首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of an integrated analogue and numerical modeling study with a focus on structural, stratigraphic and thermal differences between symmetric and asymmetric grabens. These models enable fault interpretation and subsidence analyses in studies of active rifting and graben migration. We imported the surface topography and crustal thinning factors from the analogue models into tectono-stratigraphic forward models which allowed an assessment of the relative importance of sediment stacking in the generation of symmetric and asymmetric grabens. Effects on source-rock maturation zones were calculated through 1D-thermal modeling for different graben types. Combined analogue-numerical modeling appears to be a useful method to simulate natural examples, as shown in this study of the southern Viking Graben in the northern North Sea. This area was formed by Early Permian-Late Jurassic extension, with rifting most intense during the Late Jurassic. The thermal structure of the model, constrained by lithospheric and sedimentary parameters for this region, compares well with actual source-rock maturation data on the southern Viking Graben.  相似文献   

2.
Subsurface, intra-reservoir faults have subseismic portions (the fault tail) and process zones that must be considered for a complete evaluation of their role in a reservoir setting. In this paper we show that this subseismic fault domain, generally associated with all seismically mappable faults, may extend several hundred meters beyond the seismically mapped tip point, depending on vertical seismic resolution and fault displacement gradients along strike. We use reservoir modelling and fluid flow simulation of a sandstone reservoir analogue to demonstrate how a low-permeable process zone may generate steep pressure gradients in the reservoir and affect the tortuosity of reservoir fluid flow. Results and examples combined show how small adjustments in fault interpretations in the subseismic domain may significantly affect trap definition, prospect volumes, project economics and selection of exploration well locations. For production settings, we demonstrate how low-permeable fault tails and process zones may increase flow tortuosity and delay water breakthrough, thereby enhancing sweep efficiency and recovery from otherwise bypassed pockets of hydrocarbons in the reservoir. The results also indicate that process zones may contribute to pressure compartmentalization. Finally, a simple methodology for the estimation of subseismic fault continuity is presented.  相似文献   

3.
The Fingerdjupet Subbasin in the southwestern Barents Sea sits in a key tectonic location between deep rifts in the west and more stable platform areas in the east. Its evolution is characterized by extensional reactivation of N-S and NNE-SSW faults with an older history of Late Permian and likely Carboniferous activity superimposed on Caledonian fabrics. Reactivations in the listric NNE-SSW Terningen Fault Complex accommodated a semi-regional rollover structure where the Fingerdjupet Subbasin developed in the hangingwall. In parallel, the Randi Fault Set developed from outer-arc extension and collapse of the rollover anticline.N-S to NNE-SSW faults and the presence of other fault trends indicate changes in the stress regime relating to tectonic activity in the North Atlantic and Arctic regions. A latest Triassic to Middle Jurassic extensional faulting event with E-W striking faults is linked to activity in the Hammerfest Basin. Cessation of extensional tectonics before the Late Jurassic in the Fingerdjupet Subbasin, however, suggests rifting became localized to the Hammerfest Basin. The Late Jurassic was a period of tectonic quiescence in the Fingerdjupet Subbasin before latest Jurassic to Hauterivian extensional faulting, which reactivated N-S and NNE-SSW faults. Barremian SE-prograding clinoforms filled the relief generated during this event before reaching the Bjarmeland Platform. High-angle NW-prograding clinoforms on the western Bjarmeland Platform are linked to Early Barremian uplift of the Loppa High. The Terningen Fault Complex and Randi Fault Set were again reactivated in the Aptian along with other major fault complexes in the SW Barents Sea, leading to subaerial exposure of local highs. This activity ceased by early Albian. Post-upper Albian strata were removed by late Cenozoic uplift and erosion, but later tectonic activity has both reactivated E-W and N-S/NNE-SSW faults and also established a NW-SE trend.  相似文献   

