首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strontium chemical diffusion has been measured in albite and sanidine under dry, 1 atm, and QFM buffered conditions. Strontium oxide-aluminosilicate powdered sources were used to introduce the diffusant and Rutherford Backscattering Spectroscopy (RBS) used to measure diffusion profiles. For the 1 atm experiments, the following Arrhenius relations were obtained:
Sanidine (Or61), temperature range 725–1075°C, diffusion normal to (001): D=8.4 exp(−450±13 kJ mol−1/RT) m2s−1. Albite (Or1), temperature range 675–1025°C, diffusion normal to (001): D=2.9 × exp(−224±11 kJ mol−1/RT) m2s−1.
The alkali feldspars in this and earlier work display a broad range of activation energies for Sr diffusion, which may be a consequence of the thermodynamic non-ideality of the alkali feldspar system and/or the mixed alkali effect.  相似文献   

2.
Garnet–melt trace element partitioning experiments were performed in the system FeO–CaO–MgO–Al2O3–SiO2 (FCMAS) at 3 GPa and 1540°C, aimed specifically at studying the effect of garnet Fe2+ content on partition coefficients (DGrt/Melt). DGrt/Melt, measured by SIMS, for trivalent elements entering the garnet X-site show a small but significant dependence on garnet almandine content. This dependence is rationalised using the lattice strain model of Blundy and Wood [Blundy, J.D., Wood, B.J., 1994. Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372, 452–454], which describes partitioning of an element i with radius ri and valency Z in terms of three parameters: the effective radius of the site r0(Z), the strain-free partition coefficient D0(Z) for a cation with radius r0(Z), and the apparent compressibility of the garnet X-site given by its Young's modulus EX(Z). Combination of these results with data in Fe-free systems [Van Westrenen, W., Blundy, J.D., Wood, B.J., 1999. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am. Mineral. 84, 838–847] and crystal structure data for spessartine, andradite, and uvarovite, leads to the following equations for r0(3+) and EX(3+) as a function of garnet composition (X) and pressure (P):
r0(3+) [Å]=0.930XPy+0.993XGr+0.916XAlm+0.946XSpes+1.05(XAnd+XUv)−0.005(P [GPa]−3.0)(±0.005 Å)
EX(3+) [GPa]=3.5×1012(1.38+r0(3+) [Å])−26.7(±30 GPa)
Accuracy of these equations is shown by application to the existing garnet–melt partitioning database, covering a wide range of P and T conditions (1.8 GPa<P<5.0 GPa; 975°C<T<1640°C). DGrt/Melt for all 3+ elements entering the X-site (REE, Sc and Y) are predicted to within 10–40% at given P, T, and X, when DGrt/Melt for just one of these elements is known. In the absence of such knowledge, relative element fractionation (e.g. DSmGrt/Melt/DNdGrt/Melt) can be predicted. As an example, we predict that during partial melting of garnet peridotite, group A eclogite, and garnet pyroxenite, r0(3+) for garnets ranges from 0.939±0.005 to 0.953±0.009 Å. These values are consistently smaller than the ionic radius of the heaviest REE, Lu. The above equations quantify the crystal-chemical controls on garnet–melt partitioning for the REE, Y and Sc. As such, they represent a major advance en route to predicting DGrt/Melt for these elements as a function of P, T and X.  相似文献   

3.
As a result of the collapse of a mine tailing dam, a large extension of the Guadiamar valley was covered with a layer of pyritic sludge. Despite the removal of most of the sludge, a small amount remained in the soil, constituting a potential risk of water contamination. The kinetics of the sludge oxidation was studied by means of laboratory flow-through experiments at different pH and oxygen pressures. The sludge is composed mainly of pyrite (76%), together with quartz, gypsum, clays, and sulphides of zinc, copper, and lead. Trace elements, such as arsenic and cadmium, also constitute a potential source of pollution. The sludge is fine grained (median of 12 μm) and exhibits a large surface (BET area of 1.4±0.2 m2 g−1).

The dissolution rate law of sludge obtained is r=10−6.1(±0.3) [O2(aq)]0.41(±0.04) aH+0.09(±0.06) gsludge m−2 s−1 (22 °C, pH=2.5–4.7). The dissolution rate law of pyrite obtained is r=10−7.8(±0.3) [O2(aq)]0.50(±0.04) aH+0.10(±0.08) mol m−2 s−1 (22 °C, pH=2.5–4.7). Under the same experimental conditions, sphalerite dissolved faster than pyrite but chalcopyrite dissolves at a rate similar to that of pyrite. No clear dependence on pH or oxygen pressure was observed. Only galena dissolution seemed to be promoted by proton activity. Arsenic and antimony were released consistently with sulphate, except at low pH conditions under which they were released faster, suggesting that additional sources other than pyrite such as arsenopyrite could be present in the sludge. Cobalt dissolved congruently with pyrite, but Tl and Cd seemed to be related to galena and sphalerite, respectively.

