首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. An algorithm for the computation of travel times, ray amplitudes and ray synthetic seismograms in 3-D laterally inhomogeneous media composed of isotropic and anisotropic layers is described. All 21 independent elastic parameters may vary within the anisotropic layers. Rays and travel times are evaluated by numerical solution of the ray tracing equations. Ray amplitudes are determined by evaluating reflection/ transmission coefficients and the geometrical spreading along individual rays. The geometrical spreading is computed approximately by numerical measurement of the cross-sectional area of the ray tube formed by three neighbouring rays. A similar approximate procedure is used for the determination of the coefficients of the paraxial ray approximation. The ray paraxial approximation makes computation of synthetic seismograms on the surface of the model very efficient. Examples of ray synthetic seismograms computed with a program package based on the described algorithm are presented.  相似文献   

2.
Summary. Seismic investigations using shear-wave and converted wave techniques show that very often reflected PS - and SS -waves have anomalous polarizations ( accessory components ). This phenomenon cannot be explained in terms of isotropic models with dipping boundaries. Computations of synthetic seismograms of reflected PS - and SS -waves were made for different models of transversely isotropic media with dipping anisotropic symmetry axes not normal to the boundaries. Synthetic seismograms were computed by ray techniques using an optimization algorithm to construct all rays arriving at a given receiver. These computations indicate that accessory components arise when the medium above the boundary is anisotropic, where they are caused by the constructive interference of qSV - and qSH -waves. If a low-velocity layer is present, displacement vectors of both waves have horizontal projections which are approximately orthogonal. The algorithm for wave separation is presented and some results of its use are given.  相似文献   

3.
summary . A new technique is presented for modelling the elastic constants of cracked structures with application to systems with weak concentrations of parallel cracks, and of simple biplanar and triplanar cracks. The velocities and Vp/Vs ratios of these anisotropic structures are used to provide quantitative models for some earthquake precursors. These results indicate the great importance of crack geometry to the behaviour of precursors. The velocities of saturated cracks appear to favour the dilatancy-diffusion model of precursory phenomena. Synthetic seismograms are calculated for propagation through possible dilatancy zones. The seismograms show some characteristic features which may be useful for the investigation of earthquake dilatancy.  相似文献   

4.
We investigate the importance of wide-band coupling of normal modes due to inner core anisotropy. We compare four different seismic models of inner core anisotropy, which were obtained by others using the splitting of Earth's normal modes. These models have been developed using a self-coupling (SC) approximation, which assumes that coupling between nearby modes through anisotropic inner core structure is negligible. We test the SC approximation by comparing the frequencies and quality factors of 90 inner core sensitive modes, computed for these models using either the SC approximation or full-coupling (FC) among large groups of modes. We find significant shifts in the quality factors and frequencies for some modes. Groups of modes which significantly couple together are constructed for six target modes. These groups are model dependent and in some cases contain large numbers of modes. Synthetic seismograms are calculated to show that the difference between SC and FC is observable on the scale of seismograms and of the same order of magnitude as the difference between synthetic and observed seismograms. Thus, future models of inner core anisotropy should take cross-coupling between large groups of modes into account.  相似文献   

5.
Synthetic seismograms are shown and discussed for the case of the receiver within the medium. Most of the discussion is on the reflectivity method with the receiver within the reflectivity zone, but results using the ray method are shown for comparison. Such synthetic seismograms can be used to interpret data from Oblique Seismic Experiments where shots generated on the surface up to large ranges are recorded in crustal boreholes.  相似文献   

6.
Summary. In Part I of this paper we modelled shear-wave splitting observed in crystalline rock bordering an active, normal fault-zone at Oroville, California, with Červený's ray-tracing system applied to anisotropic heterogeneous media using Hudson's formulation of elastic constants for a medium containing aligned cracks. In Part II we use the ray-tracing results of Part I to quantitatively interpret P -wave polarization anomalies observed in the three-component seismograms recorded in the Oroville fault zone. We show that the eigenvectors of the first-order Christoffel tensor defined by the ray-tracing slowness vector and Hudson's first-order anisotropic corrections to the isotropic elastic tensor correctly account for P -wave first motion that deviates from the ray vector.  相似文献   

