首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From 1973–1976, research was performed around the Sea of Galilee, aimed at examining the wind regime in the area and whether the area develops a land-sea breeze despite its particular topographical location.
    The main conclusions were:
  1. During the summer mornings a lake breeze develops, blowing towards the shores of the lake. It ceases at the peak of its development when a westerly wind, originating in the development of a breeze along the Israeli Mediterranean coast, plunges towards the lake.
  2. Late at night, a wind flow develops from the land towards the lake, which combines with the katabatic winds that blow along the steep slopes surrounding the Kinneret.
  3. The stations at the upper level, at a height of 400–500 m above the Kinneret, are not affected by the lake breeze during the day or by the land breeze at night.
  4. In winter, the Kinneret lake breeze is almost as developed as in summer, because the westerly winds, originating in the Mediterranean sea breeze which hardly develops in this season, do not plunge into the Kinneret.
  相似文献   

2.
Atmospheric boundary layer research at Cabauw   总被引:1,自引:1,他引:0  
At Cabauw, The Netherlands, a 213 m high mast specifically built for meteorological research has been operational since 1973. Its site, construction, instrumentation and observation programs are reviewed. Regarding analysis of the boundary layer at Cabauw, the following subjects are discussed:
  • - terrain roughness;
  • - Monin-Obukhov theory in practice;
  • - the structure of stable boundary layers;
  • - observed evolution of fog layers;
  • - inversion rise and early morning entrainment;
  • - use of the geostrophic wind as a predictor for wind profiles;
  • - height variation of wind climate statistics;
  • - air pollution applications: long range transport and short range dispersion;
  • - dependence of sound wave propagation on boundary-layer structure;
  • - testing of weather and climate models.
  •   相似文献   

    3.
    The daytime boundary-layer heating process and the air-land heat budget were investigated over the coastal sea-breeze region by means of observations over the Sendai plain in Japan during the summer. In this area, the onset of the sea breeze begins at the coast around 0900 LST, intruding about 35 km inland by late afternoon. The cold sea breeze creates a temperature difference of over 10°C between the coastal and inland areas in the afternoon. On the other hand, warm air advection due to the combination of the counter-sea breeze and land-to-sea synoptic wind occurs in the layer above the cold sea breeze in the coastal region. Owing to this local warm air advection, there is no significant difference in the daytime heating rate over the entire atmospheric boundary layer between the coastal and inland areas. The sensible heat flux from the land surface gradually decreases as distance from the coastline increases, being mainly attributed to the cold sea breeze. The daytime mean cold air advection due to the sea breeze is estimated asQ adv local =–29 W m–2 averaged over the sea breeze region (035 km from the coastline). This value is 17% of the surface sensible heat fluxH over the same region. The results of a two-dimensional numerical model show that the value ofQ adv local /H is strongly affected by the upper-level synoptic wind direction. The absolute value ofQ adv local /H becomes smaller when the synoptic wind has the opposite direction of the sea breeze. This condition occurred during the observations used in the present study.  相似文献   

