首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The Raman and Cr3+ and V2+ luminescence spectra of beryl and emerald have been characterized up to 15.0 and 16.4 GPa, respectively. The Raman spectra show that an E 1g symmetry mode at 138 cm?1 shifts negatively by ?4.57 (±0.55) cm?1/GPa, and an extrapolation of the pressure dependence of this mode indicates that a soft-mode transition should occur near 12 GPa. Such a transition is in accord with prior theoretical results. Dramatic changes in Raman mode intensities and positions occur between 11.2 and 15.0 GPa. These changes are indicative of a phase transition that primarily involves tilting and mild distortion of the Si6O18 rings. New Raman modes are not observed in the high-pressure phase, which indicates that the local bonding environment is not altered dramatically across the transition (e.g., changes in coordination do not occur). Both sharp line and broadband luminescence are observed for both Cr3+ and V2+ in emerald under compression to 16.4 GPa. The R-lines of both Cr3+ and V2+ shift to lower energy (longer wavelength) under compression. Both R-lines of Cr3+ split at ~13.7 GPa, and the V2+ R1 slope changes at this pressure and shifts more rapidly up to ~16.4 GPa. The Cr3+ R-line splitting and FWHM show more complex behavior, but also shift in behavior at ~13.7 GPa. These changes in the pressure dependency of the Cr3+ and V2+ R-lines and the changes in R-line splitting and FWHM at ~13.7 GPa further demonstrate that a phase transition occurs at this pressure, in good agreement with our Raman results. The high-pressure phase of beryl appears to have two Al sites that become more regular under compression. Hysteresis is not observed in our Raman or luminescence spectra on decompression, suggesting that this transition is second order in nature: The occurrence of a second-order transition near this pressure is also in accord with prior theoretical results. We speculate that the high-pressure phase (beryl-II) might be a mildly modulated structure, and/or that extensive twinning occurs across this transition.  相似文献   

3.
The temperature dependence (at ambient pressure) of the Raman spectra of both the quartz- and rutile-types of GeO2 has been studied from 109 to 874?K. All spectra were corrected for the effects of temperature and are presented in their reduced form to allow a direct comparison of intensities at all temperatures. In the quartz-type GeO2, the Raman bands above 400?cm?1 exhibited relatively larger temperature dependences and at least four of the bands in this region vary nonlinearly with increasing temperature. Deconvolution of the most intense Raman band at 700?cm?1 in the rutile-type GeO2 revealed the presence of a previously unreported band at 684?cm?1 at 298?K which may arise from splitting of the A1g mode. A nonlinear temperature dependence was observed for all the Raman bands above 600?cm?1 in the rutile-type GeO2 with the new band at 684?cm?1 exhibiting the largest curvature. In common with previous studies of rutile-type oxides, the B1g mode at 171?cm?1 showed anomalous behaviour by increasing linearly in frequency with increasing temperature. In a separate experiment, the oxidation of metallic germanium in air demonstrated that the quartz-type GeO2 is the preferred form of germanium oxide at temperatures above 745?K at atmospheric pressure. Thermodynamic calculations predict that the rutile-form of GeO2 should be the stable species under these conditions. This suggests that atmospheric gases may have a marked effect on the kinetics and stability of the quartz and rutile forms of GeO2.  相似文献   

4.
Detailed ligand-field spectra of Mn2+ in both microcrystalline and single-crystal synthetic forsterite are obtained using the technique of luminescence excitation spectroscopy. It is shown that Mn2+ has an almost exclusive preference for one particular cation site which is most probably the M2 site. Low temperature measurements reveal a no-phonon (purely electronic) transition at 16,260 cm?1 (615 nm) which is the energy of the lowest split component of the 4 T 1(G) state above the ground state. Phonon replicas of this transition are evident showing that a particular phonon mode (180 cm?1) is dominantly involved. An analysis of the polarized spectra of Mn2+ in single-crystal forsterite shows the choice of C 2v (C 2, σ d ) pseudosymmetry for the M2 site yields the best agreement with the polarization dependence of the transitions between the ligand-field states of the Mn2+ ion in this site.  相似文献   