4.
Interpretation of well-calibrated three-dimensional seismic volumes, sedimentological analysis and electrical well-log correlations from the Ninian and Alwyn North fields challenge the long-held view that Mid-Late Jurassic extensional faults in the East Shetland Basin represent a simple reactivation of older (Triassic) fault systems. Restoration for the effects of the younger, predominantly eastward-dipping, Mid-Late Jurassic structures clearly demonstrates that Triassic precursors had a steep, westerly dip. In contrast to the eastern flank of the Viking Graben (e.g. Troll and Oseberg areas), where the west-dipping Triassic structures are reutilised in the Mid-Late Jurassic, those of the East Shetland Basin have largely been dissected and rotated during the later event. Those west-dipping faults that did see later movement appear to have simply acted as minor antithetic structures to the throughgoing east-dipping ones.The Triassic normal fault patterns actively controlled sediment thicknesses and facies distribution within the Lunde and Teist Formations in the basin. Use of seismic stratigraphic surfaces, calibrated by biostratigraphy and chemostratigraphic markers, provides strong evidence that the Triassic depocentres are spatially offset from their Mid-Late Jurassic counterparts. The combination of structural, stratigraphic and sedimentary effects reveal the existence of an emergent deeper Triassic play opportunity in footwall locations to the Mid-Late Jurassic normal faults, which has the potential to extend the life of what is otherwise mature acreage.  相似文献   

5.
In recent years, exploration of the Lower Congo Basin in Angola has focused on the Neogene turbidite sand play of the Malembo Formation. Gravity tectonics has played an important role during deposition of the Malembo Formation and has imparted a well-documented structural style to the post-rift sediments. An oceanward transition from thin-skinned extension through mobile salt and eventually to thin-skinned compressional structures characterises the post-rift sediments. There has been little discussion, however, regarding the influence of these structures on the deposition of the Malembo Formation turbidite sands. Block 4 lies at the southern margin of the Lower Congo Basin and is dominated by the thin-skinned extensional structural style. Using a multidisciplinary approach we trace the post-rift structural and stratigraphic evolution of this block to study the structural controls on Neogene turbidite sand deposition.In the Lower Congo Basin the transition from terrestrial rift basin to fully marine passive margin is recorded by late Aptian evaporites of the Loeme Formation. Extension of the overlying post-rift sequences has occurred where the Loeme Formation has been utilised as a detachment surface for extensional faults. Since the late Cretaceous, the passive margin sediments have moved down-slope on the Loeme detachment. This history of gravity-driven extension is recorded in the post-rift sediments of Block 4. Extension commenced in the Albian in the east of the block and migrated westwards with time. In the west, the extension occurred mainly in the Miocene and generated allochthonous fault blocks or “rafts”, separated by deep grabens. The Miocene extension occurred in two main phases with contrasting slip vectors; in the early Miocene the extension vector was to the west, switching to southwest-directed extension in the late Miocene. Early Miocene faults and half-grabens trend north–south whereas late Miocene structures trend northwest–southeast. The contrast in slip vectors between these two phases emphasises the differences in driving mechanisms: the early Miocene faulting was driven by basinward tilting of the passive margin, but gravity loading due to sedimentary progradation is considered the main driver for the late Miocene extension. The geological evolution of the late Miocene grabens is consistent with southwest-directed extension due to southwest progradation of the Congo fan.High-resolution biostratigraphic data identifies the turbidite sands in Block 4 as early Miocene (17.5–15.5 Ma) and late Miocene (10.5–5.5 Ma) in age. Deposition of these sands occurred during the two main phases of gravity-driven extension. Conditions of low sedimentation rates relative to high fault displacement rates were prevalent in the early Miocene. Seafloor depressions were generated in the hangingwalls of the main extensional faults, ultimately leading to capture of the turbidity currents. Lower Miocene turbidite sand bodies therefore trend north–south, parallel to the active faults. Cross-faults and relay ramps created local topographic highs capable of deflecting turbidite flows within the half grabens. Flow-stripping of turbidity currents across these features caused preferential deposition of sands across, and adjacent to, the highs. Turbidite sands deposited in the early part of the late Miocene were influenced by both the old north–south fault trends and by the new northwest–southeast fault trends. By latest Miocene times turbidite channels crosscut the active northwest–southeast-trending faults. These latest Miocene faults had limited potential to capture turbidity currents because the associated hangingwall grabens were rapidly filled as pro-delta sediments of the Congo fan prograded across the area from the northeast.  相似文献   