A mechanism for pyrite dissolution where the rate-limiting step is the surface oxidation of sulphide to sulphate after the adsorption of O2 onto pyrite surface is proposed.  相似文献   


4.
Marcasite precipitation from hydrothermal solutions   总被引:3,自引:0,他引:3  
Pyrite and marcasite were precipitated by both slow addition of aqueous Fe2+ and SiO32− to an H2S solution and by mixing aqueous Fe2+ and Na2S4 solutions at 75°C. H2S2 or HS2 and H2S4 or HS4 were formed in the S2O32− and Na2S4 experiments, respectively. Marcasite formed at pH < pK1 of the polysulfide species present (for H2S2, pK1 = 5.0; for H2S4, pK1 = 3.8 at 25°C). Marcasite forms when the neutral sulfane is the dominant polysulfide, whereas pyrite forms when mono-or divalent polysulfides are dominant. In natural solutions where H2S2 and HS2 are likely to be the dominant polysulfides, marcasite will form only below pH 5 at all temperatures.

The pH-dependent precipitation of pyrite and marcasite may be caused by electrostatic interactions between polysulfide species and pyrite or marcasite growth surfaces: the protonated ends of H2S2 and HS2 are repelled from pyrite growth sites but not from marcasite growth sites. The negative ions HS2 and S22− are strongly attracted to the positive pyrite growth sites. Masking of 1πg* electrons in the S2 group by the protons makes HS2 and H2S2 isoelectronic with AsS2− and As22−, respectively ( et al., 1981). Thus, the loellingitederivative structure (marcasite) results when both ends of the polysulfide are protonated.

Marcasite occurs abundantly only for conditions below pH 5 and where H2S2 was formed near the site of deposition by either partial oxidation of aqueous H2S by O2 or by the reaction of higher oxidation state sulfur species that are reactive with H2S at the conditions of formation e.g., S2O32− but not SO42−. The temperature of formation of natural marcasite may be as high as 240°C ( and , 1985), but preservation on a multimillion-year scale seems to require post-depositional temperatures of below about 160°C ( , 1973; and , 1985).  相似文献   


5.
Reduction of U(VI) under iron reducing conditions was studied in a model system containing the dissimilatory metal-reducing bacterium Shewanella putrefaciens and colloidal hematite. We focused on the competition between direct enzymatic uranium reduction and abiotic reduction of U(VI) by Fe(II), catalyzed by the hematite surface, at relatively low U(VI) concentrations (< 0.5 μM) compared to the concentrations of ferric iron (> 10 mM). Under these conditions surface catalyzed reduction by Fe(II), which was produced by dissimilatory iron reduction, was the dominant pathway for uranium reduction. Reduction kinetics of U(VI) were identical to those in abiotic controls to which soluble Fe(II) was added. Strong adsorption of U(VI) at the hematite surface apparently favored the abiotic pathway by reducing the availability of U(VI) to the bacteria. In control experiments, lacking either hematite or bacteria, the addition of 45 mM dissolved bicarbonate markedly slowed down U(VI) reduction. The inhibition of enzymatic U(VI) reduction and abiotic, surface catalyzed U(VI) reduction by the bicarbonate amendments is consistent with the formation of aqueous uranyl-carbonate complexes. Surprisingly, however, more U(VI) was reduced when dissolved bicarbonate was added to experimental systems containing both bacteria and hematite. The enhanced U(VI) reduction was attributed to the formation of magnetite, which was observed in experiments. Biogenic magnetite produced as a result of dissimilatory iron reduction may be an important agent of uranium immobilization in natural environments.  相似文献   

6.
A decrease in temperature (ΔT up to 45.5 °C) and chloride concentration (ΔCl up to 4.65 mol/l) characterises the brine–seawater boundary in the Atlantis-II, Discovery, and Kebrit Deeps of the Red Sea, where redox conditions change from anoxic to oxic over a boundary layer several meters thick. High-resolution (100 cm) profiles of the methane concentration, stable carbon isotope ratio of methane, and redox-sensitive tracers (O2, Mn4+/Mn2+, Fe3+/Fe2+, and SO42−) were measured across the brine–seawater boundary layer to investigate methane fluxes and secondary methane oxidation processes.