5.
Enthalpies and entropies of transition for the Mg2GeO4 olivine-spinel transformation have been determined from self-consistency analyses of Dachille and Roy's (1960), Hensen's (1977) and Shiota et al.'s (1981) phase boundary studies. When all three data sets are analyzed simultaneously,ΔH 973 andΔS 973 are constrained between ?14000 to ?15300 J mol?1 and ?13.0 to ?14.1·J mol?1 K?1, respectively. High-temperature solution calorimetric experiments completed on both polymorpha yield a value of ?14046±1366 J mol?1 forΔH 973. Kieffer-type lattice vibrational models of Mg2GeO4 olivine and spinel based on newly-measured infrared and Raman spectra predict a value of ?13.3±0.6 J mol?1 K?1 forΔS 1000. The excellent agreement between these three independent determinations ofΔH andΔS suggests that the synthesis runs of Shiota et al. (1981) at high pressures and temperatures bracket equilibrium conditions. In addition, no configurational disorder of Mg and Ge was needed to obtain the consistent parameters quoted. The Raman spectrum and X-ray diffractogram show that little disorder, if any, is present in Mg2GeO4 spinel synthesized at 0.2 GPa and 973–1048 K.  相似文献   

6.
A single-crystal of topaz was studied by Raman spectroscopy to assign the internal modes of the high-frequency range and to compare with infrared data. All active modes exhibit an important Davydov splitting (150 cm?1) but we have found a small Bethe splitting (14.5 cm?1) consistent with a very regular SiO4 tetrahedron. Because of a high value of v 1 (~920 cm?1) the Raman active modes present a mixed v 1/v 3 character. Finally the substitution of OH for F splits an A g internal mode and lead to some proper modes at 3650 cm?1, 3639 cm?1 and 1165 cm?1.  相似文献   

7.
Infrared and Raman spectra of the basic copper salts malachite, Cu2(OH)2CO3, and brochantite, Cu4(OH)6SO4, as well as of deuterated and 13C substituted samples are presented and discussed in terms of group theory and the hydrogen bonds present. The main results are that (i) the hydrogen donor strengths of the OH? ions are strongly increased due to the very great synergetic effect of the copper ions, (ii) the acceptor strengths of the H-bond acceptor groups (SO4 2-, CO3 2-, and OH? ions) are significantly modified by the linkage and coordination of the acceptor atoms — this complicates true assignment of the OH bands observed to the two and six different OH? ions present in malachite and brochantite, respectively -, and (iii) the Cu — O stretching modes at 430–590 cm?1 and 420–520 cm?1 for malachite and brochantite, respectively, exhibit strong, partially covalent Cu — O bonding.  相似文献   

8.
The structure of a single crystal hydrous ringwoodite, Mg1.89Si0.98H0.30O4 synthesized at conditions of 1300?°C and 20?GPa has been analyzed. Crystallographic data for hydrous ringwoodite obtained are; Cubic with Space group: Fd3m (no. 227). a= 8.0693(5)?Å, V=526.41(9)?Å3, Z=8, Dcalc= 3.48?g?cm?3. The results of site occupancy refinement using higher angle reflections showed the existence of a small degree of Mg2+-Si4+ disorder in the structure such as (Mg1.84Si0.050.11)(Si0.93Mg0.050.02)H0.30O4. The IR and Raman spectra were measured and OH vibration spectra were observed. A broad absorption band was observed in the IR spectrum and the maxima were observed at 3160?cm?1 in the IR and at 3165?cm?1 and 3685?cm?1 in relatively sharp Raman spectra, which suggest that locations between O-O pairs around the octahedral 16c and 16d sites are possible sites for hydrogen.  相似文献   

9.
Polarized optical absorption spectra of Mn(IV) in octahedral crystal fields of Mn(SeO3)2 have been studied by means of microscope-spectrometry in the range 40000-4000 cm?1 and at temperatures between 113 K and 293 K. Intense charge-transfer absorptions (linear absorption coefficient α ? 30000 cm?1) completely mask the d-d transitions in the UV and VIS region above ≈23000 cm?1. The optical electronegativity χ opt of Mn(IV) in Mn(SeO3)2 is estimated to be 2.7. In accordance with the d 3 configuration of tetravalent manganese three d-d bands observed at ambient temperatures at 13250, 14137 (α≈50 cm?1) and ≈18500 cm?1 (α≈500–800 cm?1) are assigned to the spin forbidden 4 A 2g 2 E g and 4 A 2g 2 T 1g transitions as well as to the first spin allowed 4 A 2g 4 T 2g transition, respectively. These assignments allow the calculation of the following ligand field parameters: Dq ≈ 1850 cm?1, B 55 = 869 cm?1 (β 55 = 0.82), and C = 2346 cm?1 (293 K).  相似文献   

