首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《Geodinamica Acta》2013,26(1):49-50
New structural data and P–T estimates of syn-deformational assemblages within the Beni Bousera peridotites and their crustal envelope are used to explain their Alpine exhumation. The Beni Bousera peridotites occur as thin sheets within high grade crustal units of the lower Sebtides (inner Rif, Morocco) and are composed of weakly deformed spinel lherzolite in the core of the massif and garnet-spinel mylonite at the rim. The main foliation trajectories in both the peridotites and overlying crustal units show systematic rotation towards their mutual contact, indicating a kilometer-scale top to the NW shearing with a dextral component along this crust/mantle contact. Widespread top to the NW shear criteria within the crustal units overlying the peridotite support this feature. Available ages constrain the development of the main foliation in both the peridotites and crustal rocks between 25 and 20 Ma. New P–T data from the peridotites show that deformation occurs during decompression from ≈ 22 kbar, 1050°C to ≈ 9-15 kbar, 800°C. As a consequence, exhumation of the Beni Bousera peridotites takes place during the Oligo-Miocene lithosphere thinning in the footwall of a lithospheric extensional shear zone. The exceptional preservation of garnet within the mylonitic peridotites results from rapid cooling of the border of the massif due to the juxtaposition with colder crustal rocks along this shear zone. Uplifting of the hot mantle rocks simultaneously induces high temperature metamorphism in the overlying crustal units. These new findings allow us to reconstruct the deformation history of the Beni Bousera region and the Alboran domain in the framework of the western Mediterranean geodynamics during the last 40 Myrs.  相似文献   

2.
The metamorphic core of the Betic-Rif orogenic chain (Alboran Domain) is made up of lower crustal rocks forming the envelope of the Ronda (Spain) and Beni Bousera (Morocco) peridotites. The deepest sections of the crustal envelopes are made of migmatitic granulites associated with diffuse acidic magmatic products, making these exposure and ideal site to investigate the textural and petrological connection between crustal anatexis and granite magmatism in the contintental crust. However, still debated is the timing of intracrustal emplacement of the peridotite bodies, with models proposing either Alpine (early Miocene) or Hercynian ages, and still uncertain is the linkage between peridotite emplacement and crustal anatexis. In this study, by combining rock textures with whole-rock geochemistry, metamorphic thermobarometry, the U-Pb zircon geochronology and the analysis of the garnet and zircon REE chemistry, we document the P-T-t evolution of the granulite facies migmatites that form the immediate envelope of the Beni Bousera peridotites of the Rif belt. A main episode of Permo-Carboniferous (ca. 300–290 Ma) deep crustal anatexis, melt extraction and migration is documented that we link to the crustal emplacement of the Beni Bousera peridotites during collapse of the Hercynian orogen. Correlation at a regional scale suggests that the Beni-Bousera section can be tentatively correlated with the pre-Alpine (Permo-Carboniferous) basement units tectonically interleaved within the orogenic structure of the Alpine chain. The results of this study provide ultimate constraints to reconstruct the tectono-metamorphic evolution of the Alboran Domain in the Western Mediterranean and impose re-assessment of the modes and rates through which Alpine orogenic construction and collapse occurred and operated in the region.  相似文献   

3.
Structural Petrology of the Ronda Peridotite, SW Spain: Deformation History   总被引:3,自引:3,他引:3  
Solid bodies of upper-mantle peridotite, emplaced in the Betic-Rifchains of SW Spain and North Morocco, show a variety of structuresdeveloped under different metamorphic conditions. These structuresand related metamorphism reflect tectonic processes in the WestMediterranean mantle during orogeny in the Betic-Rif realm.The largest of the peridotites, the Ronda massif, has preservedthree structural domains which are spatially associated withmetamorphic domains previously defined by Obata (Journal ofPetrology, 21,533–572, 1980). These structural domainsinclude: (1) porphyroclastic spinel peridotites (spinel tectonites)and mylonitic garnet-spinel peridotites (garnet-spinel mylonites),developed during progressive strain localization at ambientconditions changing from the Arigite subfacies to garnet peridotitefacies; (2) seemingly undeformed granular peridotites, developedduring a phase of extensive recrystallization affecting thespinel tectonites and garnet-spinel mylonites at Seiland subfaciesconditions, and separated from the spinel tectonites by a well-preservedrecrystallization front which forms a marked structural, metamorphicand possibly geochemical boundary probably unique to orogenicperidotites; (3) porphyroclastic plagioclase peridotites (plagioclasetectonites) developed at the expense of the granular peridotitesduring progressive shear localization allied to ductile emplacementof the Ronda massif into the crust. Our structural and microstructural data from the Ronda massifallow us to assess the relative ages of the different metamorphicfacies seen in the West Mediterranean peridotites. In orderof decreasing relative age, these are: Arigite-subfacies, garnetperidotite facies, Seiland subfacies and plagioclase peridotitefacies. In addition, the associated microstructures providesome insight into the microphysical conditions controlling thedevelopment of the different structures and, as a result, thestructural and chemical heterogeneity of the West Mediterraneanperidotites. KEY WORDS: structural geology; peridotite; Betic Cordillera; Ronda; recrystallization; strain localization *Corresponding author. Present address: Philips Electron Optics BV, Applications Laboratory, Building AAE, PO Box 218, 5600 MD Eindhoven, The Netherlands  相似文献   

