首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The equation of transfer for interlocked multiplets has been solved exactly by the method used by Busbridge and Stibbs (1954) for exponential form of the Planck functionB v (T)=b 0+b 1 e .  相似文献   

2.
The equation of transfer for interlocked multiplets has been solved by Laplace transformation and the Wiener-Hopf technique developed by Dasgupta (1978) considering two nonlinear forms of Planck function: i.e., (a) $$B{\text{ }}_{\text{v}} (T) = B(t) = b_0 + b_1 {\text{ }}e^{ - \alpha t} ,$$ (b) $$B{\text{ }}_{\text{v}} (T) = B(t) = b_0 + b_1 t + b_2 E_2 (t).$$ Solutions obtained by Dasgupta (1978) or by Chandrasekhar (1960) may be obtained from our solutions by dropping the nonlinear terms.  相似文献   

3.
A method of discrete ordinates, originally due to Chandrasekhar, has been applied to solve the equation of transfer for the case of interlocked multiplet lines without redistribution. The solution thus deduced has been applied to find laws of darkening for the multiplets.  相似文献   

4.
Sobolev's probabilistic method — The method of quantum exit from the medium — has been applied to solve the transfer equation for the case of interlocking without redistribution. The solution contains the function (x) which is same as theH-function involved in the solution given by Busbridge and Stibbs the method of principle of invariance.  相似文献   

5.
A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's function as a nonlinear function of optical depth, viz., $$B_v (T) = b_0 + b_1 {\text{ }}e^{ - \beta \tau } $$ is obtained by the method of discrete ordinates originally due to Chandrasekhar.  相似文献   

6.
The equation of transfer with general phase function has been solved by a modified form of spherical-harmonic method. The solutions in case of certain particular phase functions are then derived from the general one.  相似文献   

7.
The equation of radiative transfer with scattering according to Rayleigh's phase function has been solved in a thin atmosphere by use of a modification of the spherical-harmonic method suggested by Wanet al. (1986).  相似文献   

8.
In this paper we shall construct the solution of the equation of transfer in a semi-infinite atmosphere with no incident radiation for Rayleigh's phase function by the method of the Principles of Invariance and using the law of diffuse reflection. The solution will then be applied to find the laws of darkening for Rayleigh's phase function.  相似文献   

9.
10.
A solution of the transfer equation for coherent scattering in stellar atmosphere with Planck's function as a nonlinear function of optical depth, viz. $$B{\text{ }}_v (T) = b_0 + b_1 {\text{ }}e^{ - \beta \tau } $$ is obtained by the method developed by Busbridge (1953).  相似文献   

11.
An approximate solution of the transfer equation for coherent scattering in stellar atmospheres with Planck's function as a nonlinear function of optical depth, viz., $$B_v \left( T \right) = b_0 + b_1 e^{ - \beta \tau } $$ is obtained by Eddington's method. is obtained by Eddington's method.  相似文献   

12.
The time-dependent equation of transfer for a finite, plane-parallel, non-radiating, and isotropically-scattering atmosphere of arbitrary stratification is solved by using theF n -method developed by Siewert.  相似文献   

13.
An exact formal solution of then-approximation radiative transfer equations for the Compton scattering in a spherically symmetric atmosphere is obtained. In view of further applications, the simple case of a density ?(r)=?0/r is fully developed and the 20 approximation equations have been studied with the computer.  相似文献   

14.
We have considered the transport equation for radiative transfer to a problem in semi-infinite atmosphere with no incident radiation and scattering according to planetary phase function w(1 + xcos ). Using Laplace transform and the Wiener-Hopf technique, we have determined the emergent intensity and the intensity at any optical depth. The emergent intensity is in agreement with that of Chandrasekhar (1960).  相似文献   

15.
Wan, Wilson and Sen (1986) have examined the scope of Modified Spherical Harmonic Method in a plane medium scattering anisotropically. They have used the phase functionp(µ, µ) = 1 +aµµ. In this paper, the Transfer Equation has been solved by the Modified Spherical Harmonic Method using the phase functionp(µ, µ) = 1 + 1 P 1(µ)P 1(µ) + 2)P 2(µ)P 2(µ) and a few sets of numerical solution have been predicted for three different cases.  相似文献   

16.
A theory is constructed for solving half-space, boundary-value problems for the Chandrasekhar equations, describing the propagation of polarized light, for a combination of Rayleigh and isotropic scattering, with an arbitrary probability of photon survival in an elementary act of scattering. A theorem on resolving a solution into eigenvectors of the discrete and continuous spectra is proven. The proof comes down to solving a vector, Riemann—Hilbert, boundary-value problem with a matrix coefficient, the diagonalizing matrix of which has eight branching points in the complex plane. Isolation of the analytical branch of the diagonalizing matrix enables one to reduce the Riemann—Hilbert problem to two scalar problems based on a [0, 1] cut and two vector problems based on an auxiliary cut. The solution of the Riemann—Hilbert problem is given in the class of meromorphic vectors. The conditions of solvability enable one to uniquely determine the unknown expansion coefficients and free parameters of the solution of the boundary-value problem. Translated from Astrofizika, Vol. 41, No. 2, pp. 263–276, April-June, 1998.  相似文献   

17.
The transient effect on the flow of a thermally-radiating and electrically-conducting compressible gas in a rotating medium bounded by a vertical flat plate, is studied when the radiative flux satisfies the exact integral expression. The transience is provoked by a time-dependent perturbation on a constant plate temperature. The solution is constructed for the flow near and away from the plate by the Laplace transform method. The results are compared with the recent work of Bestman and Adjepong (1988).  相似文献   

18.
19.
20.
The equation for radiative transfer in the case of resonance radiation for isotropic scattering has been solved by the method of the Laplace transformation and linear singular operators. The solution for emergent intensities have come out in terms ofX- andY-functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号