    4.
    Enhanced meteorological observations were made during the 2015 Pan and Parapan American Games in Toronto in order to measure the vertical and horizontal structure of lake-breeze events. Two scanning Doppler lidars (one fixed and one mobile), a C-band radar, and a network including 53 surface meteorological stations (mesonet) provided pressure, temperature, humidity, and wind speed and direction measurements over Lake Ontario and urban areas. These observations captured the full evolution (prior, during, and after) of 27 lake-breeze events (73% of observation days) in order to characterize the convective and dynamic processes driving lake breezes at the local scale and mesoscale. The dominant signal of a passing lake-breeze front (LBF) was an increase in dew-point temperature of \(2.3 \pm 0.3 \,^{\circ }\hbox {C}\), coinciding with a \(180^{\circ }\) shift in wind direction and a decrease in air temperature of \(2.1 \pm 0.2 \,^{\circ }\hbox {C}\). Doppler lidar observations over the lake detected lake breezes 1 hour (on average) before detection by radar and mesonet. On days with the synoptic flow in the offshore direction, the lidars observed wedge-shaped LBFs with shallow depths, which inhibited the radar’s ability to detect the lake breeze. The LBF’s ground speed and inland penetration distance were found to be well-correlated (\(r = 0.78\)), with larger inland penetration distances occurring on days with non-opposing (non-offshore) synoptic flow. The observed enhanced vertical motion \(({>} 1\hbox { m s}^{-1})\) at the LBF, observed by the lidar on 54% of lake-breeze days, was greater (at times \({>} 2.5\hbox { m s}^{-1}\)) than that observed in previous studies and longer-lasting over the lake than over land. The weaker and less pronounced lake-breeze structure over land is illustrated in two case studies highlighting the lifetime of the lake-breeze circulation and the impact of propagation distance on lake-breeze intensity.  相似文献   

    5.
    The internal boundary layer — A review   总被引:2,自引:2,他引:0  
    A review is given of relevant work on the internal boundary layer (IBL) associated with:
    1. Small-scale flow in neutral conditions across an abrupt change in surface roughness,
    2. Small-scale flow in non-neutral conditions across an abrupt change in surface roughness, temperature or heat/moisture flux,
    3. Mesoscale flow, with emphasis on flow across the coastline for both convective and stably stratified conditions.
    The major theme in all cases is on the downstream, modified profile form (wind and temperature), and on the growth relations for IBL depth.  相似文献   

    6.
    Two aspects of convection over oceans are discussed and the following conclusions are derived from theoretical considerations.
    1. The air layer over the sea will usually convect even when the water surface is ten degrees or more colder than the initial air temperature.
    2. An inversion at stratus cloud tops is created by the stratus, and is not a necessary preexisting condition. Such inversions persist after subsidence evaporates the cloud.
    3. Radiation heat exchange does not play an essential role in stratus formation or maintenance, and can either heat or cool the cloud.
    4. Dry air convection does not erode inversions at the top of the convecting layer. Examples of soundings are discussed.
    5. Fogs are most likely to form at sea where the water is coolest, and need no radiation effects to initiate cooling, or a boost from patches of warmer water, to begin convection.
    6. Both stratus cloud growth, and the evaporation of clouds by cloud top entrainment, readjust the vertical structure of the air to leave a constant wet-bulb potential temperature with height.
    These conclusions are supported by, firstly, a convective model which has been developed and which shows that vapor-driven convection over the ocean will proceed with zero or negative heat fluxes, at rates which saturate the lowest layer of the atmosphere in a few hours to altitudes of many tens of meters. Secondly, the availability of condensed moisture at the top of the surface layer cools the warmer entrained overlying dry air parcels so that when they descend they are no warmer than the sea surface temperature, and this induces downward moving plumes. This occurs if the wet-bulb potential temperature of the overlying air is less than the sea surface temperature, even if it is ten degrees C, or more, warmer in actual temperature.  相似文献   

    7.
    A modified infrared CO2 gas analyzer, a small thermocouple assembly, a heated-thermocouple anemometer for horizontal wind, and a propeller-type vertical wind sensor were used to measure the eddy fluxes of heat and CO2 above a corn crop. Experimental results of these fluxes are discussed. The main sources of errors of the eddy fluxes using these instruments were estimated:
    1. Sensors with a time constant of 0.5 s appear to be fast enough to detect most of the vertical CO2 transfer as long as the sensors are located at least one meter above the crop surface.
    2. The deviation from steady-state conditions for 10-min periods was found to have a significant effect on the eddy flux estimates.
    3. Temperature fluctuations of the air sample passing through the CO2 infrared gas analyzer were found to be non-negligible but could be easily corrected.
    4. A 1° misalignment of the vertical anemometer affected these eddy fluxes by less than 10% under all circumstances studied.
      相似文献   