10.
The energy levels of MnO 6 9? clusters, with D 4h approximated and C 2v actual symmetry of the M 1 site of Mn3+-bearing andalusite, are calculated using the multiple scattering method. The energies of the electronic d-d transition of Mn3+ in the clusters with D 4h symmetry are calculated to be 6,000–7,000 cm?1 (5 B 1g 5 A 1g ), ~18,000 cm?1 (5 B 1g 5 B 2g ) and ~19,000 cm?1 (5 B 1g 5 E g ). Apart from a splitting of the 5 E g -level into two levels separated by 300–350 cm?1, no significant changes of these transition energies are noted for the corresponding cluster with C 2v symmetry. The calculated transition energies give a good fit to the structure of the optical absorption spectra of Mn3+-bearing andalusites and support recent assignments of the major absorption bands observed in these spectra.  相似文献   

11.
Infrared (IR) and Raman spectroscopic methods are important complementary techniques in structural studies of aluminosilicate glasses. Both techniques are sensitive to small-scale (<15 Å) structural features that amount to units of several SiO4 tetrahedra. Application of IR spectroscopy has, however, been limited by the more complex nature of the IR spectrum compared with the Raman spectrum, particularly at higher frequencies (1200–800 cm?1) where strong antisymmetric Si-O and Si-O-Si absorptions predominate in the former. At lower frequencies, IR spectra contain bands that have substantial contributions from ‘cage-like’ motions of cations in their oxygen co-ordination polyhedra. In aluminosilicates these bands can provide information on the structural environment of Al that is not obtainable directly from Raman studies. A middle frequency envelope centred near 700 cm?1 is indicative of network-substituted AlO4 polyhedra in glasses with Al/(Al+Si)>0·25 and a band at 520–620cm?1 is shown to be associated with AlO6 polyhedra in both crystals and glasses. The IR spectra of melilite and melilite-analogue glasses and crystals show various degrees of band localization that correlate with the extent of Al, Si tetrahedral site ordering. An important conclusion is that differences in Al, Si ordering may lead to very different vibrational spectra in crystals and glasses of otherwise gross chemical similarity.  相似文献   

12.
Electron spin resonance of allowed (Δm=0) and forbidden (Δm=±1) hyperfine transitions of Mn2+ in sodalite, Na8(Al6Si6O24)Cl2, is reported. No fine structure other than the central M=∣+1/2>?∣?1/2> transition is observed. From intensity ratios of forbidden to allowed transitions and doubling of allowed lines in powder spectra the crystal field parameter |D| was estimated as equal to (8±5) 10?3 cm?1. The g-value for the spectrum was obtained as equal to 2.0033±0.0005. The hyperfine structure constant |A| was 83±1 gauss, equal to (77±1) 10?4 cm?1.  相似文献   

13.
A series of natural silica impactite samples from Chicxulub (Mexico) was investigated by Raman microprobe (RMP) analysis. The data yield evidence for high-pressure shock metamorphism in the rock. The impactite contains three polymorphs of silica: the original α-quartz, and two high-pressure varieties – coesite and disordered quartz representing various degrees of crystallinity. We found systematic changes in frequencies and half-widths of the Raman bands, caused by increasing irregularities of bond-lengths and bond-angles and a general breaking-up of the structure as a result of impact events. Therefore, RMP is an adequate tool for measuring the crystallinity of disordered quartz. The half-width Γ and the frequency ω of the symmetric SiOSi stretching vibrational band (A1 mode) of the SiO4 tetrahedra are the most amenable parameters for estimating the degree of crystallinity. In well-crystallized quartz, Γ=5 cm?1 and ω=464 cm?1, while in highly disordered quartz this line shifts up to ω=455 cm?1 and broadens up to Γ=30 cm?1. The Raman lineshapes appear to depend strongly on the degree of lattice disorder subsequent to impact events. To cite this article: M. Ostroumov et al., C. R. Geoscience 334 (2002) 21–26  相似文献   

14.
Raman spectra of natural analcime have been recorded at atmospheric pressure and up to 9.4 kbar. The basic Si, Al-O network vibrations are little affected by pressure even though significant volume changes and a minor phase transition take place. However, the 3,557 cm?1 OH-stretch mode is modified in that band splitting takes place indicating at least two O-OH hydrogen bond distances. Thus there are at least three sites of hydrogen bonding in analcime. The bonded water (H2O) in analcime appears to remain in the mineral at high pressure. The bulk volume change, determined previously by cell dimension measurements, can be traced to reduction of the size of the “voids” in the structure. This is deduced from the fact that Si-Al-O vibrations are little affected by pressure but O-H vibrations of water molecules found in the voids are strongly pressure-dependent.  相似文献   