Substantial amounts of thermogenic hydrocarbons are found in the deep brines (mostly methane, with a maximum concentration up to 4.8×105 nmol/l), and steep methane concentration gradients mainly controlled by diffusive flow characterize the brine–seawater boundary (maximum of 2×105 nmol/l/m in Kebrit Deep). However, locally the actual methane concentration profiles deviate from theoretical diffusion-controlled concentration profiles and extremely positive δ13C–CH4 values can be found (up to +49‰ PDB in the Discovery Deep). Both, the actual CH4 concentration profiles and the carbon-13 enrichment in the residual CH4 of the Atlantis-II and Discovery Deeps indicate consumption (oxidation) of 12C-rich CH4 under suboxic conditions (probably utilizing readily available—up to 2000 μmol/l—Mn(IV)-oxihydroxides as electron acceptor). Thus, a combined diffusion–oxidation model was used to calculate methane fluxes of 0.3–393 kg/year across the brine–seawater boundary layer. Assuming steady-state conditions, this slow loss of methane from the brines into the Red Sea bottom water reflects a low thermogenic hydrocarbon input into the deep brines.  相似文献   


7.
The dissolution and precipitation rates of boehmite, AlOOH, at 100.3 °C and limited precipitation kinetics of gibbsite, Al(OH)3, at 50.0 °C were measured in neutral to basic solutions at 0.1 molal ionic strength (NaCl + NaOH + NaAl(OH)4) near-equilibrium using a pH-jump technique with a hydrogen-electrode concentration cell. This approach allowed relatively rapid reactions to be studied from under- and over-saturation by continuous in situ pH monitoring after addition of basic or acidic titrant, respectively, to a pre-equilibrated, well-stirred suspension of the solid powder. The magnitude of each perturbation was kept small to maintain near-equilibrium conditions. For the case of boehmite, multiple pH-jumps at different starting pHs from over- and under-saturated solutions gave the same observed, first order rate constant consistent with the simple or elementary reaction: .

This relaxation technique allowed us to apply a steady-state approximation to the change in aluminum concentration within the overall principle of detailed balancing and gave a resulting mean rate constant, (2.2 ± 0.3) × 10−5 kg m−2 s−1, corresponding to a 1σ uncertainty of 15%, in good agreement with those obtained from the traditional approach of considering the rate of reaction as a function of saturation index. Using the more traditional treatment, all dissolution and precipitation data for boehmite at 100.3 °C were found to follow closely the simple rate expression:

Rnet,boehmite=10-5.485{mOH-}{1-exp(ΔGr/RT)}, with Rnet in units of mol m−2 s−1. This is consistent with Transition State Theory for a reversible elementary reaction that is first order in OH concentration involving a single critical activated complex. The relationship applies over the experimental ΔGr range of 0.4–5.5 kJ mol−1 for precipitation and −0.1 to −1.9 kJ mol−1 for dissolution, and the pHm ≡ −log(mH+) range of 6–9.6. The gibbsite precipitation data at 50 °C could also be treated adequately with the same model:Rnet,gibbsite=10-5.86{mOH-}{1-exp(ΔGr/RT)}, over a more limited experimental range of ΔGr (0.7–3.7 kJ mol−1) and pHm (8.2–9.7).  相似文献   


8.
Within the framework of Pitzer's specific interaction model, interaction parameters for aqueous silica in concentrated electrolyte solutions have been derived from Marshall and co-authors amorphous silica solubility measurements. The values, at 25°C, of the Pitzer interaction parameter (λSiO2(aq)−i) determined in this study are the following: 0.092 (i = Na+), 0.032 (K+), 0.165 (Li+), 0.292 (Ca2+, Mg2+), −0.139 (SO42−), and −0.009 (NO3). A set of polynomial equations has been derived which can be used to calculate λSiO2(aq)−i for these ions at any temperature up to 250°C. A linear relationship between the aqueous silica-ion interaction parameters (λSiO2(aq)−i) and the surface electrostatic field (Zi/re,i) of ions was obtained. This empirical equation can be used to estimate, in first approximation, λSiO2(aq)−i if no measurements are available. From this parameterisation, the calculated activity coefficient of aqueous silica is 2.52 at 25°C and 1.45 at 250°C in 5 m NaCl solution. At lower concentrations, e.g. 2 m NaCl, the activity coefficient of silica is 1.45 at 25°C and 1.2 at 250°C. Hence, in practice, it is necessary to take into account the activity coefficient of aqueous silica (λSiO2(aq)≠1) in hydrothermal solutions and basinal brines where the ionic strength exceeds 1. A comparison of measured [Marshall, W.L., Chen, C.-T.A., 1982. Amorphous silica solubilities, V. Prediction of solubility behaviour in aqueous mixed electrolyte solutions to 300°C. Geochim. Cosmochim. Acta 46, 289–291.] and computed amorphous silica solubility, using this parameterisation, shows a good agreement. Because the effect of individual ions on silicate and silica polymorph solubilities are additive, the present study has permitted to derive Pitzer interaction parameters that allow a precise computation of γSiO2(aq) in the Na---K---Ca---Mg---Cl---SO4---HCO3---SiO2---H2O system, over a large range of salt concentrations and up to temperatures of 250°C.  相似文献   