    8.
    Cross-spectra between horizontal wind components at different levels of the Boulder Atmospheric Observatory (BAO) tower lead to the following conclusions:
    1. Davenport's hypothesis is satisfied that coherence decays exponentially with the ratio of vertical separation to horizontal wave length, at least to very small values of coherence.
    2. The decay coefficients increase with z/L for z/L < 0.5. For larger stabilities, irregular fluctuations with periods of order 10–20 min have considerable vertical coherence. Results at BAO are quite consistent with those elsewhere.
    3. Eddy slopes in vertical planes increase with wind shear up to a point where the slope (horizontal delay over vertical separation) is just above 2. Beyond that point, the systematic increase of slopes with shear ceases. Since wind shear decreases upward, slopes tend to decrease upward. Slopes for lateral components are significantly larger than those for u-components.
      相似文献   

    9.
    Wind speeds at the 300 m tower at the Boulder Atmospheric Observatory have been analyzed. This tower is located in slightly rolling farmland. The following conclusions have been reached:
    1. For west winds, the terrain is sufficiently uniform for simple surface-layer theory to be adequate without modification even though the air has moved up a small slope to reach the tower. For south and southeast winds, ‘effective’ roughness lengths must be introduced, which are significantly larger than the ‘true’ roughness length.
    2. Useful wind estimates up to 150 m can be made from winds at 10 m and stability information, provided the ‘effective’ roughness length is known.
    3. The observations are consistent with a von Kármán constant of 0.35.
      相似文献   

    10.
    An account is given of the preparation of daily weather maps within the historical-instrumental period, with details concerning the detection and location of source material and its subsequent examination, collection and reduction to provide a workable synoptic network of comparable meteorological observations over the eastern North Atlantic-European sector. The application of the Lamb British Isles weather types and Grosswetterlagen for the statistical analysis of circulation patterns derived from these charts is discussed. An objective test was devised whereby the frequency of monthly extremes of nine variables was examined with the following important conclusions:
    1. the synoptic charts of the 1780s show no evidence of systematic errors when compared with rainfall figures,
    2. the early 1780s was a period of unusually high climatic variability on the month-to-month time-scale, especially in the frequencies of cyclonic and of anticyclonic days.
    An account is given of the impact of climate on the affairs of man in the 1780s, highlighting some specific historical case studies and discussing agriculture and industry in general.  相似文献   

    11.
    Analysis of wind profiles at the Boulder Tower (BAO) leads to these conclusions:
    1. The variation of roughness with wind direction found earlier is confirmed. Roughness lengths measured on the tower are larger than those measured close to the surface.
    2. The profiles and measurements of Reynolds stress are consistent with a von-Karman constant of 0.35.
    3. The form φm=(1?15z/L)-1/3 fits best in the range -0.6 < z/L < 0. In the range 0 < z/L < 0.5, θ m ~ 1 + 4.7z/L provides a good fit to the observations. For z/L < 0.1, φ m also depends on h, the thickness of the PBL. For z/L < -0.6, Φ m approaches the constant 0.5, in contrast to all previous suggestions. For larger stabilities, the upper level is usually not in the surface layer, and wind ratios become independent of z/L.
    4. With snow cover, the effective roughness diminishes to about 1 cm, even for directions for which the roughness length without snow is large.
    5. Estimation of winds at 100 or 150 m from information near the surface is best for similarity theory provided that the ratio of height to Monin-Obukhov L is less than 0.1. For larger z/L, simple power laws seem more appropriate.
      相似文献   