4.
Metasomatic mineral-bearing and/or trace element-enriched ultramaficassemblages have been reported from very few Alpine-type massifs.The small ultramafic body from Caussou (Ari?ge, northeasternPyrenees) compared with other north Pyrenean ultramafic complexesshows distinctive features which are similar to those of modallymetasomatized mantle xenoliths found in alkali basalts. It ismainly composed of clinopyroxene-rich spinel lherzolites (cpx/opxratios 1), with subordinate titanian pargasite-rich peridotites,both greatly depleted in orthopyroxene. Moreover the Caussouperidotites differ from other Ari?ge peridotites in the presenceof ilmenite, the abundance of sulfide inclusions in pyroxenesand amphiboles, higher Al, Ca, Na, K, Ti, and lower Mg contents,and enrichment in incompatible trace elements (ITE). Such mineralogicaland geochemical features are interpreted as resulting from modalmetasomatism produced by influxes of silicate melt into theperidotites. At Caussou, the metasomatic assemblage comprisesTi-pargasite+Ti-bearing clinopyr oxene+ilmenite+Ti-phlogopite+sulphide+fluid,suggesting that K, Ti, Na, ITE (including S, H2O CO2 and possiblyFe and Ca, were introduced by the metasomatizing agent. Thismetasomatism was probably imposed on an ultramafic associationdominated by LREE-depleted peridotites similar to the northPyrenean spinel lherzolites. These features indicate that, underupper lithospheric mantle conditions, a mafic melt locally infiltratedlherzolites by a grain-boundary percolation process and reactedwith the original mineral assemblage. The infiltration of alkali-basalticliquids into spinel peridotite led to: (1) partial dissolutionof orthopyroxene and, locally, spinel; (2) crystallization ofclinopyroxene directly from introduced melts; and (3) re-crystallization/equilibrationof pre-existing clinopyroxene with these magmatic liquids. Inthe last stage of the metasomatism, segregation of more fractionatedsilicate liquids, coexisting with a (CO2+H2O) fluid phase, mayhave been responsible for the crystallization of titanian pargasite,possibly by means of hydro-fracturing mechanism. The pervasive modal metasomatism at Caussou was contemporaneouswith the segregation of amphibole-bearing dykes in the Lherz-Freychin?debodies (northeast Pyrenees) (101–103 Ma). They representtwo manifestations of the same magmatic event in the lithosphericmantle, probably related the Middle Cretaceous alkaline magmatisrnof the Pyrenees.  相似文献   

5.
In the Rif (northern Morocco) and the Western Betics (southern Spain), the Alboran Domain forms a complex stack of metamorphic nappes including mantle peridotites (Beni Bousera and Ronda). We present in this paper new temperature data obtained in the Alboran Domain based on Raman spectroscopy of carbonaceous material (RSCM thermometry). In the lower metamorphic nappes of the Alboran Domain (lower Sebtides–Alpujárrides) temperature ranges from > 640 °C at the base of the metapelitic sequence to 500 °C at the top. The relationships between field isotherms and nappe structure show that peak temperatures were reached during strong ductile thinning of these nappes whereas they partly postdate this main episode in the Rif. In the upper nappes of the Alboran Domain (Ghomarides–Maláguides), generally supposed to be only weakly metamorphosed, temperatures range from ~500 °C at their base down to < 330 °C at the top. This temperature gradient is consistent with progressive Cenozoic resetting of K–Ar and 40Ar–39Ar ages. These nappes were thus affected by a significant thermal metamorphism, and the available age data in the underlying Sebtides–Alpujárrides show that this metamorphism is related to the metamorphic evolution of the whole Alboran Domain during the Late Oligocene–Early Miocene. Such thermal structure and metamorphic evolution can be explained by generalized extension in the whole Alboran Domain crustal sequence. At a larger scale, the present thermal structure of the Alboran Domain is roughly spatially consistent around the Beni Bousera peridotites in the Rif, but much more affected by late brittle tectonics around the Ronda peridotites in the Western Betics. Therefore, on the basis of the observed thermal structure, the metamorphic evolution of the Alboran Domain can be interpreted as the result of the ascent of hot mantle units contemporaneous with thinning of the whole lithosphere during an Oligo‐Miocene extensional event. The resulting structure has however been dismembered by late brittle tectonics in the Western Betics.  相似文献   