15.
We present a Raman spectroscopic study of the structural modifications of several olivines at high pressures and ambient temperature. At high pressures, the following modifications in the Raman spectra are observed: 1)?in Mn2GeO4, between 6.7 and 8.6?GPa the appearance of weak bands at 560 and 860?cm?1; between 10.6 and 23?GPa, the progressive replacement of the olivine spectrum by the spectrum of a crystalline high pressure phase; upon decompression, the inverse sequence of transformations is observed with some hysteresis in the transformation pressures; this sequence may be interpreted as the progressive transformation of the olivine to a spinelloid where Ge tetrahedra are polymerized, and then to a partially inverse spinel; 2)?in Ca2SiO4, the olivine transforms to larnite between 1.9 and 2.1?GPa; larnite is observed up to the maximum pressure of 24?GPa and it can partially back-transform to olivine during decompression; 3)?in Ca2GeO4, the olivine transforms to a new structure between 6.8 and 8?GPa; the vibrational frequencies of the new phase suggest that the phase transition involves an increase of the Ca coordination number and that Ge tetrahedra are isolated; this high pressure phase is observed up to the maximum pressure of 11?GPa; during decompression, it transforms to a disordered phase below 5?GPa; 4)?in CaMgGeO4, no significant modification of the olivine spectrum is observed up to 15?GPa; between 16 and 26?GPa, broadening of some peaks and the appearance of a weak broad feature at 700–900?cm?1 suggests a progressive amorphization of the structure; near 27?GPa, amorphization is complete and an amorphous phase is quenched down to ambient pressure; this unique behaviour is interpreted as the result of the incompatibilities in the high pressure behaviour of the Ca and Mg sublattices in the olivine structure.  相似文献   

16.
The room-temperature Raman spectra of aragonite, magnesite and dolomite have been recorded up to 30 GPa and 25 GPa, respectively and no phase changes were observed during compression, unlike calcite. The effect of temperature on the room-pressure Raman spectra of calcite, aragonite, magnesite and dolomite is reported up to 800–1100 K. The measured relative pressure and temperature-shifts of the Raman lines are greater for the lattice modes than for the internal modes of the CO3 groups. These shifts are used to calculate the mode anharmonic parameters of the observed Raman modes; they are negative and their absolute values are smaller (close to 0) for the internal CO3 modes than for the lattice modes (4–17 10?5 K?1). The temperature shifts of the lattice modes in calcite are considerably larger than those for dolomite and magnesite, and a marked non-linear increase in linewidth is observed above 400° C for calcite. This is consistent with an increasing relaxational component to the libration of the CO3 groups about their threefold axes, premonitory to the rotational order-disorder transition at higher temperature. This behaviour is not observed for the other calcite structured minerals in this study. We examine systematic variations in the lattice mode frequencies and linewidths with composition, to begin to understand these differences in their anharmonic behaviour. Finally, we have used a simple Debye-Waller model to calculate atomic displacements in calcite, magnesite and dolomite with increasing temperature from the vibrational frequency data, to provide a direct comparison with atomic positional data from high-temperature structure refinements.  相似文献   

17.
Polarized electronic absorption spectra of colourless chalcocyanite, CuSO4, have been measured using microscope-spectrometric techniques. The spectra are characterized by a structured and clearly polarized band system in the near-infrared spectral range with components centred at 11,720, 10,545, 9,100, and 7,320 cm?1, which have been assigned to crystal field dd transitions of Cu2+ cations in pseudo-tetragonally elongated CuO6 polyhedra with point symmetry C i ( \(\bar{1}\) ). The polarization behaviour is interpreted based on a D 2(C 2″) pseudo-symmetry. Crystal field calculations were performed for the actual triclinic point symmetry by applying the Superposition Model of crystal fields, as well as in terms of a ‘classic’ pseudo-tetragonal crystal field approach yielding the parameters Dq (eq) = 910, Dt = 395, and Ds = 1,336 cm?1, corresponding to a cubically averaged Dq cub = 679 cm?1. A comparative survey on crystal fields in Cu2+ minerals shows that the low overall crystal field strength in chalcocyanite, combined with a comparatively weak pseudo-tetragonal splitting of energy levels, is responsible for its unique colourless appearance among oxygen-based Cu2+ minerals. The weak crystal field in CuSO4 can be related to the lower position of the SO4 2? anion compared to, e.g. the H2O molecule in the spectrochemical series of ligands.  相似文献   

