首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser ablation microprobe data are presented for olivine, orthopyroxeneand clinopyroxene in spinel harzburgite and lherzolite xenolithsfrom La Palma, Hierro, and Lanzarote, and new whole-rock trace-elementdata for xenoliths from Hierro and Lanzarote. The xenolithsshow evidence of strong major, trace element and Sr isotopedepletion (87Sr/86Sr 0·7027 in clinopyroxene in themost refractory harzburgites) overprinted by metasomatism. Thelow Sr isotope ratios are not compatible with the former suggestionof a mantle plume in the area during opening of the AtlanticOcean. Estimates suggest that the composition of the originaloceanic lithospheric mantle beneath the Canary Islands correspondsto the residues after 25–30% fractional melting of primordialmantle material; it is thus significantly more refractory than‘normal’ mid-ocean ridge basalt (MORB) mantle. Thetrace element compositions and Sr isotopic ratios of the mineralsleast affected by metasomatization indicate that the upper mantlebeneath the Canary Islands originally formed as highly refractoryoceanic lithosphere during the opening of the Atlantic Oceanin the area. During the Canarian intraplate event the uppermantle was metasomatized; the metasomatic processes includecryptic metasomatism, resetting of the Sr–Nd isotopicratios to values within the range of Canary Islands basalts,formation of minor amounts of phlogopite, and melt–wall-rockreactions. The upper mantle beneath Tenerife and La Palma isstrongly metasomatized by carbonatitic or carbonaceous meltshighly enriched in light rare earth elements (REE) relativeto heavy REE, and depleted in Zr–Hf and Ti relative toREE. In the lithospheric mantle beneath Hierro and Lanzarote,metasomatism has been relatively weak, and appears to be causedby high-Si melts producing concave-upwards trace element patternsin clinopyroxene with weak negative Zr and Ti anomalies. Ti–Al–Fe-richharzburgites/lherzolites, dunites, wehrlites and clinopyroxenitesformed from mildly alkaline basaltic melts (similar to thosethat dominate the exposed parts of the islands), and appearto be mainly restricted to magma conduits; the alkali basaltmelts have caused only local metasomatism in the mantle wall-rocksof such conduits. The various metasomatic fluids formed as theresults of immiscible separations, melt–wall-rock reactionsand chromatographic fractionation either from a CO2-rich basalticprimary melt, or, alternatively, from a basaltic and a siliceouscarbonatite or carbonaceous silicate melt. KEY WORDS: mantle xenoliths; mantle minerals; trace elements; depletion; carbonatite metasomatism  相似文献   

2.
A suite of metasomatised xenoliths from the Letlhakane kimberlite (Botswana) forms a metasomatic sequence from garnet peridotite to garnet phlogopite peridotite to phlogopite peridotite. Before the modal metasomatism, most of the Letlhakane xenoliths were depleted harzburgites that had been subjected to an earlier cryptic metasomatic event. Modal phlogopite and clinopyroxene - Cr-spinel increase at the expense of garnet and orthopyroxene with increasing degrees of metasomatism. The most metasomatised xenolith is a wehrlite. With progressive modal metasomatism, the clinopyroxene becomes enriched in Sr, Sc and the LREE, orthopyroxene becomes depleted in Ca and Ni, but enriched in Al and Mn, and olivine becomes depleted in Al and V. Garnet chemical composition largely remains unchanged. The garnet replacement reaction seen in most xenoliths allows the measurement of the flux of trace elements through detailed modal analysis of the pseudomorphs. Mass balance calculations show that the modally metasomatised rocks became enriched in incompatible elements such as Sr, Na, K, the LREE and the HFSE (Ti, Zr and Nb). Major elements (Al, Cr and Fe) and garnet-compatible trace elements (V, Y, Sc, and the HREE) were removed during this metasomatic process. The modal metasomatism caused a strong depletion in Al, and the results challenge previous suggestions that this metasomatic process merely occurred within an Al-poor environment. The data suggest that the xenoliths represent the mantle wallrock adjacent to a major conduit for an alkaline basic silicate melt (with high contents of volatile and incompatible elements). The volatile and incompatible element-enriched component of this melt percolated into the wallrock along a strong temperature gradient and caused the observed range of metasomatism.  相似文献   