6.
The Ronda orogenic peridotite (southern Spain) contains a varietyof pyroxene-rich rocks ranging from high-pressure garnet granulitesand pyroxenites to low-pressure plagioclase–spinel websterites.The ‘asthenospherized’ part of the Ronda peridotitecontains abundant layered websterites (‘group C’pyroxenites), without significant deformation, that occur asswarms of layers showing gradual modal transitions towards theirhost peridotites. Previous studies have suggested that theselayered pyroxenites formed by the replacement of refractoryspinel peridotites. Here, we present a major- and trace-element,and numerical modelling study of a layered outcrop of groupC pyroxenite near the locality of Tolox aimed at constrainingthe origin of these pyroxenites after host peridotites by pervasivepyroxene-producing, refertilization melt–rock reactions.Mg-number [= Mg/(Mg + Fe) cationic ratio] numerical modellingshows that decreasing Mg-number with increasing pyroxene proportion,characteristic of Ronda group C pyroxenites, can be accountedfor by a melt-consuming reaction resulting in the formationof mildly evolved, relatively low Mg-number melts (0·65)provided that the melt fraction during reaction and the time-integratedmelt/rock ratio are high enough (>0·1 and > 1,respectively) to balance Mg–Fe buffering by peridotiteminerals. This implies strong melt focusing caused by melt channellingin high-porosity domains resulting from compaction processesin a partial melted lithospheric domain below a solidus isothermrepresented by the Ronda peridotite recrystallization front.The chondrite-normalized rare earth element (REE) patterns ofgroup C whole-rocks and clinopyroxenes are convex-upward. Numericalmodeling of REE variations in clinopyroxene produced by a pyroxene-forming,melt-consuming reaction results in curved trajectories in the(Ce/Nd)N vs (Sm/Yb)N diagram (where N indicates chondrite normalized).Based on (Ce/Nd)N values, two transient, enriched domains betweenthe light REE (LREE)-depleted composition of the initial peridotiteand that of the infiltrated melt may be distinguished in thereaction column: (1) a lower domain characterized by convex-upwardREE patterns similar to those observed in Ronda group C pyroxenite–peridotite;(2) an upper domain characterized by melts with strongly LREE-enrichedcompositions. The latter are probably volatile-rich, small-volumemelt fractions residual after the refertilization reactionsthat generated group C pyroxenites, which migrated throughoutthe massif—including the unmelted lithospheric spinel-tectonitedomain. The Ronda mantle domains affected by pyroxenite- anddunite- or harzburgite-forming reactions (the ‘layeredgranular’ subdomain and ‘plagioclase-tectonite’domain) are on average more fertile than the residual, ‘coarsegranular’ subdomain at the recrystallization front. Thisindicates that refertilization traces the moving boundariesof receding cooling of a thinned and partially melted subcontinentallithosphere. This refertilization process may be widespreadduring transient thinning and melting of depleted subcontinentallithospheric mantle above upwelling asthenospheric mantle. KEY WORDS: subcontinental mantle; refertilization; pyroxenite; peridotite; websterite; melt–rock reaction; plagioclase; trace elements  相似文献   

7.
Ultramafic xenoliths from Koolau Volcano on the island of Oahu,Hawaii, are divided into spinel lherzolite, pyroxenite, anddunite suites. On the basis of a study of the petrography andmineral compositions of 43 spinel lherzolites, 12 pyroxenites,and 20 dunites, the following characteristics of the dunitesin relation to the other nodule types and to Hawaiian lavasemerge. (1) The forstente content of olivines in the Koolaudunites (Fo82.6-Fo89 7 ) overlap those of Hawaiian tholeiiticand alkalic lavas and are generally lower than those in abyssallherzolites and dunites and in Koolau spinel lherzolites. (2)Most of the dunites contain no orthopyroxene, all except twocontain chrome spinel, and a few contain interstitial plagioclaseand clinopyroxene. (3) Chrome spinels from the Koolau dunitesare distinctly higher in Cr/(Cr+Al), lower in Mg/(Mg+ Fe2+)and higher in TiO2 than those from abyssal basalts and peridotites.Chrome spinels in the dunites correspond closely in compositionto chrome spinels in Hawaiian tholeiitic and alkalic lavas.(4) The abundance of dunite relative to other nodule types decreasesoutward from the central part of the volcano. The dunites areinterpreted not as residues of partial fusion of the mantlebut as crystal accumulations stored at shallow depths beneaththe central part of Koolau Volcano and derived from picriticmagmas parental to the shield-building tholeiitic lavas.  相似文献   