9.
We have experimentally studied the formation of diamonds in alkaline carbonate–carbon and carbonate–fluid–carbon systems at 5.7–7.0 GPa and 1150–1700 °C, using a split-sphere multi-anvil apparatus (BARS). The starting carbonate and fluid-generating materials were placed into Pt and Au ampoules. The main specific feature of the studied systems is a long period of induction, which precedes the nucleation and growth of diamonds. The period of induction considerably increases with decreasing P and T, but decreases when adding a C–O–H fluid to the system. In the range of P and T corresponding to the formation of diamonds in nature, this period lasts for tens of hours. The reactivity of the studied systems with respect to the diamond nucleation and growth decreases in this sequence: Na2CO3–H2C2O4·2H2O–C>K2CO3–H2C2O4·2H2O–C>>Na2CO3–C>K2CO3–C. The diamond morphology is independent of P and T, and is mainly governed by the composition of the crystallization medium. The stable growth form is a cubo-octahedron in the Na2CO3 melt, and an octahedron in the K2CO3 melt. Regardless of the composition of the carbonate melt, only octahedral diamond crystals formed in the presence of the C–O–H fluid. The growth rates of diamond varied in the range from 1.7 μm/h at 1420 °C to 0.1–0.01 μm/h at 1150 °C, and were used to estimate, for the first time, the possible duration of the crystallization of natural diamonds. From the analysis of the experimental results and the petrological evidence for the formation of diamonds in nature, we suggest that fluid-bearing alkaline carbonate melts are, most likely, the medium for the nucleation and growth of diamonds in the Earth's upper mantle.  相似文献   

10.
Status report on stability of K-rich phases at mantle conditions   总被引:1,自引:0,他引:1  
George E. Harlow  Rondi Davies 《Lithos》2004,77(1-4):647-653
Experimental research on K-rich phases and observations from diamond inclusions, UHP metamorphic rocks, and xenoliths provide insights about the hosts for potassium at mantle conditions. K-rich clinopyroxene (Kcpx–KM3+Si2O6) can be an important component in clinopyroxenes at P>4 GPa, dependent upon coexisting K-bearing phases (solid or liquid) but not, apparently, upon temperature. Maximum Kcpx content can reach 25 mol%, with 17 mol% the highest reported in nature. Partitioning (K)D(cpx/liquid) above 7 GPa=0.1–0.2 require ultrapotassic liquids to form highly potassic cpx or critical solid reactions, e.g., between Kspar and Di. Phlogopite can be stable to about 8 GPa at 1250 °C where either amphibole or liquid forms. When fluorine is present, it generally increases in Phl upon increasing P (and probably T) to about 6 GPa, but reactions forming amphibole and/or KMgF3 limit F content between 6 and 8 GPa. The perovskite KMgF3 is stable up to 10 GPa and 1400 °C as subsolidus breakdown products of phlogopite upon increasing P. (M4)K-substituted potassic richterite (ideally K(KCa)Mg5Si8O22(OH,F)2) is produced in K-rich peridotites above 6 GPa and in Di+Phl from 6 to 13 GPa. K content of amphibole is positively correlated with P; Al and F content decrease with P. In the system 1Kspar+1H2O K-cymrite (hydrous hexasanidine–KAlSi3O8·nH2O–Kcym) is stable from 2.5 GPa at 400 to 1200 °C and 9 GPa; Kcym can be a supersolidus phase. Formation of Kcym is sensitive to water content, not forming within experiments with H2O2O>Kspar. Phase X, a potassium di-magnesium acid disilicate ((K1−xn)2(Mg1−nMn3+)2Si2O7H2x), forms in mafic compositions at T=1150–1400 °C and P=9–17 GPa and is a potential host for K and H2O at mantle conditions with a low-T geotherm or in subducting slabs. The composition of phase-X is not fixed but actually represents a solid solution in the stoichiometries □2Mg2Si2O7H2–(K□)Mg2Si2O7H–K2Mg2Si2O7 (□=vacancy), apparently stable only near the central composition. K-hollandite, KAlSi3O8, is possibly the most important K-rich phase at very high pressure, as it appears to be stable to conditions near the core–mantle boundary, 95 GPa and 2300 °C. Other K-rich phases are considered.  相似文献   

