首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polar motion excited by the fluctuation of global atmospheric angular momentum (AAM) is investigated. Based on the global AAM data, numerical results demonstrate that the fluctuation of AAM can excite the seasonal wobbles (e.g., the 18-month wobble) and the Chandler wobble, which agree well with previous studies. In addition, by filtering the dominant low frequency components, some distinct polar wobbles corresponding to some great diurnal and semi-diurnal atmospheric tides are found.  相似文献   

2.
The polar motion excited by the fluctuation of global atmospheric angular momentum (AAM) is investigated. Based on the global AAM data, numerical results demonstrate that the fluctuation of AAM can excite the seasonal wobbles (e.g., the 18-month wobble) and the Chandler wobble, which agree well with previous studies. In addition, by filtering the dominant low frequency components, some distinct polar wobbles corresponding to some great diurnal and semi-diurnal atmospheric tides are found.  相似文献   

3.
Changes in the annual variation of the Earths polar motion are found to be largely caused by the variation of the atmospheric angular momentum (AAM). Recent simulation results of oceanic general circulation models further suggest global oceanic effects on the annual polar motion in addition to the atmosphere. In comparison with previous model studies of global oceanic effects, this research particularly singles out a large-scale ocean anomaly and investigates its effect on the annual polar motion, determined from satellite observations of the movement of the Western Pacific Warm Pool (WPWP). Although the scale of the warm pool is much smaller than that of the solid Earth, analysis of the non-atmospheric polar motion excitation has shown that the WPWP contributes non-negligibly to the annual polar motion. The analysis consists of over 30 years of WPWP data (1970–2000) and shows values of polar motion excitation for the x-component of (2.5 mas, –79°) and for the y-component of (0.6 mas, 173°). Comparison of this result with the total geodetic non-atmospheric polar motion excitation of (10.3 mas, 59°) for the x-component and (10.6 mas, 62°) for the y-component shows the significance of the WPWP. Changes in the Earths polar motion have attracted significant attention, not only because it is an important geodetic issue, but also because it has significant value as a global measure of variations within the hydrosphere, atmosphere, cryosphere, and solid Earth, and hence global changes.Tel: 86–21–64386191 Fax: 86–21–64384618Acknowledgments. The authors are grateful to Dr. R. Gross (JPL) and two anonymous reviewers for providing invaluable comments. They also thank Dr. J.L. Chen (CSR) for helpful discussions. Y. Zhou, D. Zheng and X. Liao were supported by the National Natural Science Foundation of China (10273018, 10133010) and Key Project of Chinese Academy of Sciences (KJCX2-SW-T1). X-H. Yan was supported by the National Aeronautics and Space Administration (NASA) through Grant NAG5–12745, and by the National Science Foundation (NSF) through the Presidential Faculty Fellow award to X-H. Yan (OCE-9453499). W.T. Liu was supported by the NASA Physical Oceanography Program.  相似文献   

4.
 The long-term variation of polar motion contains a number of periods similar to climate cycles. Two possible causes for these long-term variations are mass redistributions produced by variations of atmospheric and oceanic circulation, and mass exchanges between the cryosphere and hydrosphere. Inner-core wobble, which can be inferred from the observed motion of the geomagnetic pole, is another phenomenon with periods similar to climate cycles. Only observations relating to mass redistributions caused by atmosphere dynamics and inner-core wobble are available for sufficiently long periods of time to investigate their influence on climate cycles in polar motion. Both processes contribute to climate cycles in polar motion, but they cannot completely explain these cycles. Possible sources of climate cycles are discussed. Received: 20 December 1999 / Accepted: 28 August 2000  相似文献   