8.
The Beni Bousera ultramafic massif, Morocco, is composed ofperidotite with subordinate garnet pyroxenitc units which belongto two different families: (1) the Type I pyroxenites, whichare characterized by an Fe-enrichment trend; and (2) the TypeII pyroxenites, which are characterized by high but nearly constantMg/Fe ratios and highly variable concentrations of Ca and Al;the latter family includes corundum-bearing garnet pyroxeniteswhich resemble the peraluminous eclogites and grospydites describedas xenoliths in kimberlite diatremes. The Type II pyroxenites appear as layered sheets in the peridotite,and have granuloblastic metamorphic texture. They contain aprimary association of a coarse-grained assemblage (cpx + gt;cpx + gt + sp; cpx + gt + co), and a variety of secondary andtertiary associations includ ng clinopyrox-ene, orthopyroxene,olivine, spinel, corundum, sapphirine, plagioclase, and amphibole.The primary assemblage in the corundum-bearing pyroxenite ischaracterized by clinopyroxene rich in A12O3 (up to 20 wt%),and poor in Na2O (generally less than 2 wt.%). The clinopyroxenephase is therefore richer in the Ca-Ts molecule than in thejadeite molecule. On the other hand, the composition of theprimary and secondary clinopyroxene and garnet phases showsstrong variation across the pyroxenite sheets. These variationsexpress compositional variations of the rock system across thesheets. The cpx-gt associations indicate high temperatures (1200–1350?C) in the central parts of the sheets. The crystallizationpressure may have reached at least 20 kb in the corundum-bearingassemblages. The bulk-rock composition and the compatible element's behaviourin the Type II pyroxenite sheets suggest that the modal andcryptic layering mainly resulted from igneous fractionationprocesses. The REE patterns of corundum-bearing Type II pyroxeniteare characterized by low concentrations of HREE and by significantEu anomalies. These, together with the high bulk-rock Sr/Ndratios, suggest that plagioclase segregation may have playeda significant part in the rock genesis. These geochemical featuresare similar to those described, in the literature, in some low-pressure,plagioclase-bearing adcumulates (e.g., in the crustal sequenceof the Oman ophiolite). They are quite different from thoseobserved in the Type I pyroxenite sheets in the Beni Bouseramassif, whose geochemistry suggests that plagioclase playedno part in the fractionation process, whereas garnet probablyfractionated as an early igneous phase. The Type II pyroxenitesheets have a primary isotopic signature similar to MORB, basedon the composition of leached clinopyroxene. It is concluded that the Mg-rich Type II pyroxenite sheets resultedultimately from the fractionation of a basaltic melt at lowpressure, and from the accumulation of olivine, clinopyroxene,and plagioclase along dykes cross-cutting the surrounding peridotite.The close similarities with the geochemical features in theOman ophiolite lead us to suggest that these processes may havebeen operative in an oceanic crustal environment. The high-pressureand high-temperature crystallization of the ‘primary’cpx+gt + co assemblage was achieved deep in the mantle, aftersubduction and/or dragging down in convection currents of thisparticular piece of the (oceanic?) lithosphere. Further ascentmay have resulted in partial melting of peridotite and/or pyroxenite,and in the emplacement of the Type I pyroxenite sheets.  相似文献   

9.
The oxygen fugacities of 48 mantle xenoliths from 5 localities in southern Siberia (USSR) and Mongolia have been determined. Ferric iron contents of spinels were measured by 57Fe Mössbauer spectroscopy and oxygen fugacities calculated from spinel-olivineorthopyroxene equilibrium. The samples studied represent the major types of upper mantle lithologies including spinel and garnet peridotites and pyroxenites, fertile and depleted peridotites and anhydrous and metasomatized samples which come from diverse tectonic settings. Extensive geochemical and isotope data are also available for these samples. Oxygen fugacity values for most central Asian xenoliths fall within the range observed in peridotite xenoliths from other continental regions at or slightly below the FMQ buffer. However, xenoliths from the Baikal rift zone are the most reduced among xenoliths for which Mössbauer data on spinels are available. They yield fO2 values similar to those in oceanic peridotites and MORBs, while xenoliths in other occurrences have higher fO2s. In general, the continental lithosperic mantle is more oxidized than MORB-like oceanic mantle. This difference seems to be due to incorporation of oxidized material into some parts of the subcontinental mantle as a result of subduction of oceanic crust. Garnet- and garnet-spinel lherzolites from the Baikal rift area have slightly higher oxygen fugacities than shallower spinel lherzolites. Oxygen fugacity does not appear to be correlated with the degree of depletion of peridotites, and its values in peridotites and pyroxenites are very much alike, suggesting that partial melting (at least at moderate degrees) takes place at essentially the same fO2s that are now recorded by the residual material. Modally (amphibole- and phlogopitebearing) and cryptically metasomatized xenoliths from the Baikal rift zone give the same fO2 values as depleted anhydrous peridotites, suggesting that solid-melt-fluid reactions in the continental rift mantle also take place without substantial change in redox state. This is in contrast to other tectonic environments where metasomatism appears to be associated with oxidation.  相似文献   