11.
The thermal expansivities of eight sodium aluminosilicate liquids were derived from the slope of new volume data at low temperatures (713−1072 K) combined with the high temperature (1300−1835 K) volume measurements of Stein et al. (1986) on the same liquids. Melt compositions range from 47−71 wt% SiO2, 0−31 wt% A1203, and 17−33 wt% Na2O; the volume of albite supercooled liquid at 1092 K was also determined. The low temperature volumes were derived from measurements of the glass density of each sample at 298 K, followed by measurements of the glass thermal expansion coefficient from 298 K to the respective glass transition interval. This technique takes advantage of the fact that the volume of a glass is equal to the volume of the corresponding liquid at the limiting fictive temperature (Tf), and that Tf can be approximated as the onset of the rapid rise in thermal expansion at the glass transition in a heating curve (Moynihan, 1995). No assumptions were made regarding the equivalence of enthalpy and volume relaxation through the glass transition. The propagated error on the volume of each supercooled liquid at Tf is 0.25%. Combination of these low temperature data with the high temperature measurements of Stein et al. (1986) allowed a constant thermal expansivity of each liquid to be derived over a wide temperature interval (763−1001 degrees) with a fitted 1σ error of 0.6–4.6%; in every case, no temperature dependence to dV/dTliq could be resolved. Calibration of a linear model equation leads to fitted values ± 1σ (units of cm3/mole) for (26.91 ± .04), (37.49 ± .12), (26.48 ± .06) at 1373 K, and (7.64 ± .08 × 10-3 cm3/mole-K). The results indicate that neither Si02 nor Al2O3 contribute to the thermal expansivity of the liquids, and that dV/dTliq is independent of temperature between 713–1835 K over a wide range of liquid composition. Calculated volumes based on this model recover both low and high temperature measurements with a standard deviation <0.25%, whereas values of dV/dTliq can be predicted within 5.6%.  相似文献   

12.
P. Bhalla  F. Holtz  R.L. Linnen  H. Behrens 《Lithos》2005,80(1-4):387-400
The aim of this experimental study was to determine the solubility of cassiterite in natural topaz- and cassiterite-bearing granite melts at temperatures close to the solidus. Profiles of Sn concentrations at glass–crystal (SnO2) interface were determined following the method of (Harrison, T.M., Watson, E.B., 1983. Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contributions to Mineralogy and Petrology 84, 66–72). The cassiterite concentration calculated at the SnO2–glass interface is the SnO2 solubility. Experiments were performed at 700–850 °C and 2 kbar using a natural F-bearing peraluminous granitic melt with 2.8 wt.% normative corundum. Slightly H2O-undersaturated to H2O-saturated melt compositions were chosen in order to minimize the loss of Sn to the noble element capsule walls. At the nickel–nickel oxide assemblage (Ni–NiO) oxygen fugacity buffer, the solubility of cassiterite in melts containing 1.12 wt.% F increases from 0.32 to 1.20 wt.% SnO2 with an increasing temperature from 700 to 850 °C. At the Ni–NiO buffer and a given corundum content, SnO2 solubility increases by 10% to 20% relative to an increase of F from 0 to 1.12 wt.%. SnO2 solubility increases by 20% relative to increasing Cl content from 0 to 0.37 wt.% in synthetic granitic melts at 850 °C. We show that Cl is at least as important as F in controlling SnO2 solubility in evolved peraluminous melts at oxygen fugacities close to the Ni–NiO buffer. In addition to the strong effects of temperature and fO2 on SnO2 solubility, an additional controlling parameter is the amount of excess Al (corundum content). At Ni–NiO and 850 °C, SnO2 solubility increases from 0.47 to 1.10 wt.% SnO2 as the normative corundum content increases from 0.1 to 2.8 wt.%. At oxidizing conditions (Ni–NiO +2 to +3), Sn is mainly incorporated as Sn4+ and the effect of excess Al seems to be significantly weaker than at reducing conditions.  相似文献   