6.
Multiphase rifts tend to produce fault populations that evolve by the formation of new faults and reactivation of earlier faults. The resulting fault patterns tend to be complex and difficult to decipher. In this work we use seismic reflection data to examine the evolution of a normal fault network in the Oseberg Fault Block in the northern North Sea Rift System – a rift system that experienced Permian – Early Triassic and Middle Jurassic – Early Cretaceous rifting and exhibits N-S, NW-SE and NE-SW oriented faults.Both N-S- and NW-SE-striking faults were established during the Permian – Early Triassic rifting, as indicated by Triassic growth packages in their hanging walls. In contrast, the NE-SW-striking faults are younger, as they show no evidence of Permian – Early Triassic growth, and offset several N-S- and NW-SE-striking faults. Structural analysis show that a new population of NW-SE-striking faults formed in the Lower – Middle Jurassic (inter-rift period) together with reactivation of N-S-striking Permian – Early Triassic faults, indicating a NE-SW inter-rift extension direction.During the Middle Jurassic – Early Cretaceous rifting, faults of all orientations (N-S, NW-SE and NE-SW) were active. However, faults initiated during the Middle Jurassic – Early Cretaceous rifting show mainly N-S orientation, indicating E-W extension during this phase. These observations suggest a reorientation of the stress field from E-W during the Permian – Early Triassic rift phase to NE-SW during inter-rift fault growth and back to E-W during the Middle Jurassic – Early Cretaceous rift phase in the Oseberg area. Hence, the current study demonstrates that rift activity between established rift phases can locally develop faults with new orientations that add to the geometric and kinematic complexity of the final fault population.  相似文献   

7.
The pre-Cretaceous basin evolution of the Feda Graben area in the vicinity of the Norwegian-Danish basin has been reconstructed utilizing geological and structural interpretation. The analysis reveals that the basin was faulted at its borders prior to the salt deposition in the Late Permian. Salt movement was initiated in Late Triassic and thick Triassic and Lower Jurassic pods were deposited in the graben area due to this movement. Salt pillows were developing along the Feda Graben bordering faults until Middle Jurassic when the pillows were collapsed. Salt diapirs within the study area preferentially occupy the crest of the Feda Graben and their occurrence is controlled by the underlying faulted topography. The diapirs were fed by salt from the central and southern parts of the basin and were developed by different processes i.e. upbuilding, downbuilding. Various raft structures were developed in the graben area hanging wall while some uplift occurred in the footwall during Mesozoic rifting. The Feda Graben area experienced rifting from Late Jurassic to Early Cretaceous. The most pronounced subsidence episode related with this rifting in the Feda Graben area took place along the eastern bounding Gert Fault. The Mesozoic rifting event is marked by a major unconformity on the seismic sections throughout the study area. Furthermore, the region experienced basin inversion in Late Cretaceous. The effects of inversion are more pronounced in the western part and along the Gert Fault. The inversion phenomenon can be properly understood only when considered together with the geometry of the Late Jurassic half-graben. Due to some inconsistencies in the previously proposed models for the development of the Feda Graben, a new conceptual model has been constructed.  相似文献   