3.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


4.
Mantle xenoliths hosted by the historic Volcan de San Antonio, La Palma, Canary Islands include veined spinel harzburgites and spinel dunites. Glasses and associated minerals in the vein system of veined xenoliths show a gradual transition in composition from broad veins to narrow veinlets. Broad veins contain alkali basaltic glass with semi-linear trace element patterns enriched in strongly incompatible elements. As the veins become narrower, the SiO2-contents in glass increase (46 → 67 wt% SiO2 in harzburgite, 43 → 58 wt% in dunite) and the trace element patterns change gradually to concave patterns depleted in moderately incompatible elements (e.g. HREE, Zr, Ti) relative to highly incompatible ones. The highest SiO2-contents (ca. 68% SiO2, low Ti-Fe-Mg-Ca-contents) and most extreme concave trace element patterns are exhibited by glass in unveined peridotite xenoliths. Clinopyroxenes shift from LREE-enriched augites in basaltic glass, to REE-depleted Cr-diopside in highly silicic glass. Estimates indicate that the most silicic glasses represent melts in, or near, equilibrium with their host peridotites. The observed trace element changes are compatible with formation of the silicic melts by processes involving infiltration of basaltic melts into mantle peridotite followed by reactions and crystallization. The Fe-Mg interdiffusion profiles in olivine porphyroclasts adjacent to the veins indicate a minimum period of diffusion of 600 years, implying that the reaction processes have taken place in situ in the upper mantle. The CaO-TiO2-La/Nd relationships of mantle rocks may be used to discriminate between metasomatism caused by carbonatitic and silicic melts. Unveined mantle xenoliths from La Palma and Hierro (Canary Islands) show a wide range in La/Nd ratios with relatively constant, low-CaO contents which is compatible with metasomatism of “normal” abyssal peridotite by silicic melts. Peridotite xenoliths from Tenerife show somewhat higher CaO and TiO2 contents than those from the other islands and may have been affected by basaltic or carbonatitic melts. The observed trace element signatures of ultramafic xenoliths from La Palma and other Canary Islands may be accounted for by addition of small amounts (1–7%) of highly silicic melt to unmetasomatized peridotite. Also ultramafic xenoliths from other localities, e.g. eastern Australia, show CaO-TiO2-La/Nd relationships compatible with metasomatism by silicic melts. These results suggest that silicic melts may represent important metasomatic agents. Received: 15 November 1998 / Accepted: 17 May 1999  相似文献   

5.
岚皋金云角闪辉石岩类捕虏体:地幔交代作用的证据   总被引:6,自引:2,他引:6  
产于陕西岚皋地区碱质基性-超基性潜火山杂岩中的金云角闪辉石岩类捕虏体,主要由透辉石、富钛韭闪石、金云母、磷灰石、榍石、及钛铁矿组成。捕虏体发育三联晶、碎裂边、肯克变形等固相线下变形变质结构,矿物学特征表明,透辉石、富钛韭闪石、金云母为地幔来源,是地幔交代作用的产物;与正常地幔尖晶石二辉橄榄岩相比,捕虏体富TiO2、Fe2O3、CaO、Na2O、K2O,贫MgO,其稀土元素具富集特征,尤其富集LREE;微量元素分配型式显示了富亲石不相容元素的特征。岩相学、矿物学及岩石化学特征表明:该类捕虏体为交代地幔捕虏体,它代表了北大巴山早古生代裂谷作用时期的异常地幔,是地幔交代作用的产物。交代营力可能源于地幔热缕的上升,交代过程推测为深处小范围的流体交代及随后硅酸岩熔体的“弥散”性交代  相似文献   