13.
Cation exchange experiments (ammonium acetate and cation resin) on celadonite-smectite vein minerals from three DSDP holes demonstrate selective removal of common Sr relative to Rb and radiogenic Sr. This technique increases the Rb/Sr ratio by factors of 2.3 to 22 without significantly altering the age of the minerals, allowing easier and more precise dating of such vein minerals. The ages determined by this technique (site 261—121.4 ±1.6 m.y.; site 462A—105.1 ±2.8 m.y.; site 516F—69.9 ±2.4 m.y.) are 34, 54 and 18 m.y. younger, respectively, than the age of crust formation at the site; in the case of site 462A, the young age is clearly related to off-ridge emplacement of a massive sill/flow complex. At the other sites, either the hydrothermal circulation systems persisted longer than for normal crust (10–15 m.y.), or were reactivated by off-ridge igneous activity.

Celadonites show U and Pb contents and Pb isotopic compositions little changed from their basalt precursors, while Th contents are significantly lower. Celadonites thus have unusually high alkali/U,Th ratios and low Th/U ratios. If this celadonite alteration signature is significantly imprinted on oceanic crust as a whole, it will lead to very distinctive Pb isotope signatures for any hot spot magmas which contain a component of aged subducted recycled oceanic crust.

Initial Sr isotope ratios of ocean crust vein minerals (smectite, celadonite, zeolite, calcite) are intermediate between primary basalt values and contemporary sea water values and indicate formation under seawaterdominated systems with effective water/rock ratios of 20–200.  相似文献   


14.
Previous theoretical considerations on the chemical U---Th-total Pb dating method failed to distinguish between thorogenic and uranogenic lead. However, it can be shown that the data points are located on a plane in the three-dimensional ThO2, PbO, UO2 space. The calculation of the best-fit plane yields a slope in the ThO2---PbO and UO2---PbO coordinate projections, and an initial PbO value. From the two slopes, Th/Pb- and U/Pb-ages can be calculated independently.

The method described in this paper is applied to monazites from the Hercynian G4-granite of the Fichtelgebirge (Germany). Th/Pb- and U/Pb-ages were calculated at 323 ± 20 Ma and 304 ± 15 Ma, respectively. The intercept value close to zero indicates that no significant amounts of common lead are present in the monazites studied.  相似文献   


15.
Micro-X-ray absorption near-edge structure (XANES) analysis was employed to determine the content of ferric iron in minerals formed in ultrahigh-pressure (UHP) eclogites. It is observed that omphacite and phengite contain significant amounts of Fe3+/Fetot (0.2–0.6), whereas only very low contents are present in garnet (Fe3+/Fetot=0.0–0.03), the latter being consistent with results from stoichiometric charge-balance calculations. Furthermore, considerable variations in the Fe3+/Fetot ratios of omphacite and phengite are observed depending on the textural sites and local bulk chemistry (eclogite and calc-silicate matrix) within one thin section. The oxidation state of isofacial minerals is thus likely to depend on the local fluid composition, which, in the studied case, is controlled by calcareous and meta-basic mineral compositions. These first in-situ measurements of ferric iron in an eclogite sample from the Dabie Shan, E China, are used to recalculate geothermobarometric data. Calculations demonstrate that the temperature during UHP metamorphism was as high as 780 °C, about 80–100 °C higher than previously estimated. Temperatures based on charge balance calculations often give erroneous results. Pressure estimates are in good agreement with former results and confirm metamorphism in the stability field of diamond (43.7 kbar at 750 °C). These PT data result in a geothermal gradient of ca. 6 °C/km during UHP metamorphism in the Dabie Shan. However, accounting for ferric iron contents in geothermobarometry creates new difficulties inasmuch as calibrations of geothermometers may not be correctable for Fe3+ and the actual effect on Mg–Fe2+ partitioning is unknown. The present study further shows that micro-XANES is a promising technique for the in situ determination of ferric iron contents without destroying the textural context of the sample: a clear advantage compared to bulk methods.  相似文献   