8.
High-quality seismic data document a Maastrichtian-Paleocene rift episode on the Vøring margin lasting for 20 m.y. prior to continental breakup. The rift structures are well imaged in the Fenris Graben and Gjallar Ridge region in the western Vøring Basin, and are characterized by low-angle detachment faults with variable fault geometries from south to north. The structural restoration has facilitated the division of pre- and syn-rift sediments across the extensional terrain, which is subsequently used to evaluate mode and mechanism for the lithospheric deformation. Extension estimates based on the structural restoration, subsidence analysis and crustal thickness evaluations yield stretching factors ranging between 1.5 to 2.3 across the main fault zone just landward of the early Tertiary flood basalts. The structural restoration also shows that a middle crustal dome structure, observed beneath the low-angle faults, can be explained by extensional unroofing. Thus, the dome structure may represent a possible metamorphic core complex. Calculations of the effects on vertical motion, assuming uniform and two-layer differential stretching models combined with the arrival of the Iceland mantle plume during rifting, indicate that the uniform extension model may account for both observed early rift subsidence and subsequent late rift uplift and erosion. Although the differential model can not be excluded, it implies early rift uplift which is not compatible with our seismic interpretation. The direct and indirect effects of the Iceland mantle plume may have caused as much as 1.2 km of late rift uplift. Comparison of the volcanic Vøring margin and the non-volcanic West Iberian margin shows similarities in terms of structural style as well as in mode and distribution of extension.  相似文献   

9.
琼东南盆地断裂构造与成因机制   总被引:24,自引:0,他引:24  
琼东南盆地断裂较为发育,主要发育NE、近EW和NW向的三组断裂,其中NE向和近EW向断裂是主要的控盆断裂。盆地早期发育主要受基底先存断裂的控制,形成了众多裂陷构造;晚期主要受热沉降作用控制,断裂不太发育,对沉积的控制作用较弱,从而使盆地具有典型的裂陷盆地和双层结构特征。琼东南盆地受到太平洋俯冲后撤、印藏碰撞和南海张开等多期构造的作用,盆地的裂陷期可以分为两阶段:始新世—早渐新世的整体强张裂期,晚渐新世—早中新世的弱张裂期。  相似文献   

10.
Cenozoic structures in the Bohai Bay basin province can be subdivided into eleven extensional systems and three strike-slip systems. The extensional systems consist of normal faults and transfer faults. The normal faults predominantly trend NNE and NE, and their attitudes vary in different tectonic settings. Paleogene rifting sub-basins were developed in the hanging walls of the normal faults that were most likely growth faults. Neogene–Quaternary sequences were deposited in both the rifting sub-basins and horsts to form a unified basin province. The extensional systems were overprinted by three NNE-trending, right-lateral strike-slip systems (fault zones). Although the principal displacement zones (PDZ) of the strike-slip fault zones are developed only in the basement and lower basin sequences in some cross sections, the structural deformation characteristics of the upper basin sequences also indicate that they are basement-involved, right-lateral strike-slip fault zones. According to the relationships between faults and sedimentary sequences, the extensional systems were mainly developed from the middle Paleocene to the late Oligocene, whereas the strike-slip systems were mainly developed from the Oligocene to the Miocene. Strike-slip deformation was intensified as extensional deformation was weakened. Extensional deformation was derived from horizontal tension induced by upwelling of hot mantle material, whereas strike-slip deformation was probably related to a regional stress field induced by plate movement.  相似文献   

11.
Recent volcanic activity along the northern flank of the Fiji Platform, revealed for the first time from new GLORIA imagery, suggests that the loci of interplate motion in this region have migrated rapidly since the switch from Vitiaz to New Hebridean subduction at 5–8 Ma. At present the plate boundaries along the northern flank of the Fiji Platform consist of two major strike-slip faults of opposing sense: the sinistral Fiji Transform Fault along the northwest flank of the platform, and at least one (or possibly two) zones of dextral strike slip (including Peggy Ridge) along the northeast flank. The tectonic relation-ships of these two fault systems lies north of Fiji and is not determined.  相似文献   

12.
南海北缘新生代盆地沉积与构造演化及地球动力学背景   总被引:32,自引:0,他引:32  
南海北缘新生代沉积盆地是全面揭示南海北缘形成演化及与邻区大地构造单元相互作用的重要窗口。通过对盆地沉积-构造特征分析,南海北缘新生代裂陷过程显示出明显的多幕性和旋转性的特点。在从北向南逐渐迁移的趋势下,东、西段裂陷过程也具有一定的差异,西部裂陷活动及海侵时间明显早于东部,裂陷中心由西向东呈雁列式扩展。晚白垩世-早始新世裂陷活动应是东亚陆缘中生代构造-岩浆演化的延续,始新世中、晚期太平洋板块俯冲方向改变导致裂陷中心南移,印度欧亚板块碰撞效应是南海中央海盆扩张方向顺时针旋转的主要原因。  相似文献   