10.
Spinels from cumulus and non-cumulus members of the Othris ophiolite display a considerable variation in composition. Cumulus picrites and gabbros contain either a primary chromite and/or a reaction spinel formed by reaction with co-existing silicates (Cr-Al varia tion) or intercumulus liquid (Cr-Fe variation). Non-cumulus peridotites contain spinels which vary along a Cr-Al trend. Harzburgites contain a Cr-spinel and lherzolites a more aluminous spinel. The occurence of gabbroic segregations within the host lherzolite appears to affect the spinel chemistry. Spinels adjacent to these plagioclase—diopside veinlets are richer in aluminium than the spinels scattered within the depleted lherzolite surrounding the veinlet. [Protoclastic harzburgites contain a highly aluminous spinel phase either as an exsolution phase within pyroxenes or as a groundmass spinel.] The Cr-Al variation of the peridotites is believed to have resulted from interaction with interstitial aluminous liquid—in situ basaltic melt from a fused peridotite?  相似文献   

11.
The samples from alpine peridotite massifs (Beni Bouchera, Lherz and the Alps) have been analyzed for rare earth elements. The peridotites as a whole are characterized by various degrees of light REE depletion (Ce varies from 1.2 to 0.02 times chondrite) and a small variation in heavy REE (Yb varies about a factor of 2, from 1.3 to 2.2 times chondrite). They show a restricted and regular distribution in a Ce-Yb diagram, giving two types of linear trends for individual massifs (trend A for the Alps and Lizard; trend B for Beni Bouchera and Lherz, branching from trend A). The model calculations of partial melting based on the partition relations of REE among silicate minerals and melts suggest that trend A could represent a series of residua left after partial melting of garnet peridotite despite the fact that there is no garnet observed in the peridotites studied here. It is suggested that trend A would represent a melting event which predated the emplacement of the massifs and occurred at higher pressure (in the presence of garnet) than expected from the present mineralogy. The calculations also suggest that trend B could represent a partial melting event at lower pressures than trend A after the massifs uplifted into spinel peridotite field. It is also suggested that the REE concentrations of the mantle could be estimated as 2–2.5 times chondrite.  相似文献   

12.
The Beni Bousera peridotite massif and its metamorphic surrounding rocks have been analyzed by the fission track (FT) method. The aim was to determine the cooling and uplift history of these mantle and associated crustal rocks after the last major metamorphic event that dates back to the Lower Miocene–Upper Oligocene time (~22–24 Ma). The zircon FT analyses give an average cooling—i.e., below 320 °C—age of ~19.5 Ma. In addition, the apatite FT data give an average cooling—i.e., below 110 °C—age of ~15.5 Ma. Taking into account the thermal properties of the different thermochronological systems used in this work, we have estimated a rate of cooling close to 50 °C/Ma. This cooling rate constrains a denudation rate of about ~2 mm year?1 from 20 to 15 Ma. These results are similar to those determined in the Ronda peridotite massif of the Betic Cordilleras documenting that some ultrabasic massifs of the internal zones of the two segments of the Gibraltar Arc have a similar evolution. However, Burdigalian sediments occur along the Betic segment (Alozaina area, western Betic segment) unconformably overlying peridotite. At this site, ultramafic rock was exposed to weathering at ages ranging from 20.43 to 15.97 Ma. Since the Beni Bousera peridotite was still at depth until 15.5 Ma, we infer that no simple age projection from massif to massif is possible along the Gibraltar Arc. Moreover, the confined fission track lengths data reveal that a light warming (~100 °C) has reheated the massif during the Late Miocene before the Pliocene–Quaternary tectonic uplift.  相似文献   