7.
Summary. We report the initial results of our attempts to obtain theoretical seismograms for direct comparison with the experimental time series obtained with the long-period instruments of the WWSSN. The entire theoretical seismogram, including both body waves and surface waves, can be generated for a spherical, anelastic earth by simple inverse Fourier transformation of the sum of the propagating fundamental and higher-mode surface waves. The key to success in reproducing the WWSSN records involves the number of modes, and the minimum period used in these computations; here we use eight modes and a minimum period of 2 s. Efficient computational algorithms make it possible to handle up to 2000 frequency points for each mode; approximately 200 layers are used to model the radial heterogeneity of the earth; attenuation is treated exactly. Examples are given of the SH theoretical seismograms resulting from dislocation sources buried at various depths in the Earth.  相似文献   

8.
Summary. A set of stable algorithms for computing synthetic seismograms in attenuating transversely isotropic media is presented. The structures of these algorithms for anisotropic media are formally equivalent to their counterparts for isotropic media. The seismic responses of a periodically layered isotropic medium are compared with those of its long-wave equivalent transversely isotropic medium. The synthetics for the two media show observable differences in the range of frequencies considered. The differences are small in the P -waves, but partly large in later arrivals.  相似文献   

9.
Summary. The calculation of the two-dimensional elasto-dynamic Green's function for a stratified medium is investigated. The solution is represented in the form of an inverse Fourier integral which is to be integrated along a properly chosen path in the complex wavenumber plane. The integrand is computed using a modified propagator matrix method.
This method is based on a mixed formulation using the propagator matrix and the matrix of minors of the propagator matrix (compound matrix). The major advantages of this approach are the elimination of the numerical loss of precision problems associated with the Thomson-Haskell formulation, without losing the attractive tractability and compactness of the propagator matrix method. This modified method is first mathematically derived, and theoretical seismograms are then presented for two examples.  相似文献   

10.
Summary. The Lanczos method of separating exponentials is applied to the Fourier transform of seismograms in order to separate the various modes that contribute to the given portion of the seismograms. Phase velocities and amplitudes are obtained as functions of the frequency. When applying the method to artificial seismograms, which are built as an exact superposition of a number of modes, the separation is very accurate. The method was also applied to the surface-wave portion of numerical seismograms for a vertical point force in a layered medium. The phase velocity and amplitude of the fundamental mode are obtained. These functions were taken as the first guess in the Backus—Gilbert generalized inverse procedure and the process converged very rapidly. When a perturbation of the phases and amplitudes is taken as the first guess the process converges to the true model when enough data are available.  相似文献   

11.
A fault plane solution using theoretical P seismograms   总被引:1,自引:0,他引:1  
We use the method of Hudson and Douglas, Hudson & Blarney to compute seismograms which simulate the codas of 10 short period P -wave seismograms from a shallow earthquake. The polarities and relative amplitudes of P and pP measured from seven of the observed seismograms are used to compute a fault plane solution with confidence limits, assuming that the source radiates as a double couple. This solution is in approximate agreement with that given for the same earthquake by Sykes & Sbar, who used only the onset polarities of short-period P waves. The small difference between the two solutions can be explained by interference between the true first motion of P and microseismic noise at two stations.
The results show that, for some shallow earthquakes, the relative amplitude method has the following advantages over the first motions method. First, a P/pP amplitude ratio (with appropriate confidence limits) can always be measured, even in seismograms which are so noisy that the first motion of P is uncertain. Second, the fault plane solutions obtained from relative amplitudes have known confidence limits. Finally, by using more information from each seismogram, the relative amplitude method requires considerably fewer seismograms than the first motions method.  相似文献   

12.
Synthesis of seismic surface waves   总被引:1,自引:0,他引:1  
Summary. The reflection method is used to produce complete sets of Rayleigh wave dispersion curves in a given phase velocity—frequency window for horizontally stratified media, including modes of very high numerical order, and theoretical surface wave seismograms are then synthesized.
The difficulties encountered when attempting to complete large numbers of dispersion curves are discussed. Particular problems arise from models with a low-velocity zone, when curves in a certain portion of the dispersion diagram split into two families, the crustal and the channel modes. The reflection method provides a convenient framework in which to examine this phenomenon heuristically and so devise a method to overcome the difficulties.
Seismograms are produced by mode summation and it is found that body-wave behaviour, as well as surface-wave features can be synthesized. The effect of truncating the mode series at a number comparable with the number of modes used in previous studies is examined. It is found that although the S -coda at longer ranges is not adversely affected, the arrivals attributable to body-waves are severely distorted. This must call into question the validity of synthetic seismograms generated by summation of only a few modes.  相似文献   

