it is inferred that the outer ria of oil-prone organic matter. The controls on the accumulation of POC in the rias show many differences to those found in estuaries affected by anthropogenic activities e.g. agriculture and increasing human population.  相似文献   

19.
Asphaltites, long known to strand along the coastline of southern Australia and as distantly as New Zealand and Macquarie Island, are widely regarded as artefacts of submarine oil seepage. Their remarkably uniform composition suggests a common source: marine shale containing sulphur-rich Type II kerogen, probably deposited during an Early Cretaceous oceanic anoxic event (OAE). Suitable hydrocarbon kitchens may exist in the offshore Bight and Otway basins. The physical character of the asphaltites, including laminations and flow structures, and their degree of alteration, which is not the result of biodegradation or extensive water washing, suggest an origin from subsurface tar mats subsequently exposed by the incision of submarine canyons, with the possible formation of asphaltic volcanoes. API gravities of 4–18° impart quasi-neutral buoyancy, implying many asphaltites were submerged drifters prior to stranding, their degree of weathering reflecting, at least in part, the residence time in the marine environment. For any individual asphaltite specimen, this will depend on the proximity of the seafloor seep to the stranding site, an important consideration when attempting to locate their point of origin.This study investigates the hydrocarbon biomarker signatures and n-alkane δ13C profiles of asphaltite specimens from stranding sites on the Eyre Peninsula (n = 2), Kangaroo Island (n = 4) and the Limestone Coast (n = 3), South Australia, and the south island of New Zealand (n = 2). Sub-samples of the interior and weathered surface of each specimen were analysed. No distinction could be made between strandings based on their source-dependent molecular and isotopic signatures, confirming their common origin. Comparison of the interior and exterior sub-samples revealed subtle although consistent differences. Given their degree of degradation and isotopic variance, these Australasian asphaltites seem to be products of low intensity seeps in the Ceduna Sub-basin of the Bight Basin and/or Morum Sub-basin of the Otway Basin.  相似文献   

20.
冲绳海槽浮岩中碳、氢同位素组成特征   总被引:4,自引:1,他引:3  
利用分阶段热解释放气体质谱分析法研究了冲绳海槽浮岩热解释放气中CO2和H2O的碳、氢同位素组成,结果显示:浮岩中原生CO2和H2O主要释放于400~1 000℃,CO2的碳同位素组成介于-6.7×10-3~-22.7×10-3,H2O的氢同位素组成从-45×10-3变到-71×10-3,均落入幔源火山岩的变化范围,而且浮岩的氢同位素组成与海槽区玄武岩的氢同位素组成非常接近,这表明冲绳海槽浮岩与玄武岩之间具有密切的成因联系,浮岩岩浆和玄武岩岩浆是同源岩浆不同程度结晶分异的产物.另外,这些浮岩较洋中脊玄武岩要贫13C,并富集D,同时具有从洋中脊玄武岩向岛弧玄武岩变化的趋势,这表明浮岩岩浆在形成或上升过程中可能受到俯冲板块释放流体的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号