13.
Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountainsvolcanic field (Montana, USA), derived from the lower lithosphereof the Wyoming craton, can be divided based on textural criteriainto tectonite and cumulate groups. The tectonites consist ofstrongly depleted spinel lherzolites, harzburgites and dunites.Although their mineralogical compositions are generally similarto those of spinel peridotites in off-craton settings, somecontain pyroxenes and spinels that have unusually low Al2O3contents more akin to those found in cratonic spinel peridotites.Furthermore, the tectonite peridotites have whole-rock majorelement compositions that tend to be significantly more depletedthan non-cratonic mantle spinel peridotites (high MgO, low CaO,Al2O3 and TiO2) and resemble those of cratonic mantle. Thesecompositions could have been generated by up to 30% partialmelting of an undepleted mantle source. Petrographic evidencesuggests that the mantle beneath the Wyoming craton was re-enrichedin three ways: (1) by silicate melts that formed mica websteriteand clinopyroxenite veins; (2) by growth of phlogopite fromK-rich hydrous fluids; (3) by interaction with aqueous fluidsto form orthopyroxene porphyroblasts and orthopyroxenite veins.In contrast to their depleted major element compositions, thetectonite peridotites are mostly light rare earth element (LREE)-enrichedand show enrichment in fluid-mobile elements such as Cs, Rb,U and Pb on mantle-normalized diagrams. Lack of enrichment inhigh field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf)suggests that the tectonite peridotites have been metasomatizedby a subduction-related fluid. Clinopyroxenes from the tectoniteperidotites have distinct U-shaped REE patterns with strongLREE enrichment. They have 143Nd/144Nd values that range from0·5121 (close to the host minette values) to 0·5107,similar to those of xenoliths from the nearby Highwood Mountains.Foliated mica websterites also have low 143Nd/144Nd values (0·5113)and extremely high 87Sr/86Sr ratios in their constituent phlogopite,indicating an ancient (probably mid-Proterozoic) enrichment.This enriched mantle lithosphere later contributed to the formationof the high-K Eocene host magmas. The cumulate group rangesfrom clinopyroxene-rich mica peridotites (including abundantmica wehrlites) to mica clinopyroxenites. Most contain >30%phlogopite. Their mineral compositions are similar to thoseof phenocrysts in the host minettes. Their whole-rock compositionsare generally poorer in MgO but richer in incompatible traceelements than those of the tectonite peridotites. Whole-rocktrace element patterns are enriched in large ion lithophileelements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb,Ta Zr and Hf) as in the host minettes, and their Sr–Ndisotopic compositions are also identical to those of the minettes.Their clinopyroxenes are LREE-enriched and formed in equilibriumwith a LREE-enriched melt closely resembling the minettes. Thecumulates therefore represent a much younger magmatic event,related to crystallization at mantle depths of minette magmasin Eocene times, that caused further metasomatic enrichmentof the lithosphere. KEY WORDS: ultramafic xenoliths; Montana; Wyoming craton; metasomatism; cumulates; minette  相似文献   

14.
The Ronda peridotites form the largest mass of subcontinental mantle outcropping on land. Unlike other orogenic lherzolite massifs, the two main bodies of Ronda (the Sierra Bermeja and Sierra Alpujata massifs) are unique cases where ductile shear zones linked to the hot thrusting of mantle over continental crustal rocks are well exposed. We present a new insight into the deformation localization in these shear zones based on structural, fabric and petrological data. The Ronda peridotites show increasing deformation towards the continental footwall rocks, from porphyroclastic rocks to ultramylonites. Garnet-pyroxenites from the basal shear zone of the Alpujata massif yield ca. 1100 °C and 1.4 GPa for the mylonitization. Such conditions promoted partial melting and the formation of felsic dynamothermal aureoles from the underlying crustal rocks. Subsequent deformation is mainly localized in the dynamothermal aureoles, since they are weaker than the peridotites. Both aureoles show marked strain gradients towards the contact but record different kinematics. In Sierra Alpujata, kinematic criteria indicate a top-to-the ENE shear sense, whereas in Sierra Bermeja the felsic mylonites provide a top-to-the NNW motion. A transpressional setting is proposed to explain such kinematic shift.  相似文献   

15.
Crystallization of Chromite and Chromium Solubility in Basaltic Melts   总被引:6,自引:3,他引:6  
The equilibrium between chromite and melt has been determinedon four basalts at temperatures of 1200–1400?C over arange of oxygen fugacity (fo2) and pressures of 1 atm and 10kb. The Cr content of chromite-saturated melts at 1300?C and1 atm ranges from 0?05 wt.% Cr2O3 at a log fo2= –3 to1?4 wt.% at a log fo2=–12?8. The Cr2+/Cr3+ of melt increaseswith decreasing fo2 and is estimated by assuming a constantpartitioning of Cr3+ between chromite and melt at constant temperature.The estimated values of Cr2+/Cr3+ in the melt are at fo2 valuesof 4–5 orders of magnitude lower than the equivalent Fe2+/Fe3+values. The Cr/(Cr+Al) of chromite coexisting with melt at constanttemperature changes little with variation of fo2 below log fo2=–6.Five experiments at 10 kb indicate that Cr2O3 dissolved in themelt is slightly higher and the Cr/(Cr + Al) of coexisting chromiteis slightly lower than experiments at 1 atm pressure. Thus variationin total pressure cannot explain the large variations of Cr/(Cr+ Al) that are common to mid-ocean ridge basalt (MORB) chromite. Experiments on a MORB at 1 atm at fo2 values close to fayalite-magnetite-quartz(FMQ) buffer showed that the Al2O3 content of melt is highlysensitive to the crystallization or melting of plagioclase,and consequently coexisting chromite shows a large change inCr/(Cr + Al). It would appear, therefore, that mixing of a MORBmagma containing plagioclase with a hotter MORB magma undersaturatedin plagioclase may give rise to the large range of Cr/(Cr +Al) observed in some MORB chromite.  相似文献   