6.
Amphibole ± phlogopite ± apatite-bearing mantle xenoliths at Gobernador Gregores display modal, bulk-rock and phase geochemical characteristics held as indicators of carbonatitic metasomatism. However, part of these xenoliths has high TiO2/Al2O3 and those displaying the most pronounced carbonatitic geochemical markers modally trend towards harzburgite. Bulk-rock, clinopyroxene and amphibole show Zr, Hf and Ti negative anomalies, which increase at decreasing Na2O and high field strength elements (HFSE) concentrations. Steady variation trends between xenoliths which have and do not have carbonatitic characteristics suggest a control by reactive porous flow of only one agent, inferred to be initially a ne-normative hydrous basalt (because of the presence of wehrlites) evolving towards silica saturation. Variation trends exhibit cusps when amphibole appears in the mode. Appearance of amphibole may explain the Ti anomaly variations, but not those of Zr and Hf. Numerical modelling [Plate Model (Vernières et al. in J Geophys Res 102:24771–24784, 1997)] gives results consistent with the observed geochemical features by assuming the presence of loveringite. Modest HFSE anomalies in the infiltrating melt may be acquired during percolation in the garnet-facies.In memory of Carlo Rivalenti  相似文献   

7.
 Mantle xenoliths hosted by the Historic Volcan de San Antonio, La Palma, Canary Islands, fall into two main group. Group I consists of spinel harzburgites, rare spinel lherzolites and spinel dunites, whereas group II comprises spinel wehrlites, amphibole wehrlites, and amphibole clinopyroxenites. We here present data on group I xenoliths, including veined harzburgites and dunites which provide an excellent basis for detailed studies of metasomatic processes. The spinel harzburgite and lherzolite xenoliths have modal ol−opx−cpx ratios and mineral and whole rock major element chemistry similar to those found in Lanzarote and Hierro, and are interpreted as highly refractory, old oceanic lithospheric mantle. Spinel dunites are interpreted as old oceanic peridotite which has been relatively enriched in olivine and clinopyroxene (and highly incompatible elements) through reactions with basaltic Canarian magmas, with relatively high melt/peridotite ratio. Group I xenoliths from La Palma differ from the Hierro and Lanzarote ones by a frequent presence of minor amounts of phlogopite (and amphibole). Metasomatic processes are also reflected in a marked enrichment of strongly incompatible relative to moderately incompatible trace elements, and in a tendency for Fe−Ti enrichment along grain boundaries in some samples. The veins in the veined xenoliths show a gradual change in phase assemblage and composition of each phase, from Fe−Ti-rich amphibole+augite+Fe−Ti-oxides+apatite+basaltic glass, to Ti-poor phlogopite+Cr-diopside±chromite+ Si−Na−K-rich glass+fluid. Complex reaction zones between veins and peridotite include formation of clinopyroxene±olivine+glass at the expense of orthopyroxene in harzburgite, and clinopyroxene+spinel±amphibole±glass at the expense of olivine in dunite. The dramatic change in glass composition from the broadest to the narrowest veins includes increasing SiO2 from 44 to 67 wt%, decreasing TiO2/Al2O3 ratio from >0.24 to about 0.02, and increasing K2O and Na2O from 1.8 to >7.0 wt% and 3.8 to 6.7 wt%, respectively. The petrographic observations supported by petrographic mixing calculations indicate that the most silicic melts in the veined xenoliths formed as the result of reaction between infiltrating basaltic melt and peridotite wall-rock. The highly silicic, alkaline melt may represent an important metasomatic agent. Pervasive metasomatism by highly silicic melts (and possibly fluids unmixed from these) may account for the enriched trace element patterns and frequent presence of phlogopite in the upper mantle under La Palma. Received: 15 January 1996 / Accepted 30 May 1996  相似文献   