13.
Seismic body waves in anisotropic media: synthetic seismograms   总被引:5,自引:0,他引:5  
Summary. Synthetic seismograms and particle motion diagrams are computed for simple, layered Earth models containing an anisotropic layer. The presence of anisotropy couples the P, SV and SH wave motion so that P waves incident on the anisotropic layer from below produce P, SV and small-amplitude SH waves at the surface both the P velocity and the amplitudes of the converted phases vary with azimuth. Significant SH amplitudes may be generated even when the wavelength of the P wave is much greater than the thickness of the anisotropic layer. Incident SV or SH waves may each generate large amplitudes of both SV and SH motion. This strong coupling is largely independent of the degree of velocity anisotropy of the medium. The arrivals from short-period S waves exhibit S-wave splitting, but arrivals from longer period S waves superpose into a modified waveform. This strong coupling does not allow the arrival of separate phases with pure SV and SH polarization except along directions of symmetry where the motion decouples.  相似文献   

14.
Summary. This paper discusses several aspects of the calculation of theoretical seismograms for two-dimensional inhomogeneous media with the method of Gaussian beams. The most important steps of this method, kinematic and dynamic ray tracing, can be performed very efficiently, if the model cross-section is subdivided into triangles with linear velocity laws. Each Gaussian beam is characterized by a complex beam constant ε which determines its width and phase-front curvature. Various possibilities to choose ε are discussed, including cases where beam properties at the beam endpoint (and not at the beginning) are prescribed; for instance, the beam width at the endpoint can be specified. In such cases the beam constant is a function of the radiation angle at the source, and the decomposition of a cylindrical wave into beams has to take this into account by weighting the beams differently, at least in principle. The exact weight function is derived and shown to be reasonably well approximated by the weight function, corresponding to angle-independent ε Theoretical seismograms are presented for a laterally heterogeneous model of the crust–mantle transition which is characterized by complications in the reflection from the transition and in the refraction from below. These complications are modelled by and large with success. The seismograms, however, depend to a certain extent on the choice of the beam constant. Moreover, according to the reciprocity principle calculations with source and receiver interchanged should have the same results as calculations for the original configuration. In practice this is not so, and the difference increases with the strength of lateral heterogeneities. Hence, for a successful application of Gaussian beams the model should not vary too strongly in lateral direction.  相似文献   

15.
Summary. We report the results of our continuing efforts to compute theoretical seismograms for direct comparison with the experimental time series obtained with the long-period instruments of the WWSSN. The entire theoretical seismogram — body waves and surface waves — is generated for realistic sources buried in a radially heterogeneous, anelastic, spherical earth. The results described in Paper I (Nakanishi, Schwab & Knopoff) are extended to include the summation of 11 modes; for each, the dispersion, attenuation, and excitation are computed down to a minimum period of 1 s. Examples of the theoretical seismograms, and the comparison with experimental results are presented, The results of this comparison indicate that our first application of combined body- and surface-wave generation will concern the investigation of the intrinsic anelasticity in the upper mantle. The indicated technique for such an investigation is based on body waves simply crossing the region of high attenuation a few times in passing from focus to recording station, while a guided surface wave such as Sa , experiences this anelasticity over the entire propagation path.  相似文献   