16.
Partial fusion hypotheses have been proposed for the origin of lherzolite-harzburgite alpine peridotite associations. Analyzed lherzolites from Othris, Ronda, Lanzo and Beni Bouchera, have light REE depleted to chondritic REE abundances, and clinopyroxenes contain most of the REE relative to depleted olivine and orthopyroxene. Variation in the level of REE enrichment within these lherzolites indicates mantle heterogeneity probably caused by partial melting processes. The Beni Bouchera spinel lherzolite and the Othris plagioclase lherzolite are the best candidates for relatively undepleted mantle based on REE studies. Fractional fusion calculations (15–25%) reveal that partial melts have REE characteristics somewhat similar to oceanic tholeiites. Conversely, computed source peridotites from oceanic tholeiites (Schilling, 1975) are similar to the alpine lherzolites reported here. Alpine lherzolites are, however, depleted in trace elements (K, Rb, Sr and Ba, Menzies and Murthy 1976). Since the lherzolites have an undepleted major, minor and REE chemistry close to that of pyrolite, the lost trace element-rich fraction must represent a small degree of melting. It is proposed that alpine lherzolites are residue left after the loss of a nephelinitic/alkalic fraction, ([Ce/Yb]N=2.0–4.01) representing a small degree of partial fusion. This labile fraction may have existed as an intergranular phase or hydrous mineral prior to melting.  相似文献   

17.
Petrochemical Study of Lherzolitic Rocks from the Western Alps   总被引:4,自引:2,他引:4  
ERNST  W. G. 《Journal of Petrology》1978,19(3):341-392
An integrated geologic and petrochemical comparative study offive peridotite complexes in the western Alps has been undertaken.Investigated bodies are exposed at Alpe Arami in southern Switzerland,and at Finero, Balmuccia, Baldissero and Lanzo in northwesternItaly. The Alpe Arami mass has been tectonically emplaced withinthe Lepontine gneiss terrane of the in part subducted, morenortherly European lithospheric plate, whereas the other fourultramafic masses represent original portions of the non-subductedSouth Alpine plate. Eighty samples were examined petrographically. Most are lherzolites,but a few are clinopyroxene-bearing harzburgites, olivine websteritesor clinopyroxenite. Alpe Arami peridotites locally contain primarygarnet (± minor spinel); in contrast, the South Alpinelherzolites are spinel bearing, and in addition, the Lanzo massifcontains widespread plagioclase. All masses display strain effectssuch as bent lamellae in pyroxenes, gradational or sectoraloptical extinction, and minor recrystallization. Twenty-fourbulk XRF analyses demonstrate that the investigated rocks fairlyclosely match pyrolite composition, but are slightly impoverishedin alumina. The normative olivines of all analyzed specimenshave Fa contents ranging between 8 and 10 mole per cent. Electronmicroprobe analyses for 26 olivines, 27 orthopyroxenes, 23 calcicpyroxenes, three garnets, 18 spinels, three plagioclases, 13calcic amphiboles, two chlorites and two phlogopites are presented.Phases in a particular sample are remarkably homogeneous, anobservation consistent with an inferred close approach to chemicalequilibrium. Use of various two-pyroxene geothermometers allows the followingassignments of grand average apparent temperatures for the fiveperidotite complexes: Alpe Arami, 966±78°C; Finero,893 ± 94°C; Balmuccia, 973 ± 50°C; Baldissero,1002 ± 37°C; and Lanzo, 1069 ± 85°C. Pressureestimates, determined using the lherzolitic petrogenetic grid,Al2O3cpx and Al2O3opx isopleths, involve large uncertainties.The Alpe Arami ultramafic body evidently crystallized at a pressureof 40 ± 10 kilobars, the nominal value depending on themethod of computation. In contrast, the South Alpine spinellherzolites seem to have last equilibrated at pressures of approximately5–20 kb. The deep upper-mantle source region of the AlpeArami body apparently was subjected to a subcontinental-typegeothermal gradient, consistent with solid-state rise of thismass and Late Alpine tectonic insertion in the old Lepontinesialic crust of the European lithospheric plate. The mechanismand driving force of this process remain obscure. In contrast,the investigated spinel peridotite complexes of the South Alpinelithospheric plate seem to have been derived from shallow, uppermostmantle sections characterized by oceanic geothermal gradients.For this reason it is conjectured that these massifs were derivedfrom the northern margin of the southern plate where continentalcrust evidently was moderately thin or absent. Their upliftand overthrusting involved P-T paths which in most cases alloweddecompression partial recrystallization and incipient fusion,the latter indicated by the presence of transecting mafic dikesand segregations associated with the peridotites. The Finerobody appears to have reached its present position at the baseof the South Alpine continental crust in pre-Mesozoic time,whereas the Lanzo complex was tectonically involved in the EarlyAlpine orogeny.  相似文献   