8.
Kimberlites from the Kaapvaal craton have sampled numerous mantlegarnet lherzolites in addition to garnet harzburgites. Traceelement characteristics of constituent clinopyroxenes allowtwo groups of garnet lherzolites to be distinguished. Traceelement compositions of all clinopyroxenes are characterizedby enrichment in light rare earth elements (LREE) and largeion lithophile elements and by a relative depletion in Ti, Nb,Ta, and to a lesser extent Zr and Hf. However, the LREE enrichmentand the depletion in Nb and Zr (Hf) are less in the Type 1 clinopyroxenesthan in the Type 2 clinopyroxenes. Our study suggests that thetwo melts responsible for the metasomatic imprints observedin the two garnet lherzolite groups are highly alkaline maficsilicate melts. Type 1 clinopyroxenes that have trace elementsimilarities to those of PIC (Phlogopite–Ilmenite–Clinopyroxene)rocks appear to have crystallized from, or been completely equilibratedwith, the same melt related to Group I kimberlite magma. TheType 2 clinopyroxenes have trace element similarities to thoseof MARID (Mica– Amphibole–Rutile–Ilmenite–Diopside)rocks and are therefore probably linked to melt related to GroupII kimberlite magma. KEY WORDS: garnet lherzolites; Kaapvaal craton; mantle xenoliths; mantle metasomatism; trace elements  相似文献   

9.
Three types of ultramafic xenoliths from the Hyblean area (Sicily) show prime evidence for mantle metasomatism, namely: 1) Spinel-facies depleted harzburgite veined by phlogopite-bearing clinopyroxenite; 2) Amphibole-bearing harzburgite; and 3) Al-spinel websterite. (2) and (3) exhibit glassy pockets having respectively mugearitic and basanitic compositions, but a little amount of glass with low Ca and very low alkalis in (2). Glasses generally show trace element distributions consistent with the partial melting of pargasite-dominated mineral assemblages. Abundant Ca-Mg-carbonate globules immersed in these glassy pockets testify to immiscibility between silicate and carbonatite melts. Silicate melts and hydrous-silicate supercritical fluids, which underwent phase separation during fluxing throughout the semi-brittle lithospheric mantle, may account for such metasomatizing processes. The nature and abundance of some fluid-mobile elements in glasses and hydrous minerals (especially the Ca-poor glass, with B?=?59 ppm, Li?=?27 ppm, Ba?=?700 ppm and phlogopite, with Ba?=?8,465 ppm, Sr?=?260 ppm, F?=?5,700 ppm) suggest that some hydrous fluids may derive from hydrothermally altered oceanic crust. Conversely, metasomatizing silicate melts probably have a deep-seated origin. These results confirm previous suggestions on the key role of mantle metasomatism in the origin of some alkaline Hyblean magmas.  相似文献   

10.
橄榄石微量元素原位分析的现状及其应用   总被引:4,自引:1,他引:3  
随着高精度EMPA和LA-ICP-MS分析技术的发展和矿物微量元素测试精度的提高,利用橄榄石中的微量元素示踪地幔部分熔融、地幔交代作用、岩浆早期结晶过程等地质问题成为近年来一个新兴的研究方向。一系列开拓性的研究发现也被陆续的发表,主要涉及橄榄石中Ni、Co、Al、Cr、Zn、Ti、Li、V、Sc、Mn、Ca和P等元素的示踪使用。一些卓有成效的示踪方法为:Ca、Al、Ti、Ni及Mn能够很好的用于区分橄榄石捕掳晶和斑晶;橄榄石-尖晶石地幔演化趋势线(OSMA:olivine-spinel mantle array)图解可以用于表征岩浆源区的亏损程度;玄武岩中橄榄石斑晶的Li同位素及Li含量可以很有效地指示岩浆源区是否存在地壳物质再循环及地幔交代作用;橄榄石斑晶中Ni、Ca、Mn、Cr和Al协变关系图解可以识别岩浆的辉石岩源区;利用橄榄石捕掳晶中Zr和Sc的含量差异特征可将橄榄岩中三种最主要的类型(尖晶石橄榄岩、石榴石橄榄岩以及尖晶石-石榴石橄榄岩)区分开来;一些元素的比值或组合(例如Ni/Co、Fe/Mn、V/Sc、Zr和Sc、Ca和Ti)可以指示源区交代作用、岩浆作用过程及氧化状态;基于橄榄石中Al、Cr及Ca的地质温度计可以为推算地幔热状态提供新方法;基于橄榄石分离结晶Fo-NiO演化线的原始岩浆计算模型可以较好的推算原始岩浆成分;利用橄榄石的环带及微量元素的扩散机制可以判别更多岩石成因信息,如识别交代介质、熔体类型以及地质构造背景等。基于上述最新研究的相关资料和已有成果,本文对橄榄石微量元素的地球化学示踪方法做系统性的归纳整理,并对橄榄石微量元素赋存状况、橄榄石微量元素测试方法、橄榄石微量元素的使用条件及需注意的问题等进行讨论,为读者在做相关研究时提供参考。  相似文献   