    12.
    The air–sea transfer velocity of $\mathrm{CO}_{2}\, (k_{\mathrm{CO}_{2}})$ was investigated in a shallow estuary in March to July 2012, using eddy-covariance measurements of $\mathrm{CO}_{2}$ fluxes and measured air–sea $\mathrm{CO}_{2}$ partial-pressure differences. A data evaluation method that eliminates data by nine rejection criteria in order to heighten parametrization certainty is proposed. We tested the data evaluation method by comparing two datasets: one derived using quality criteria related solely to the eddy-covariance method, and the other derived using quality criteria based on both eddy-covariance and cospectral peak methods. The best parametrization of transfer velocity normalized to a Schmidt number of 600 $(k_{600})$ was determined to be: $k_{600} = 0.3\,{U_{10}}^{2.5}$ where $U_{10}$ is the wind speed in m $\mathrm{s}^{-1}$ at 10 m; $k_{600}$ is based on $\mathrm{CO}_{2}$ fluxes calculated by the eddy-covariance method and including the cospectral peak method criteria. At low wind speeds, the transfer velocity in the shallow water estuary was lower than in other coastal waters, possibly a symptom of low tidal amplitude leading to low intensity water turbulence. High transfer velocities were recorded above wind speeds of 5 m $\mathrm{s}^{-1}$ , believed to be caused by early-breaking waves and the large fetch (6.5 km) of the estuary. These findings indicate that turbulence in both air and water influences the transfer velocity.  相似文献   

    13.
    This is the first of a series of three papers describing experiments on the dispersion of trace heat from elevated line and plane sources within a model plant canopy in a wind tunnel. Here we consider the wind field and turbulence structure. The model canopy consisted of bluff elements 60 mm high and 10 mm wide in a diamond array with frontal area index 0.23; streamwise and vertical velocity components were measured with a special three-hot-wire anemometer designed for optimum performance in flows of high turbulence intensity. We found that:
    1. The momentum flux due to spatial correlations between time-averaged streamwise and vertical velocity components (the dispersive flux) was negligible, at heights near and above the top of the canopy.
    2. In the turbulent energy budget, turbulent transport was a major loss (of about one-third of local production) near the top of the canopy, and was the principal gain mechanism lower down. Wake production was greater than shear production throughout the canopy. Pressure transport just above the canopy, inferred by difference, appeared to be a gain in approximate balance with the turbulent transport loss.
    3. In the shear stress budget, wake production was negligible. The role of turbulent transport was equivalent to that in the turbulent energy budget, though smaller.
    4. Velocity spectra above and within the canopy showed the dominance of large eddies occupying much of the boundary layer and moving downstream with a height-independent convection velocity. Within the canopy, much of the vertical but relatively little of the streamwise variance occurred at frequencies characteristic of wake turbulence.
    5. Quadrant analysis of the shear stress showed only a slight excess of sweeps over ejections near the top of the canopy, in contrast with previous studies. This is a result of improved measurement techniques; it suggests some reappraisal of inferences previously drawn from quadrant analysis.
      相似文献   

    14.
    Shear flows generated by movement of the atmosphere near the earth's surface are accompanied by complexities not ordinarily encountered in the treatment of turbulent boundary layers. Problems arising from the following physical features are considered:
    1. thermal stratification;
    2. surface roughness in the form of forests and cities;
    3. non-uniformity of surface roughness and/or temperature (leading to 3-dimensional turbulent boundary layers);
    4. surface irregularities in the form of hilly and mountainous topography.
    The complex nature of atmospheric shear flows has stimulated efforts to study their characteristics in the laboratory under controlled conditions. Accordingly, questions of similarity between the laboratory and the atmospheric flows for both mean and turbulent quantities arise. Similarity criteria, or appropriate scaling relationships, are discussed. Wind tunnels designed for investigations related to atmospheric shear flows are described. These facilities are shown to have a capability for simulating such flows for a wide range of the physical features listed above.  相似文献   