18.
We combined microstructural observations and high-resolution crystallographic preferred orientation (CPO) mapping to unravel the active deformation mechanisms in garnet clinopyroxenites, garnet–spinel websterites, and spinel websterites from the Beni Bousera peridotite massif. All pyroxenites display microstructures recording plastic deformation by dislocation creep. Pyroxene CPOs are consistent with dominant slip on [001]{110} in clinopyroxene and on [001](100) or [001](010) in orthopyroxene. Garnet clinopyroxenites have however high recrystallized fractions and finer grain sizes than spinel websterites. Recrystallization mechanisms also differ: subgrain rotation dominates in garnet clinopyroxenites, whereas in spinel websterites nucleation and growth also contribute. Elongated shapes and strong intracrystalline misorientations suggest plastic deformation of garnet, but CPOs are weak. Clinopyroxene porphyroclasts in spinel websterites show deformation twins underlined by orthopyroxene exsolutions. Thermodynamic calculations indicate that garnet clinopyroxenites deformed at 2.0 GPa and 950–1000 °C and spinel pyroxenites at 1.8 GPa and 1100–1150 °C. The lower temperatures may explain the faster work rates implied by the finer grained microstructures in garnet clinopyroxenites. Greater stresses may have also reduced the competence contrast between garnet and pyroxene in the garnet pyroxenites and, at the outcrop scale, lowered the competence contrast between pyroxenites and peridotites, favoring mechanical dispersion of pyroxenites in the cooler lithospheric mantle.  相似文献   

19.
 It is well established that porous melt flow in the upper mantle may significantly affect partial mantle melt compositions. Less well established are the length-scale of porous flow and whether porous melt flow can be a volumetrically important magmatic process. The only source for observations concerning the length-scale and nature of pervasive porous melt flow are peridotite massifs. Here we present such observations in the form of structural, and major and trace element data from peridotites of the Ronda massif, southern Spain. Trace element concentrations were obtained with high analytical precision (ICP-MS) and include trace elements rarely analysed in peridotites, such as Rb, Th, Nb and Ta. The western portion of the Ronda massif can be divided into two structural facies. The first and oldest is composed of deformed, porphyroclastic spinel peridotites, the second of virtually undeformed granular spinel peridotites. They are separated by a recrystallisation front across which grain growth of all phases occurred. The granular domain can be further subdivided into three subfacies: coarse-granular, fine-granular, and layered-granular peridotites. According to structural facies, km-scale spatial variations unrelated to Ca and Al abundances have been recognised for mg-numbers [atomic Mg/(Mg±Fe)] and incompatible elements such as rare earth elements (REE), Th and high-field-strength elements (HFSE; including Ti). Such variations are reminiscent of those commonly ascribed to mantle metasomatism, but have never been documented on the km-scale. The origin of the recrystallisation front is related to km-scale pervasive melt percolation. Feed-back processes between grain growth and melt fraction could have led to important accumulation of melt at the recrystallisation front, accomplished mainly by melting/dissolution. Variation in melt fraction across the front explains the spatial variation in the degree of recrystallisation, mg-numbers, REE fractionation, and HFSE abundances, and could account for many of the classical differences between basalts from convergent and extensional tectonic settings. Whereas the coarse-granular peridotites reflect a stage of steady-state pervasive porous melt flow, the fine- and layered-granular facies probably reflect the terminate stages of porous melt flow. Processes associated with both domains are pyroxene-forming freezing reactions at decreasing melt volumes, and progressive channelling of melt flow associated with olivine-producing reactions. Both processes show complex overprinting relationships in both time and space. Received: 10 January 1995/Accepted: 1 September 1995  相似文献   

20.
Oxidation state of mantle xenoliths from British Columbia,Canada   总被引:3,自引:0,他引:3  
Mössbauer spectra for 17 spinels separated from mantle xenoliths from six different eruptive centers in southern British Columbia, Canada were measured in an effort to accurately determine their Fe3+/total Fe ratios, and to examine lateral and vertical variations in oxygen fugacities (f o2's) calculated for these samples using published thermobarometric methods. Spectra acquired at 298 and 77 K suggest that both Fe2+ and Fe3+ are tetrahedrally coordinated in lherzolite spinels from this alkaline province. Calculatedf o2's for spinel lherzolites from British Columbia range from about 0.5 to 1.5 log units below the fayalite-magnetite-quartz (FMQ) oxygen buffer at 15 kbar using the thermobarometric method of O'Neill and Wall. Thesef o2's are on average more reducing than those reported for the upper mantle beneath the Massif Central and Japanese Arc and fall within the range for fresh MORB glasses and for lherzolite xenoliths from the southwestern United States and Mongolia. Significant variations inf o2 between samples from different eruptive centers with varying ages are absent, indicating that the oxidation state of the upper mantle was not affected by Cenozoic magmatism within this alkaline province.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号