11.
We report the results of LA-ICP-MS analyses of rock forming minerals in clinopyroxene-apatite-K feldspar-phlogopite (CAKP) metasomatic xenoliths and primary carbonatite melt inclusions (CMI) hosted in apatite (Ap) and K feldspar (Kfs). The xenoliths are from the Cretaceous lamprophyre dikes of the Transdanubian Central Range, Hungary. The CMI in Ap have phosphorus dolomitic composition as opposed to CMI in Kfs, which display dolomitic alkali-aluminosiliceous character. The melts found in CMI in Ap and in Kfs likely formed by liquid-liquid separation from an originally carbonate- and phosphorous-rich melt. Primitive mantle (PM) normalized trace element distributions of both Ap- and Kfs-hosted CMI (n = 60 and 20, respectively) reveal a strong negative Ti-anomaly, and an extreme enrichment in incompatible elements (U, Th, LILE and LREE) relative to HREE, Sc, V, Ni and Cr. Rarely, apatites contain unique CMI, which show major- and trace-element signature transitional to K feldspar-hosted CMI. This is due to heterogeneous entrapment of an immiscible phosphorous-bearing carbonatite melt and a carbonate-bearing alkali aluminosiliceous melt, which is a further evidence for their co-existence. CMI reveal that U, Th, Pb, Nb, Ta, P, Sr, Y and REE partitioned into the phosphorous-bearing carbonatite melt, whereas Cs, Rb, Na, K, B, Al, Zr and Hf preferred the silicate-bearing liquid.PM normalized REE pattern (high LREE/HREE), elevated Zr and Hf contents and negative Ti anomaly of clinopyroxene (Cpx) indicate that its formation is genetically linked to carbonatite metasomatism attested by CMI. Trace element partitioning between the studied Cpx and CMI is in accordance with experimentally determined trace element distributions between Cpx and carbonatite melt. Cpx, which occur in samples with high modal proportion of apatite represent mantle section, which interacted with a higher amount of “initial” carbonatite melt than Cpx from apatite-poor xenoliths. This is confirmed by higher Cr, Ni, V, Sc, Ti and lower Zr, as well as Hf concentration in Cpx from xenoliths with low modal abundance of Ap. CMI reveal that Ti, V, Ni and Cr were in lower concentration in the “initial” carbonatite melt than in PM. Contrarily, Zr and Hf were more abundant in this melt than in PM. Consequently, a continuously migrating “initial” carbonatite melt, increased Zr and Hf concentration, and decreased Ti, Sc, V, Ni and especially Cr in the clinopyroxenes. Our findings suggest that the studied CAKP rocks were formed by carbonatite melt metasomatism, which occurred in an open system in the upper mantle.  相似文献   

12.
本文报道了六合-仪征第三纪大陆碱性玄武岩十八个样品的REE、Rb、Ba、Sr、Nb、Zr、Ni、Cr、V、Sc、Y、Ga、Zn、Cu等痕量元素含量,讨论了该岩套的成因及其地幔源区的特征。石榴石橄榄岩型地幔源区经较小程度部分熔融形成了基性原始岩浆;其后经过橄榄石和单斜辉石为主的结晶分异作用,演化后的岩浆喷出地表形成玄武岩套。本区碱性玄武岩的地幔源区曾受近期富集作用影响,具有富集LREE等不相容元素的特征。  相似文献   