    15.
    Multiple windbreaks: An aeolean ensemble   总被引:1,自引:0,他引:1  
    Near-neutral measurements of the turbulent wind field within and above a sequence of 15 parallel windbreaks on a flat pastoral site are presented. The windbreak fences each had a porosity of 60% and were equally-spaced at 6 times their height (h = 2 m). The following conclusions seem justified for wind directions within 10 ° of the normal to the array:
    1. Above the windbreaks (2h), mean windspeeds first decreased and then increased asymptotically to a value in equilibrium with the new surface roughness. At 0.5h, windspeeds exhibited a slow increase down the entire array.
    2. Reflecting differences in approach flows, the drag on the initial fence was almost twice that on barriers farther downstream. This reduction in momentum extraction per windbreak was associated with an elevation in the zero-plane displacement to a level equal to 0.8h.
    3. At positions well-removed from the initial fences, mean windspeeds were reduced throughout the entire region below shelter height. In this region, the flow became increasingly dominated by downward moving air with velocities much greater than the local average. The zone of reduced turbulence was small, extending only 2h downstream of a barrier at a height of 0.25h. This corresponded with the region excluded from smoke trails released at the top of windbreaks.
    4. An approximate TKE budget mid-way between windbreaks 7 and 8 suggests that shear and wake production peak near z = h and that production is balanced by dissipation and vertical transport components. Advective and inertial interaction terms are negligible at this midway position but are likely to be major sources of TKE closer to the windbreak. Local equilibrium is attained above z = 1.5h implying the existence of a constant-stress layer.
    The measurements show the practical difficulty of simultaneously reducing both mean windspeeds and turbulence levels with repeated windbreaks at conventional spacings for horticultural applications.  相似文献   

    16.
    Surfaces fluxes, turbulent kinetic energy and Flux Richardson number are calculated for three typical sea breeze days characterizing three types of sea breeze onset at an inland station Kharagpur (22°21 N, 87°19 E), 80 km inland, one of the sites for MONTBLEX (MONsoon Trough Boundary Layer EXperiment), in India. The sea breeze onset is associated with a decrease in momentum and heat fluxes and an increase in moisture flux. The turbulent kinetic energy shows quite a significant value even in the late afternoon. The surface layer becomes nearly stable even before sunset, due to the passage of the sea breeze.  相似文献   

    17.
    A three-dimensional finite-element mesoscale model is used to study the interaction of two different but related mesoscale phenomena in an area having a complex pattern of surface heating. The model simulations have been compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment on the east coast of Florida.Numerical results and observations both show that the meso- scale flow field is significantly modified from the conventional coastal-flow patterns by the smaller meso- scale irregular geographic features in this area. A local river breeze is observed to develop around the Indian River almost the same time as the Atlantic sea breeze. A comparison of the sea and the river breezes shows a large difference in their horizontal circulations but only slight differences in their vertical scales. The sea breeze intensifies more rapidly than the river breeze, so that a lag of 1 to 1.5 h exists between their most developed stages. The river breeze is relatively stationary, whereas the sea breeze propagates inland, with an eventual merger of the two circulations occurring about 6–8 h after their onset.Different synoptic wind regimes create different flow structures. Well-defined sea- and river-breeze circulations become established under calm, weak offshore, and weak alongshore synoptic-wind conditions. Maximum vertical velocities occur in the sea-breeze front (river-breeze front) in the cases of calm (offshore winds). The sea breeze and the river breeze are weaker when the synoptic winds are stronger.Finally, the results from numerical experiments designed to isolate the rivers' effect indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.Journal Paper No. J-14150 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2779  相似文献   