5.
Because the tide-raising potential is symmetric about the Earth’s polar axis it can excite polar motion only by acting upon non-axisymmetric features of the Earth like the oceans. In fact, after removing atmospheric and non-tidal oceanic effects, polar motion excitation observations show a strong fortnightly tidal signal that is not completely explained by existing dynamical and empirical ocean tide models. So a new empirical model for the effect of the termensual (Mtm and mtm), fortnightly (Mf and mf), and monthly (Mm) tides on polar motion is derived here by fitting periodic terms at these tidal frequencies to polar motion excitation observations that span 2 January 1980 to 8 September 2006 and from which atmospheric and non-tidal oceanic effects have been removed. While this new empirical tide model can fully explain the observed fortnightly polar motion excitation signal during this time interval it would still be desirable to have a model for the effect of long-period ocean tides on polar motion that is determined from a dynamical ocean tide model and that is therefore independent of polar motion observations.  相似文献   

6.
为了提高极移预报的精度,该文提出结合极移的两个分量进行统一求解的极移联合预报方法:将极移的两个分量组成一个观测方程,并采用LS+AR模型对联合分量的确定项与随机项进行拟合。实验结果表明,文中采用的联合预报方法可以提高极移的预报精度。  相似文献   

7.
 Two long time series were analysed: the C01 series of the International Earth Rotation Service and the pole series obtained by re-analysis of the classical astronomical observations using the HIPPARCOS reference frame. The linear drift of the pole was determined to be 3.31 ± 0.05 milliarcseconds/year towards 76.1 ± 0.80° west longitude. For the least-squares fit the a priori correlations between simultaneous pole coordinates x p , y p were taken into account, and the weighting function was calculated by estimating empirical variance components. The decadal variations of the pole path were investigated by Fourier and wavelet analysis. Using sliding windows, the periods and amplitudes of the Chandler wobble and annual wobble were determined. Typical periods in the variable Chandler wobble and annual wobble parameters were obtained from wavelet analyses. Received: 21 January 2000 / Accepted: 28 August 2000  相似文献   

8.
Compared to the Chandler and annual wobbles, the higher-frequency components of polar motion (PM) have substantially smaller amplitudes. Therefore, their study has had to wait until higher-quality time series with high temporal resolution, as measured by space geodetic techniques, have become available. Based on the combined Earth orientation series SPACE99 computed by the Jet Propulsion Laboratory (JPL) from 1976 to 2000 at daily intervals, the periodic PM terms, in particular at the quasi-biennial, 300-day, semi-Chandler, semi-annual, 4-month, 90-day, 2-month and 1.5-month periods, have been separated by band-pass filtering and it has been found that the persistence of oscillations becomes less with increasing frequency. In order to quantify and better describe the parameter variability of these PM components over time, the radii, direction angles and period lengths were computed from the periodic terms filtered out from the time series. The results clearly show the characteristics and time evolution of the periodic PM components. The largest elliptic oscillation is the semi-annual wobble with a maximum semi-major axis of up to 13 mas (milliarc seconds). The other wobbles are smaller. They have maximum semi-major axes of between 3 and 8 mas. If the oscillations have period lengths of 4 months and less, then they are elapsed not only progradly, but also retrogradly. AcknowledgementsThis paper was presented at the 27th General Assembly of the European Geophysical Society in Nice, France, 22–26 April 2002. Thanks go to Kevin Fleming for his linguistic advice. The author would also like to thank Barbara Koaczek for suggesting some valuable improvements.  相似文献   

9.
10.
The earth’s phase of rotation, expressed as Universal Time UT1, is the most variable component of the earth’s rotation. Continuous monitoring of this quantity is realised through daily single-baseline VLBI observations which are interleaved with VLBI network observations. The accuracy of these single-baseline observations is established mainly through statistically determined standard deviations of the adjustment process although the results of these measurements are prone to systematic errors. The two major effects are caused by inaccuracies in the polar motion and nutation angles introduced as a priori values which propagate into the UT1 results. In this paper, we analyse the transfer of these components into UT1 depending on the two VLBI baselines being used for short duration UT1 monitoring. We develop transfer functions of the errors in polar motion and nutation into the UT1 estimates. Maximum values reach 30 [μs per milliarcsecond] which is quite large considering that observations of nutation offsets w.r.t. the state-of-the-art nutation model show deviations of as much as one milliarcsecond.  相似文献   