13.
岚皋金云角闪辉石岩类捕虏体特征   总被引:6,自引:0,他引:6  
陕西岚皋地区碱质基性超基性潜火山杂岩中的金云角闪辉石岩类捕虏体,主要由透辉石、富钛韭闪石、高Ti金云母、磷灰石及钛铁矿组成。捕虏体发育三联晶、碎裂边、扭折变形等固相线下变形变质结构,与正常地幔尖晶石二辉橄榄岩成分相比,捕虏体富TiO2、Fe2O3、CaO、Na2O、K2O,贫MgO;其稀土元素具富集特征,尤其富集LREE;微量元素配分型式显示富亲石不相容元素的特征。岩相学、矿物学及岩石化学特征表明,该类捕虏体为交代地幔捕虏体,它代表了北大巴山早古生代裂谷作用时期的异常地幔。交代营力可能源于地幔热柱的上升,在地幔深处可能以熔体交代作用为主,往上逐渐以流体交代作用为主  相似文献   

14.
A basanite dyke in the Kerguelen Archipelago contains abundantcomposite mantle xenoliths consisting of spinel-bearing dunitescross-cut by amphibole-rich veins. Two types of veins (thickand thin) have been distinguished: the thick veins representalmost complete crystallization products of highly alkalinemelts similar to the host basanites, whereas thin veins areprecipitates from fractionates of the parental melts to thethick veins. These fractionated fluids are enriched in H2O relativeto the parental melts. The amphiboles in the thin veins arelower in Ti and higher in Nb, Ta, Zr and Hf than amphibolesin the thick veins. This fractionation of high field strengthelements (HFSE) is consistent with a combination of the changingcomposition of the fractionated fluids and the change in intrinsicamphibole–fluid partition coefficients for HFSE in fluidswith higher aH2O and lower aTiO2. The trace element contentof amphiboles disseminated in dunitic wall-rocks is closelyrelated to the composition of adjacent veins and thus theseamphiboles are precipitates from fluids percolating into thedunite from the veins. Disseminated amphibole reflects the compositionof the percolating melt, which is similar to that of the associatedveins. KEY WORDS: mantle amphibole; Kerguelen; HFSE fractionation; mantle HFSE; mantle xenoliths  相似文献   

15.
位于安徽省境内的女山新生代碱性玄武岩中含有大量而且类型丰富的地幔橄榄岩包体,主要类型有尖晶石相、石榴石相、尖晶石-石榴子石过渡相二辉橄榄岩以及少量的方辉橄榄岩,其中部分尖晶石二辉橄榄岩样品中出现富含挥发分的角闪石、金云母和磷灰石。本文选择该区的尖晶石二辉橄榄岩和方辉橄榄岩包体进行了较为详细的岩石学、矿物学、地球化学研究工作。结果显示,除2个方辉橄榄岩表现难熔特征外,其它25件尖晶石相二辉橄榄岩均具有饱满的主量元素组成。二辉橄榄岩样品的Sr-Nd-Hf同位素均表现为亏损地幔的性质,不同于古老克拉通型难熔、富集的岩石圈地幔。富含挥发份交代矿物的出现以及轻稀土元素不同程度的富集,表明女山岩石圈地幔经历了较为强烈的交代作用,然而Re-Os同位素及PGE分析结果表明交代作用并没有显著改变Os同位素组成。二辉橄榄岩样品均具有较高的Os同位素组成,结合其饱满的主量元素组成,亏损的同位素特征,表明女山地区岩石圈地幔整体为新生岩石圈地幔。但1个方辉橄榄岩样品给出了较低的Os同位素比值0.1184,其Re亏损年龄为1.5Ga,它可能来自于软流圈中残留的古老难熔地幔。  相似文献   