13.
The sandy quartzose parts of the Utsira Formation, the Middle Miocene to mid Pliocene Utsira Sand, extends north–south along the Viking Graben near the UK/Norwegian median line for more than 450 km and 75–130 km east–west. The Utsira Sand is located in basin-restricted seismic depocentres, east of and below prograding sandy units from the Shetland Platform area with Hutton Sands. The Utsira Sand reaches thicknesses up to ca. 300 m in the southern depocentre and 200 m in the two northern depocentres with sedimentation rates up to 2–4 cm/ka. Succeeding Plio–Pleistocene is divided into seismic units, including Base Upper Pliocene, Shale Drape, Prograding Complex and Pleistocene. The units mainly consist of clay, but locally minor sands occur, especially at toes of prograding clinoforms (bottom-set sands) and in the Pleistocene parts, and the total thickness covering the Utsira Sand is in most places more than 800 m, but thins towards the margins.  相似文献   

14.
Geological and geomorphological studies of the Moscow Aulacogene in the western part of Moscow suburbs have been conducted. This deep structure has been studied by microseismic sounding. The resulting section presents the faults which frame the Teplostanskii Graben in the south (Ramenskii or Butovskii, expressed on the surface as a ledge in the relief) and in the north (Pavlovo-Posadskii, being traced on the surface as a series of lineaments and the valley of Setun’ River). The position of the surface Archean-Lower Proterozoic crystalline basement within the limits of the graben and within the limits of buried elevated blocks (Krasnogorskii and Tumsk-Shaturskii) frame it in the north and south, respectively. Additionally, another fault has been identified in the central part of the graben: the Solntsevskii fault, which has a north-western course and which separates the deflection of the basement in two blocks that are sunken in a slightly different degree. The low-velocity horizons of the Riphean-Vendian complex which make up the graben at depths of 2 to 4.5 km have been found. Down to depths of 15 km, as a component of the upper crust, the graben is underlain by a high-velocity material which also forms the upper part of the section of the crystalline basement in the neighboring elevated block. A low-velocity block of the lithosphere is located in the larger (northern) part of the graben deeper (down to 40 km) beneath the zones of Pavlovo-Posadskii and Solntsevskii faults; in the southern part there is a high-velocity block. In the fault zones framing the graben in the north and south, the surface layer and soil displays a flow of juvenile hydrogen and helium which exceeds several tenfold the background values. According to the collected data, the Teplostanskii Graben has roots traceable through the entire crust and penetrating into the upper mantle.  相似文献   

15.
The ∼400 km-long passive continental margin west of the Lofoten–Vesterålen archipelago, off northern Norway, links the volcanic rifted Vøring margin and the sheared W Barents Sea margin. Multi-channel seismic reflection profiles, supplemented with crustal velocity, gravity and magnetic anomaly data are used to outline the regional setting and main tectono-magmatic features. A well-defined along-strike margin segmentation comprising three segments characterized by distinct crustal properties, structural and magmatic styles, sediment thickness, and post-opening history of vertical motion is revealed. The margin segments are governed by changes in fault polarity on Late Jurassic–Early Cretaceous border faults and are separated by coeval cross-margin transfer zones which acted as persistent barriers to rupture propagation and reflect the trend and character of older structural heterogeneities. The transfer zones spatially correlate to small-offset, early opening oceanic fracture zones, implying a structural inheritance from one rift episode to another culminating with lithospheric breakup at the Paleocene–Eocene transition. The pre-seafloor spreading margin structural evolution is governed by the older, predominantly Late Jurassic–Early Cretaceous structural framework. However, the margin also provides evidence for mid- and Late Cretaceous extension events that are poorly understood elsewhere off Norway. Furthermore, the Lofoten–Vesterålen post-breakup subsidence history contrasts with the adjacent margins reflecting breakup in thicker crust and a diminishing volume of high-velocity lower crust emplaced during breakup.  相似文献   