11.
Long-term continuous gravity observations, recorded at five superconducting gravimeter (SG) stations in the Global Geodynamic Project (GGP) network, as well as data on orientation variations in the Earths rotation axis (i.e. polar motion), have been used to investigate the characteristics of gravity variations on the Earths surface caused by polar motion. All the SG gravity data sets were pre-processed using identical techniques to remove the luni-solar gravity tides, the long-term trends of the instrumental drift, and the effects of atmospheric pressure. The analysis indicates that the spectral peaks, related to the Chandler and annual wobbles, were identified in both the power and product spectral density estimates. The magnitude of gravity variations, as well as the gravimetric amplitude factor associated with the Chandler wobble, changed significantly at different SG stations and during different observation periods. However, when all the SG observations at these five sites were combined, the gravimetric parameters of the Chandler wobble were retrieved accurately: 1.1613 ± 0.0737 for the amplitude factor and –1°.30 ± 1°.33 for the phase difference. The value of the estimated amplitude factor is in agreement with that predicted theoretically for the zonal tides of an elastic Earth model.  相似文献   

12.
During a 4-year period starting in July 1996 and using intervals ranging from 3 days to 4 years, four precise polar motion (PM) series have been compared to excitation by atmospheric angular momentum (AAM) augmented with oceanic angular momentum (OAM) data. The first three series (C03, C04 and Bulletin A) are multi-technique combinations generated by the International Earth Rotation and Reference Systems Service (IERS) and the fourth combined series (IGS00P02) is produced by the International GPS Service (IGS) using only GPS data. The IGS PM compared the best with the combined excitations of atmosphere and oceans (AAM+OAM) at all intervals, showing high overall correlation of 0.8–0.9. Even for the interval of only three days, the IGS PM gave a significant correlation of about 0.6. Moreover, during the interval of February 1999 – July 2000, which should be representative of the current precision of the IGS PM, a significant correlation (>0.4) extended to periods as short as 2.2 days and 2.5 days for the xp and yp PM components, respectively. When using the IERS Bulletin B (C04) PM and an interval of almost 6 years, starting in November 1994, the combined OAM+AAM accounted for practically all the annual, semi-annual and Chandler wobble (CW) PM signals. When only AAM was used, either the US National Centers for Environment Prediction reanalysis data, which were used throughout this study, or the Japanese Meteorological Agency data, two large and well-resolved amplitude peaks of about 0.1 mas/day, remained at the retrograde annual and CW periods.  相似文献   

13.
A time dependent amplitude model was proposed for the analysis and prediction of polar motion time series. The formulation was implemented to analyze part of the new combined solution, EOP (IERS) C 04, daily polar motion time series of 14 years length using a statistical model with first order autoregressive disturbances. A new solution approach, where the serial correlations of the disturbances are eliminated by sequentially differencing the measurements, was used to estimate the model parameters using weighted least squares. The new model parsimoniously represents the 14-year time series with 0.5 mas rms fit, close to the reported 0.1 mas observed pole position precisions for the x and y components. The model can also predict 6 months into the future with less than 4 mas rms prediction error for both polar motion components, and down to sub mas for one-step ahead prediction as validated using a set of daily time series data that are not used in the estimation. This study is dedicated to the memory of Prof. Urho Uotila (1923–2006) whose teaching of “Adjustment Computations” over the years influenced so much, so many of us who had the privilege of being his students.  相似文献   

14.
Polar motion of the triaxial nonrigid Earth and atmospheric excitation   总被引:1,自引:1,他引:0  
The present study aims to extend the traditional rotation theory of the rotational-symmetric Earth to the triaxial Earth.We re-formulate the Liouville equations and their general solutions for the triaxial nonrigid Earth and find that the traditional theory intro-duces some theoretical errors in modeling the excitation functions.Furthermore,we apply that theory to the atmospheric excitation and find that theoretical errors should not be neglected given the present measurement accuracy.Thus we conclude that the traditional the-ory of the rotation of the rotational-symmetric Earth should be revised and upgraded to include the effects of the Earth’s triaxiality.  相似文献   