18.
High-temperature Raman spectra and thermal expansion of tuite, γ-Ca3(PO4)2, have been investigated. The effect of temperature on the Raman spectra of synthetic tuite was studied in the range from 80 to 973 K at atmospheric pressure. The Raman frequencies of all observed bands for tuite continuously decrease with increasing temperature. The quantitative analysis of temperature dependence of Raman bands indicates that the changes in Raman frequencies for stretching modes (ν3 and ν1) are faster than those for bending modes (ν4 and ν2) of PO4 in the present temperature range, which may be attributed to the structural evolution of PO4 tetrahedron in tuite at high temperature. The thermal expansion of tuite was examined by means of in situ X-ray diffraction measurements in the temperature range from 298 to 923 K. Unit cell parameters and volume were analyzed, and the thermal expansion coefficients were obtained as 3.67 (3), 1.18 (1), and 1.32 (3) × 10?5 K?1 for V, a, and c, respectively. Thermal expansion of tuite shows an axial anisotropy with a larger expansion coefficient along the c-axis. The isothermal and isobaric mode Grüneisen parameters and intrinsic anharmonicity of tuite have been calculated by using present high-temperature Raman spectra and thermal expansion coefficient combined with previous results of the isothermal bulk modulus and high-pressure Raman spectra.  相似文献   

19.
Olivine crystals from two mantle nodules in kimberlites (pipe Udachnaya and pipe Obnazennaya, Yakutiya, Siberia) were investigated using EMP, TEM, AEM and FTIR techniques to determine the mode of hydrogen occurrence in olivine. Olivine contains three types of nanometer-sized inclusions: “large” inclusions of hexagonal-like shape up to several hundred nm in size (1), lamellar defects (2) and small inclusions of hexagon-like shape up to several 10?nm in size (3). Lamellar defects and small inclusions are considered to be a “hydrous” olivine. All three types of inclusions contain OH? or water, but they are different with respect to their phase composition. In “large” inclusions (1) hydrous magnesium silicates, such as serpentine?+?talc (“kerolite”?) and 10-Å phase?+?talc were identified. Lamellar defects (2) and small inclusions (3) are depleted in Mg and Fe compared to the olivine matrix, while the silica content is the same as that of olivine. Modulations in the periodicity of the olivine structure are observed in SAED patterns and HREM images of (2) and (3). The superperiodicity can be referred to OH?-bearing point defect ordering in the olivine structure. If this is the case, the material of both lamellar defects and small inclusions can be assumed to be a “hydrous olivine” Mg2– x v x SiO4H2 x with a cation-deficient olivine crystal structure. Thus, both an extrinsic mode of hydrogen occurrence in olivine, such as nanometer-sized inclusions of OH?-bearing magnesium silicates, and an intrinsic mode of hydrogen incorporation into the olivine structure, such as “hydrous olivine” in itself, were found. The data obtained here show that the OH absorption bands observed in olivine spectra at 3704(3717) and 3683(3688) cm?1 can be unambiguously identified with serpentine; the band at 3677(3676) cm?1 can be associated with talc. The absorption bands observed at 3591 and 3660?cm?1 in olivine match those of the 10-Å phase at 3594, 3662 and 3666?cm?1.  相似文献   

20.
 The polarized single-crystal Raman spectra of synthetic H2O-containing alkali-free beryl were recorded at room and low temperatures, and the polarized single-crystal IR spectra at room temperature. The H2O molecule in the channel cavities is characterized by a Raman-active symmetric stretching vibration (ν1) at 3607 cm−1 and an IR-active asymmetric stretch (ν3) at 3700 cm−1 at room temperature. At low temperatures this ν3 mode is observed in the Raman. Weak ν1 and ν3 modes of a second type of H2O are also observed in the Raman spectra but only at 5 K. The H⋯&middot;H vector of the most abundant type of H2O is parallel to the channel axis of beryl along [0 0 0 1]. The components of the polarizability tensor of the ν1 mode of H2O are similar to, but not exactly the same as, those of a free H2O molecule. The Raman measurements indicate that the H2O molecule is rotationally disordered around [0 0 0 1]. External translation and librational modes of H2O could be observed as overtones with the internal H2O-stretching modes. In the case of the librational motions, normal modes could also be observed directly in the Raman spectra at ∼200 cm−1. The energies of the translational modes can be determined from an analysis of the overtones and are about 9 cm−1 in energy (i.e., Tz). The energies of the librational modes are about 210 cm−1 for Rx and 190 cm−1 for Ry. Received: 8 April 1999 / Accepted: 5 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号