16.
P-SH conversion is commonly observed in teleseismic P waves, and is often attributed to dipping interfaces beneath the receiver. Our modelling suggests an alternative explanation in terms of flat-layered anisotropy. We use reflectivity techniques to compute three-component synthetic seismograms in a 1-D anisotropic layered medium. For each layer of the medium, we prescribe values of seismic velocities and hexagonally symmetric anisotropy about a common symmetry axis of arbitrary orientation. A compressional wave in an anisotropic velocity structure suffers conversion to both SV -and SH -polarized shear waves, unless the axis of symmetry is everywhere vertical or the wave travels parallel to all symmetry axes. The P-SV conversion forms the basis of the widely used 'receiver function' technique. The P-SH conversion occurs at interfaces where one or both layers are anisotropic. A tilted axis of symmetry and a dipping interface in isotropic media produce similar amplitudes of both direct ( P ) and converted ( Ps ) phases, leaving the backazimuth variation of the P-Ps delay as the main discriminant. Seismic anisotropy with a tilted symmetry axis leads to complex synthetic seismograms in velocity models composed of just a few flat homogeneous layers. It is possible therefore to model observations of P coda with prominent transverse components with relatively simple 1-D velocity structures. Successful retrieval of salient model characteristics appears possible using multiple realizations of a genetic-algorithm (GA) inversion of P coda from several backazimuths. Using GA inversion, we determine that six P coda recorded at station ARU in central Russia are consistent with models that possess strong (> 10 per cent) anisotropy in the top 5 km and between 30 and 43 km depth. The symmetry axes are tilted, and appear aligned with the seismic anisotropy orientation in the mantle under ARU suggested by SKS splitting.  相似文献   

17.
Fault plane solutions using relative amplitudes of P and pP   总被引:2,自引:1,他引:1  
Summary. One way of finding the fault plane orientations of small shallow earthquakes is by the generation of theoretical P -wave seismograms to match those observed at several distant stations. Here, a technique for determining the uniqueness of fault plane solutions computed using the modelling method of Douglas et al . is described. Relative amplitudes of P and pP , and their polarities if unambiguous, are measured on the observed seismograms to be modelled, and appropriate confidence limits are assigned to each measurement. A systematic search is then made for all fault plane orientations which satisfy these observations.
Examples show that if P and pP are not severely contaminated by other arrivals, a well-defined and unique fault plane orientation can often be computed using as few as three stations well distributed in azimuth. Further, even if pP is not identifiable on a particular seismogram, then an upper bound on its amplitude – deduced from the observed coda – still places a significantly greater constraint on the fault plane orientation than would be provided by a P onset polarity alone. Modelling takes account of all such information, and is able to further eliminate incompatible solutions (e.g. by the correct simulation of sP ). It follows that if solutions can be found which satisfy many observed seismograms, this places high significance on the validity of the assumed double-couple source mechanism.
This relative amplitude technique is contrasted with the familiar first motion method of fault plane determination which requires many polarity readings, whose reliabilities are difficult to quantify. It is also shown that fault plane orientations can be determined for earthquakes below the magnitude at which first motion solutions become unreliable or impossible.  相似文献   

18.
Summary. Earlier efforts to generate the entire theoretical seismograms, including both body and surface waves for realistic sources buried in a radially heterogeneous anelastic, spherical earth, are extended to include the summation of 16 modes. The comparison between a real seismogram and theoretical time series, relative to different attenuation models in the upper mantle, yields information concerning the anelasticity under the Pacific Ocean.  相似文献   

19.
Summary . In this paper the accuracy of velocity-depth profiles derived by matching WKBJ seismograms to observations is quantitatively evaluated. Seismograms computed with the WKBJ method are generally quite reliable but possess predictable, systematic inaccuracies in the presence of strong velocity gradients. The effects of these inaccuracies on models derived through WKBJ waveform inversion are studied, using reflectivity seismograms as 'data'. The velocity structure used is an oceanic lithosphere model that contains several transition regions separated by relatively homogeneous layers, producing partially-reflected reverberations in the reflectivity synthetics that are absent from the WKBJ seismograms. The inversion incorporates the 'jumping' strategy to solve for the smoothest models consistent with the data. We find these solutions to be independent of the starting model and to have a stable basic structure that agrees well with the correct model. The differences, everywhere less than a seismic wavelength, depend on the frequency content of the seismograms. Reverberations in the reflectivity seismograms that are well separated from WKBJ arrivals are treated as 'noise' in the inversion.  相似文献   

20.
Summary. The reflectivity method for complete SH seismograms has been extended to two-dimensionally layered structures. The Aki-Larner technique is generalized to solve the integral equations for 2-D boundary conditions, and propagator matrices are enlarged to express a total SH wavefield. Synthetic seismograms in a soft basin are calculated for an incident plane-wave. They compare favourably with the results of the finite-element and finite-difference methods even in the later portion where asymptotic ray and beam theories break down. Synthetic seismograms due to a line force and a point dislocation are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号