16.
In this paper the first fluid-inclusion data are presented from Late Archaean Scourian granulites of the Lewisian complex of mainland northwest Scotland. Pure CO2 or CO2-dominated fluid inclusions are moderately abundant in pristine granulites. These inclusions show homogenization temperatures ranging from − 54 to + 10 °C with a very prominent histogram peak at − 16 to − 32 °C. Isochores corresponding to this main histogram peak agree with P-T estimates for granulite-facies recrystallization during the Badcallian (750–800 °C, 7–8 kbar) as well as with Inverian P-T conditions (550–600 °C, 5 kbar). The maximum densities encountered could correspond to fluids trapped during an early, higher P-T phase of the Badcallian metamorphism (900–1000 °C, 11–12 kbar). Homogenization temperatures substantially higher than the main histogram peak may represent Laxfordian reworking (≤ 500 °C, < 4 kbar). In the pristine granulites, aqueous fluid inclusions are of very subordinate importance and occur only along late secondary healed fractures. In rocks which have been retrograded to amphibolite facies from Inverian and/or Laxfordian shear zones, CO2 inclusions are conspicuously absent; only secondary aqueous inclusions are present, presumably related to post-granulite hydration processes. These data illustrate the importance of CO2-rich fluids for the petrogenesis of Late Archaean granulites, and demonstrate that early fluid inclusions may survive subsequent metamorphic processes as long as no new fluid is introduced into the system.  相似文献   

17.
Temperature estimates and chemical composition of mantle xenoliths from the Cretaceous rift system of NW Argentina (26°S) constrain the rift evolution and chemical and physical properties of the lithospheric mantle at the eastern edge of the Cenozoic Andean plateau. The xenolith suite comprises mainly spinel lherzolite and subordinate pyroxenite and carbonatized lherzolite. The spinel lherzolite xenoliths equilibrated at high-T (most samples >1000 °C) and P below garnet-in. The Sm–Nd systematics of compositionally unzoned clino- and orthopyroxene indicate a Cretaceous minimum age for the high-T regime, i.e., the asthenosphere/lithosphere thermal boundary was at ca. 70 km depth in the Cretaceous rift. Major elements and Cr, Ni, Co and V contents of the xenoliths range between values of primitive and depleted mantle. Calculated densities based on the bulk composition of the xenoliths are <3280 kg/m3 for the estimated PT conditions and indicate a buoyant, stable upper mantle lithosphere. The well-equilibrated metamorphic fabric and mineral paragenesis with the general lack of high-T hydrous phases did not preserve traces of metasomatism in the mantle xenoliths. Late Mesozoic metasomatism, however, is obvious in the gradual enrichment of Sr, U, Th and light to medium REE and changes in the radiogenic isotope composition of an originally depleted mantle. These changes are independent of the degree of depletion evidenced by major element composition. 143Nd/144Ndi ratios of clinopyroxene from the main group of xenoliths decrease with increasing Nd content from >0.5130 (depleted samples) to ca. 0.5127 (enriched samples). 87Sr/86Sri ratios (0.7127–0.7131, depleted samples; 0.7130–0.7134, enriched samples) show no variation with variable Sr contents. Pbi isotope ratios of the enriched samples are rather radiogenic (206Pb/204Pbi 18.8–20.6, 207Pb/204Pbi 15.6–15.7, 208Pb/204Pbi 38.6–47) compared with the Pb isotope signature of the depleted samples. The large scatter and high values of 208Pb/204Pbi ratios of many xenoliths indicates at least two Pb sources that are characterized by similar U/Pb but by different Th/Pb ratios. The dominant mantle type in the investigated system is depleted mantle according to its Sr and Nd isotopic composition with relatively radiogenic Pb isotope ratios. This mantle is different from the Pacific MORB source and old subcontinental mantle from the adjacent Brazilian Shield. Its composition probably reflects material influx into the mantle wedge during various episodes of subduction that commenced in early Paleozoic or even earlier. Old subcontinental mantle was already replaced in the Paleozoic, but some inheritance from old mantle lithosphere is represented by rare xenoliths with isotope signatures indicating a Proterozoic origin.  相似文献   

18.
We present results of computations on the interaction of solid-phase electrum–argentite–pyrite (weight ratios 210−5/ 210−3/1 and 210−5/410−2/1) association with Cl-containing aqueous moderately acid solutions (0.5m NaCl, pH = 3.08) at 300 °C and 500 bars. These data are a physicochemical basis for predicting the geochemical behavior of Au and Ag during the hydrothermal-metasomatic transformation of Au-Ag-pyrite. We also propose a technique of study of this process based on the phase equilibria of the subsystem Au–Ag–S with the aqueous solution at different liquid/solid (l/s) ratios, with the use of new graphic diagrams. The relationship of the composition of the solid-phase association with l/s ratio in real boundary conditions (Au = 17 ppm, mAu/mAg = 10–3.57–10–2.28) is shown. The maximum l/s values for complete leaching of gold and silver (l/smax = 200–800) are estimated. It has been established that argentite is the first to dissolve when mAu/mAg(s) > mAu/mAg(sol), and electrum, when mAu/mAg(s) < mAu/mAg(sol).