16.
Prior to extension of the lithosphere in the Eurasia Basin, the Yermak Plateau was an element of the Eurasian Arctic margin. Extension of the Barents Sea shelf culminated gradually in rifting of the continental crust with separation of this block from the continent during Chrons C25r?C26n (57.656?59.237 Ma ago) and emplacement of numerous basic dikes, which could be responsible for the formation of high-amplitude magnetic anomalies on the Yermak Plateau. The investigation included reconstruction of axes in the breakup zones along peripheral continental fragments of Spitsbergen with determination of the Euler poles and angles of rotation, which describe the kinematics of this process. It is revealed that the difference between depths of conjugate isobaths can be as large as many tens of meters, which reflects the nonuniformly scaled slide of peripheral areas of the continental crust along the plane of the crustal-penetrating fault and, correspondingly, their different subsidence during rifting.  相似文献   

17.
The East Vietnam Boundary Fault Zone (EVBFZ) forms the seaward extension of the Red River Shear Zone and interacted with the extensional rift systems in basins along the Central Vietnamese continental margin. The structural outline of the central Vietnamese margin and the timing of deformation are therefore fundamental to understanding the development of the South China Sea and its relation to Indochinese escape tectonism and the India-Eurasia collision. This study investigates the structural and stratigraphic evolution of the Central Vietnamese margin in a regional tectonic perspective based on new 2-D seismic and well data. The basin fill is divided into five major Oligocene to Recent sequences separated by unconformities. Deposition and the formation of unconformities were closely linked with transtension, rifting, the opening of the South China Sea and Late Neogene uplift and denudation of the eastern flank of Indochina. The structural outline of the Central Vietnamese margin favors a hybrid tectonic model involving both escape and slab-pull tectonics. Paleogene left-lateral transtension over the NNW-striking EVBFZ, occurred within the Song Hong Basin and the Quang Ngai Graben and over the Da Nang Shelf/western Phu Khanh Basin, related to the escape of Indochina. East of the EVBFZ, Paleogene NE-striking rifting prevailed in the outer Phu Khanh Basin and the Hoang Sa Graben fitting best with a prevailing stress derived from a coeval slab-pull from a subducting proto-South China Sea beneath the southwest Borneo – Palawan region. Major rifting terminated near the end of the Oligocene. However, late stage rifting lasted to the Early Miocene when continental break-up and seafloor spreading commenced along the edge of the outer Phu Khanh Basin. The resulting transgression promoted Lower and Middle Miocene carbonate platform growth on the Da Nang Shelf and the Tri Ton High whereas deeper marine conditions prevailed in the central part of the basins. Partial drowning and platform retreat occurred after the Middle Miocene due to increased siliciclastic input from the Vietnamese mainland. As a result, siliciclastic, marine deposition prevailed offshore Central Vietnam during the Pliocene and Pleistocene.  相似文献   

18.
The Orange Basin records the development of the Late Jurassic to present day volcanic-rifted passive margin of Namibia. Regional extension is recorded by a Late Jurassic to Lower Cretaceous Syn-rift Megasequence, which is separated from a Cretaceous to present day post-rift Megasequence by the Late Hauterivian (ca. 130 Ma) break-up unconformity. The Late Cretaceous Post-rift evolution of the basin is characterized by episodic gravitational collapse of the margin. Gravitational collapse is recorded as a series of shale-detached gravity slide systems, consisting of an up-dip extensional domain that is linked to a down-dip zone of contraction domain along a thin basal detachment of Turonian age. The extensional domain is characterized by basinward-dipping listric faults that sole into the basal detachment. The contractional domain consists of landward-dipping listric faults and strongly asymmetric basinward-verging thrust-related folds. Growth stratal patterns suggest that the gravitational collapse of the margin was short-lived, spanning from the Coniacian (ca. 90 Ma) to the Santonian (ca. 83 Ma). Structural restorations of the main gravity-driven system show a lack of balance between up-dip extension (24 km) and down-dip shortening (16 km). Gravity sliding in the Namibian margin is interpreted to have occurred as a series of episodic short-lived gravity sliding between the Cenomanian (ca. 100 Ma) and the Campanian (ca. 80 Ma). Gravity sliding and spreading are interpreted to be the result of episodic cratonic uplift combined with differential thermal subsidence. Sliding may have also been favoured by the presence of an efficient detachment layer in Turonian source rocks.  相似文献   