16.
The petrological and geochemical study of harzburgitic and dunitic xenoliths from the melilititic district of In Teria (Algerian Sahara) shows that the lighospheric mantle of this region has been affected by a multi-stage metasomatism. The first metasomatic event is related to the injection of alkali silicated (basaltic or kimberlitic) melt and was responsible for the crystallization of phlogopite at depths ranging between 80 and 100 km and the crystallization of amphibole at about 60 km. During this first event, carbonate probably precipitated in the garnet stability field. In a second stage, the spinal peridotites suffered strong mineral changes resulting in an extensive formation of high-Cr endiopside and leading to conversion of harzburgite and dunite into lherzolite and wehrlite. These changes are associated with an enrichment in the most incompatible trace elements including light REE (rare-earth elements), Ta, Th and variable values of ratios such as Th/La and Ta/La. This second event is atributed to the injection (under conditions of decarbonatation and release of CO2) of a carbonatitic melt resulting from incipient melting of the garnet peridotites, which were previously carbonated. This interpretation is corroborated by the calculation of a diffusion-percolation model which reproduces well the observed distribution of incompatible trace elements in the spinel peridotites. Given the proposed sequence of events, it appears that most of the specificities of the In Teria xenoliths can be explained by the successive geochemical modifications induced within the lithospheric mantle during reheating.  相似文献   

17.
The occurrence of CO2-rich lavas (carbonatites, kimberlites) and carbonate-rich xenoliths provide evidence for the existence of carbonatitic melts in the mantle. To model the chemical composition of such melts in the deep mantle, we experimentally determined partition coefficients for 23 trace elements (including REE, U-Th, HFSE, LILE) between deep mantle minerals and carbonatite liquids at 20 and 25 GPa and 1600 °C. Under these conditions, majoritic garnet and CaSiO3 perovskite are the main reservoirs for trace elements. This study used both femtosecond LA-ICP-MS and SIMS techniques to measure reliable trace element concentrations. Comparison of the two techniques shows a general agreement, except for Sc and Ba. Our experimentally determined partition coefficients are consistent with the lattice strain model. The data suggest an effect of melt structure on partition coefficients in this pressure range. For instance, strain-free partition coefficient (D0) for majorite-carbonatite melts do not follow the order of cation valence, , observed for majorite-CO2-free silicate melts. The newly determined partition coefficients were combined with trace element composition of majoritic garnets found as inclusions in diamond to model trace element patterns of deep-seated carbonatites. The result compares favorably with natural carbonatites. This suggests that carbonatites can originate from the mantle transition zone.  相似文献   

18.
Abundant spinel peridotite xenoliths occur in late Cenozoic alkali basaltic rocks in the Sikhote-Alin region at the Pacific margin of the Asian continent. Major- and trace-element compositions of representative peridotite xenolith are documented for four occurrences located in different structural units of the continental margin. In each locality, the majority of xenoliths have distinctive microstructures, modal and chemical compositions that are typical for a given xenolith suite. Significant textural and compositional differences between the four xenolith suites suggest that the upper mantle beneath the Sikhote-Alin consists of distinct domains with contrasting composition. The inferred large-scale mantle heterogeneities may be due to juxtaposition of lithospheric blocks of different provenance during accretion of the Sikhote-Alin to the Asian continent.

Trace-element patterns of the xenoliths and their minerals obtained ICP-MS technique provide evidence of depletion and enrichment events and indicate contrasting behaviour of REE, HFSE and other incompatible trace elements. The HFSE behave non-concordantly, in particular, some xenoliths have highly fractionated Zr/Hf, Ti/Zr, Nb/Ta, La/Nb and U/Th ratios relative to their values in the primitive mantle. The fractionated compositions may be related to the interaction of evolved subduction-related fluids and melts with lithospheric mantle at the Mesozoic-early Cenozoic active continental margin or to metasomatism during later continental rifting.  相似文献   