15.
This research aims to study the influences of the atmospheric and oceanic excitations on polar motion.Power spectrum density analyses show that the efficiencies of the atmospheric and oceanic excitations differ not only at different frequencies but also in the retrograde and prograde components,but the sum of atmospheric and oceanic excitations shows the best agreement with the observed excitation.  相似文献   

16.
1 IntroductionInmodernEarthrotationtheory ,threereferenceframesareusuallyused ,i.e .,thespatial (inertial)frameOξ1 ξ2 ξ3,theterrestrialframeOx1 x2 x3andthenutationframeOx01 x02 x03.Thenutationframedefinesacelestialephemerispole .Themotionofthiscelestialephemerispolew…  相似文献   

17.
Continental hydrological loading by land water, snow and ice is a process that is important for the full understanding of the excitation of polar motion. In this study, we compute different estimations of hydrological excitation functions of polar motion (as hydrological angular momentum, HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of the land-based hydrosphere. The main aim of this study is to show the influence of variables from different hydrological processes including evapotranspiration, runoff, snowmelt and soil moisture, on polar motion excitations at annual and short-term timescales. Hydrological excitation functions of polar motion are determined using selected variables of these GLDAS realizations. Furthermore, we use time-variable gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) to determine the hydrological mass effects on polar motion excitation. We first conduct an intercomparison of the maps of variations of regional hydrological excitation functions, timing and phase diagrams of different regional and global HAMs. Next, we estimate the hydrological signal in geodetically observed polar motion excitation as a residual by subtracting the contributions of atmospheric angular momentum and oceanic angular momentum. Finally, the hydrological excitations are compared with those hydrological signals determined from residuals of the observed polar motion excitation series. The results will help us understand the relative importance of polar motion excitation within the individual hydrological processes, based on hydrological modeling. This method will allow us to estimate how well the polar motion excitation budget in the seasonal and inter-annual spectral ranges can be closed.  相似文献   

18.
Long-term prediction of polar motion using a combined SSA and ARMA model   总被引:2,自引:0,他引:2  
To meet the need for real-time and high-accuracy predictions of polar motion (PM), the singular spectrum analysis (SSA) and the autoregressive moving average (ARMA) model are combined for short- and long-term PM prediction. According to the SSA results for PM and the SSA prediction algorithm, the principal components of PM were predicted by SSA, and the remaining components were predicted by the ARMA model. In applying this proposed method, multiple sets of PM predictions were made with lead times of two years, based on an IERS 08 C04 series. The observations and predictions of the principal components correlated well, and the SSA \(+\) ARMA model effectively predicted the PM. For 360-day lead time predictions, the root-mean-square errors (RMSEs) of PMx and PMy were 20.67 and 20.42 mas, respectively, which were less than the 24.46 and 24.78 mas predicted by IERS Bulletin A. The RMSEs of PMx and PMy in the 720-day lead time predictions were 28.61 and 27.95 mas, respectively.  相似文献   

19.
基于微分几何的两种曲率——参数影响曲率和固有曲率,给出了定量描述非线性滤波问题的非线性强度的方法,分别采用扩展Kalman滤波方法和Unscented Kalman滤波方法进行了模拟实验。结果验证了这些曲率确实能够度量非线性滤波问题的非线性强度,且能够评估非线性滤波算法的状态估计性能。  相似文献   

20.
基于新参考系的极移改正   总被引:1,自引:0,他引:1  
本文利用IAU2000决议中关于CIP的定义阐述了极移坐标系和极移坐标的定义,在总结微分旋转矩阵的性质的基础上给出了极移旋转矩阵的详细推导,结合极移产生的主要原因,详细介绍了目前国际上关于极移模型化工作的最新进展,最后给出了获取极移坐标和TIO位置的方法和途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号