The experimental results showed that at 300 °C, the conversion of electrum (NAu = 300‰) nonequilibrated with pyrite into an Au-richer form (NAu = 730‰) and argentite follows an intricate kinetic scheme. Using the Pilling-Bedwords kinetic equation for processing data yielded the process rate constant K = 2.8(±0.5)10−5 g2cm−4day−1. With this equation, the time of the complete conversion of 200 μm thick flat gold grains is 604 days. These data evidence a significant role of kinetic factors in hydrothermal-metasomatic processes involving native gold, which requires combination of thermodynamic and kinetic approaches on the construction of geologo-genetic models for hydrothermal sulfide formation.  相似文献   


19.
D. A. Carswell  R. N. Wilson  M. Zhai 《Lithos》2000,52(1-4):121-155
As is typical of ultra-high pressure (UHP) terrains, the regional extent of the UHP terrain in the Dabieshan of central China is highly speculative, since the volume of eclogites and paragneisses preserving unequivocal evidence of coesite and/or diamond stability is very small. By contrast, the common garnet (XMn=0.18–0.45)–phengite (Si=3.2–3.35)–zoned epidote (Ps38–97)–biotite–titanite–two feldspars–quartz assemblages in the more extensive orthogneisses have been previously thought to have formed under low PT conditions of ca. 400±50°C at 4 kbar. However, certain orthogneiss samples preserve garnets with XCa up to 0.50, rutile inclusions within titanite or epidote and relict phengite inclusions within epidote with Si contents p.f.u. of up to 3.49 — overlapping with the highest values (3.49–3.62) recorded for phengites in samples of undoubted UHP schists. These and other mineral composition features (such as A-site deficiencies in the highest Si phengites, Na in garnets linked to Y+Yb substitution and Al F Ti−1 O−1 substitution in titanites) are taken to be pointers towards the orthogneisses having experienced a similar metamorphic evolution to the associated UHP schists and eclogites. Re-evaluated garnet–phengite and garnet–biotite Fe/Mg exchange thermometry and calculated 5 rutile+3 grossular+2SiO2+H2O=5 titanite+2 zoisite equilibria indicate that the orthogneisses may indeed have followed a common subduction-related clockwise PT path with the UHP paragneisses and eclogites through conditions of Pmax at ca. 690°C–715°C and 36 kbar to Tmax at ca. 710°C–755°C and 18 kbar, prior to extensive re-crystallisation and re-equilibration of these ductile orthogneisses at ca. 400°C–450°C and 6 kbar. The consequential conclusion, that it is no longer necessary to resort to models of tectonic juxtapositioning to explain the spatial association of these Dabieshan orthogneisses with undoubted UHP lithologies, has far-reaching implications for the interpretation of controversial gneiss–eclogite relationships in other UHP metamorphic terrains.  相似文献   

20.
Mitsuhiro Toriumi 《Lithos》1979,12(4):325-333
The process of shape-transformation of quartz inclusions from polyhedral to spherical grains in albite single crystals during metamorphism is mainly controlled by the grain boundary diffusion of oxygen along the quartz/albite interface to reduce the interfacial free energy. The rate of the process, which is represented by the growth rate of the curvature of the edge surface of the grain, depends significantly on temperature and on the grain size of the quartz inclusion. The relations between temperature, T, the time, tr, and the critical radius, Rc, which is equal to the radius of maximum spherical grains, are given by log Rc = −0.11Eb/RT + 0.25log tr + C, in which Eb is the activation energy of the grain boundary diffusion of oxygen along the quartz/albite interface and C is a material constant.

The mean critical radius of spherical quartz inclusions in albite is 5 μm for the upper chlorite zone and garnet zone, 10 μm for the lower biotite zone, and 20 μm for the upper biotite zone in the Sambagawa metamorphic terrain. The mean values of the critical radii of spherical quartz inclusions in oligoclase of the Ryoke metamorphic rocks is about 5 μm for the chlorite zone and about 10–20 μm for the sillimanite zone.

Assuming temperatures of about 350°C for the upper chlorite and garnet zones, 400°C for the lower biotite zone, 550°C for the upper biotite zone, and 700°C for the sillimanite zone, the activation energy for the grain boundary diffusion of oxygen along the quartz/plagioclase interfase is estimated to be about 30 kcal/mol.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号