    18.
    The atmospheric boundary layer (ABL) over a given coastal station is influenced by the presence of mesoscale sea breeze circulation, together with the local and synoptic weather, which directly or indirectly modulate the vertical thickness of ABL (z ABL). Despite its importance in the characterization of lower tropospheric processes and atmospheric modeling studies, a reliable climatology on the temporal evolution of z ABL is not available over the tropics. Here, we investigate the challenges involved in determination of the ABL heights, and discuss an objective method to define the vertical structure of coastal ABL. The study presents a two year morphology on the diurnal evolution of the vertical thickness of sea breeze flow (z SBF) and z ABL in association with the altitudes of lifting condensation level (z LCL) over Thiruvananthapuram (8.5° N, 76.9° E), a representative coastal station on the western coastline of the Indian sub-continent. We make use of about 516 balloon-borne GPS sonde measurements in the present study, which were carried out as part of the tropical tropopause dynamics field experiment under the climate and weather of the sun-earth system (CAWSES)–India program. Results obtained from the present study reveal major differences in the temporal evolution of the ABL features in relation to the strength of sea breeze circulation and monsoonal wind flow during the winter and summer monsoon respectively. The diurnal evolution in z ABL is very prominent in the winter monsoon as against the summer monsoon, which is attributed to the impact of large-scale monsoonal flow over the surface layer meteorology. For a majority of the database, the z LCL altitudes are found to be higher than that of the z ABL, indicating a possible decoupling of the ABL with the low-level clouds.  相似文献   

    19.
    The capability of SODAR to measure the mean wind field in the lower boundary layer is well known and documented. Therefore, mean wind data are easily obtainable by means of the SODAR-technique, and are used to simulate the transport of pollutants after their release into the atmosphere. But when calculating the diffusion of pollutants, information about atmospheric turbulence is needed, too. In principle, a SODAR can measure turbulence data like the standard deviation of the vertical wind speed or horizontal wind direction. But when measuring turbulence data with a SODAR, one is beset by a host of limitations like volume sampling, spatial and temporal separation of sampling volume, attenuation of the acoustic waves and the slow speed of sound. Therefore, successful turbulence measurements with SODAR are not numerous and little is known about the quality of these data. In this context an intercomparison between a REMTECH-SODAR and a sonic anemometer mounted at the 100 m level of our meteorological tower was performed in summer 1990 at the Kernforschungszentrum Karlsruhe. The intercomparison is in two parts:
    1. Half hour mean values of the standard deviation of the vertical wind speed are intercompared by scatter plots and by a linear regression and correlation analysis.
    2. During 7 periods, 2 hours each, and covering atmospheric stabilities from unstable to slightly stable, the instantaneous vertical wind speeds were measured by both instruments and spectra were calculated.
    The intercomparison demonstrates that DOPPLER-SODAR sounding is a reliable technique to determine besides the mean field, also athmospheric turbulence data like Sigma(w).  相似文献   

    20.
    The impact of upstream urbanization on the enhanced urban heat-island (UHI) effects between Shanghai and Kunshan is investigated by analyzing seven years of surface observations and results from mesoscale model simulations. The observational analysis indicates that, under easterly and westerly winds, the temperature difference between Shanghai and Kunshan increases with wind speed when the wind speed \(<\) 5 m s \(^{-1}\) . The Weather Research and Forecasting (WRF) numerical model, coupled with a one-layer urban canopy model (UCM), is used to examine the UHI structure and upstream effects by replacing the urban surface of Shanghai and/or Kunshan with cropland. The WRF/UCM modelling system is capable of reproducing the surface temperature and wind field reasonably well. The simulated urban canopy wind speed is a better representation of the near-surface wind speed than is the 10-m wind speed at the centre of Shanghai. Without the urban landscape of Shanghai, the surface air temperature over downstream Kunshan would decrease by 0.2–0.4  \(^{\circ }\) C in the afternoon and 0.4–0.6  \(^{\circ }\) C in the evening. In the simulation with the urban landscape of Shanghai, a shallow cold layer is found above the UHI, with a minimum temperature of about \(-0.2\) to \(-\) 0.5  \(^{\circ }\) C during the afternoon hours. Strong horizontal divergence is found in this cold layer. The easterly breeze over Shanghai is strengthened at the surface by strong UHI effects, but weakened at upper levels. With the appearance of the urban landscape specific humidity decreases by 0.5–1 g kg \(^{-1}\) within the urban area because of the waterproof property of an urban surface. On the other hand, the upper-level specific humidity is increased because of water vapour transferred by the strong upward vertical motions.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号