19.
V. R. Vetrin 《Petrology》2006,14(4):390-412
The lower crust of the Belomorian Mobile Belt consists predominantly of garnet peridotites with subordinate amounts of pyroxenites and spinel peridotites, which occur as xenoliths in Devonian diatremes and dikes in the southern part of the Kola Peninsula. When transported to the surface by ultrabasic melts, the xenoliths were affected by fluids from the host ultrabasic lamprophyres with the introduction of Ca, Mg, and such trace elements as Ba, Nb, Sr, and P. The concentrations of trace elements (Sm, Nd, Y, Ti, Zr, Ni, Cr, and others) and the Sm-Nd isotopic composition were not significantly modified, which makes it possible to use them to compare the xenoliths with the near-surface complexes and to reproduce the composition of the protoliths. The Paleoproterozoic lower crust was produced during the emplacement of mantle magmas into metabasites in the Neoarchean lower crust, a process that was accompanied by the contamination of the melts and the origin of rocks showing characteristics of mantle and crust material. The emplacement of significant melt volumes into the Neoarchean lower crust caused its heating and enabled its viscous-plastic flow. This flow could likely also affect the material of the upper mantle, as follows from the occurrence of spinel peridotite nodules among the garnet granulites with an increase in the amount of mantle xenoliths from the roof to bottom of the lower crust. The overall amount of ultrabasic rocks in the lower crust was evaluated at 8–10%.  相似文献   

20.
 We have investigated new samples from the Gees mantle xenolith suite (West Eifel), for which metasomatism by carbonatite melt has been suggested. The major metasomatic change is transformation of harzburgites into phlogopite-rich wehrlites. Silicate glasses are associated with all stages of transformation, and can be resolved into two major groups: a strongly undersaturated alkaline basanite similar to the host magma which infiltrated the xenoliths during ascent, and Si-Al-enriched, variably alkaline glass present exclusively within the xenoliths. Si-Al-rich glasses (up to 72 wt% SiO2 when associated with orthopyroxene (Opx) are usually interpreted in mantle xenoliths as products of decompressional breakdown of hydrous phases like amphibole. In the Gees suite, however, amphibole is not present, nor can the glass be related to phlogopite breakdown. The Si-Al-rich glass is compositionally similar to glasses occurring in many other xenolith suites including those related to carbonatite metasomatism. Petrographically the silicate glass is intimately associated with the metasomatic reactions in Gees, mainly conversion of harzburgite orthopyroxene to olivine + clinopyroxene. Both phases crystallize as microlites from the glass. The chemical composition of the Si-Al-enriched glass shows that it cannot be derived from decompressional melting of the Gees xenoliths, but must have been present prior to their entrainment in the host magma. Simple mass-balance calculations, based on modal analyses, yield a possible composition of the melt prior to ascent of the xenoliths, during which glass + microlite patches were modified by dissolution of olivine, orthopyroxene and spinel. This parental melt is a calc-alkaline andesite (55–60 wt% SiO2), characterized by high Al2O3 (ca. 18 wt%). The obtained composition is very similar to high-alumina, calc-alkaline melts that should form by AFC-type reactions between basalt and harzburgite wall rock according to the model of Kelemen (1990). Thus, we suggest that the Si-Al-enriched glasses of Gees, and possibly of other suites as well, are remnants of upper mantle hybrid melts, and that the Gees suite was metasomatized by silicate and not carbonatite melts. High-Mg, high-Ca composition of metasomatic olivine and clinopyroxene in mantle xenoliths have been explained by carbonatite metasomatism. As these features are also present in the Gees suite, we have calculated the equilibrium Ca contents of olivine and clinopyroxene using the QUI1F thermodynamical model, to show that they are a simple function of silica activity. High-Ca compositions are attained at low a SiO2 and can thus be produced during metasomatism by any melt that is Opx-undersaturated, irrespective of whether it is a carbonatite or a silicate melt. Such low a SiO2 is recorded by the microlites in the Gees Si-Al-rich glasses. Our results imply that xenolith suites cannot confidently be related to carbonatite metasomatism if the significance of silicate glasses, when present, is not investigated. Received: 2 March 1995 / Accepted: 12 June 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号