19.
Rifting of continental margins is generally diachronous along the zones where continents break due to various factors including the boundary conditions which trigger the extensional forces, but also the internal physical boundaries which are inherent to the composition and thus the geological history of the continental margin. Being opened quite recently in the Tertiary in a scissor-shape manner, the South China Sea (SCS) offers an image of the rifting structures which varies along strike the basin margins. The SCS has a long history of extension, which dates back from the Late Cretaceous, and allows us to observe an early stretching on the northern margin onshore and offshore South China, with large low angle faults which detach the Mesozoic sediments either over Triassic to Early Cretaceous granites, or along the short limbs of broad folds affecting Palaeozoic to Early Cretaceous series. These early faults create narrow troughs filled with coarse polygenic conglomerate grading upward to coarse sandstone. Because these low-angle faults reactivate older trends, they vary in geometry according to the direction of the folds or the granite boundaries. A later set of faults, characterized by generally E–W low and high angle normal faults was dominant during the Eocene. Associated half-graben basement deepened as the basins were filling with continental or very shallow marine sediments. This subsequent direction is well expressed both in the north and the SW of the South China Sea and often reactivated earlier detachments. At places, the intersection of these two fault sets resulting in extreme stretching with crustal boudinage and mantle exhumation such as in the Phu Khanh Basin East of the Vietnam fault. A third direction of faults, which rarely reactivates the detachments is NE–SW and well developed near the oceanic crust in the southern and southwestern part of the basin. This direction which intersects the previous ones was active although sea floor spreading was largely developed in the northern part, and ended by the Late Miocene after the onset of the regional Mid Miocene unconformity known as MMU and dated around 15.5 Ma. Latest Miocene is marked by a regional basement drop and localized normal faults on the shelf closer to the coast. The SE margin of the South China Sea does not show the extensional features as well as the Northern margin. Detachments are common in the Dangerous Grounds and Reed Bank area and may occasionally lead to mantle exhumation. The sedimentary environment on the extended crust remained shallow all along the rifting and a large part of the spreading until the Late Miocene, when it suddenly deepened. This period also corresponds to the cessation of the shortening of the NW Borneo wedge in Palawan, Sabah, and Sarawak. We correlate the variation of margin structure and composition of the margin; mainly the occurrence of granitic batholiths and Mesozoic broad folds, with the location of the detachments and major normal faults which condition the style of rifting, the crustal boudinage and therefore the crustal thickness.  相似文献   

20.
The Late Cretaceous–Paleocene rifting in the NW Vøring Basin is characterized by four main fault complexes and pronounced upper-crustal structural segmentation. The fault complexes are linked by accommodation zones, which separate fault systems of different polarities and thick from thinner coeval sedimentary successions. Structural and stratigraphic analyses suggest that the early rift phase (∼81 to 65 Ma) was characterized by large-scale normal faulting, along-margin segmentation and varying structural styles; whereas the late rift phase (∼65 to 55 Ma) was associated with continued extension, regional uplift, intrusive igneous activity and subsequent erosion. The rifting ended with breakup at ∼55 Ma accompanied by massive, but gradually waning extrusive igneous activity over the next 3 Myr. The mode of rifting appears to have changed from brittle to more ductile extensional deformation from the early to late rift phase. The changing rift rheology is probably related to the arrival of the Iceland mantle plume and initiation of associated igneous activity. Hence, the NW Vøring Basin provides an example of complex interaction of structural and magmatic relationships during rifting and breakup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号