首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report results of 9 years of GPS measurements of crustal deformation at Imphal, Manipur, a site located in the Indo-Burmese wedge of northwest Sunda arc. The analysis of these measurements suggests that the site moves at a rate of about 36.3±0.5 mm/year towards N55° in the ITRF2008. With respect to the Indian plate it moves at a rate of 16.7 mm/year towards N222°, i.e., predominantly towards southwest. The site is located about 15 km east of the Churachandpur Mao fault (CMF), which is reported to accommodate part of the India-Sunda motion. The site motion is not significantly affected by the earthquakes that occurred in the nearby region. However, the 2004 Sumatra-Andaman earthquake caused a coseismic displacement of ~ 3–5 mm predominantly towards southwest. The site motion is almost linear, with some seasonal variation, and does not show any evidence of accelerated slip or slow earthquake on the CMF or along the plate boundary.  相似文献   

2.
A continuous GPS measurement site, ISRR, at Gandhinagar (Western India), documented ~?5 mm/year of surface subsidence rate during 2009–2016. Preliminary modelling using an analytical solution indicates that the observed surface subsidence rate at the ISRR site is consistent with the ground water depletion reported from Gandhinagar. An assessment of data from GPS sites at Lucknow and Varanasi in the Indo-Gangetic plains in Northern India does not indicate any significant subsidence at these sites which is also consistent with the in situ observations of insignificant depletion of ground water in the region.  相似文献   

3.
中国大陆现今构造运动的GPS速度场与活动地块   总被引:141,自引:11,他引:130  
张培震  王琪  马宗晋 《地学前缘》2002,9(2):430-441
GPS观测结果给出了在欧亚参考框架下周边板块的运动状态 ,印度板块的运动方向约NE2 0° ,速度是 40~ 42mm/a ;北美板块的运动方向约NW 2 80°~ 2 90° ,速度是 2 1~ 2 3mm/a ;菲律宾板块的运动方向是NW 2 90°~ 310° ,速度是 37~ 45mm/a ;哈萨克—西伯利亚地盾的运动方向约NE130° ,速度是 3~ 5mm/a。GPS所揭示的中国大陆现今运动场清晰地表现出了以活动地块为单元的分块运动特征。文中给出了各主要活动地块的运动方向和速度。大部分活动地块内部结构完整 ,以整体性的运动为主 ;个别活动地块内部发生构造变形 ,地块的整体性不好。中国大陆以活动地块为单元的现今构造变形可能与大陆岩石圈的结构和性质有关 ,上地壳以脆性变形为主 ,下地壳和上地幔以粘塑性的流变为特征 ,从底部驱动着上覆脆性地块的整体运动。  相似文献   

4.
During the 1st decade of the 21st century, the study area of Talala, Saurashtra of western India witnessed three damaging earthquakes of moderate magnitude, year 2007 [Mw 5.0; Mw 4.8] and in the year 2011 [Mw 5.1] that generated public panic in the region. The last damaging moderate earthquake of the 20th October 2011 in Talala region (21.09°N;70.45°E), located at about 200 km south to the devastating 2001 Bhuj (23.412°N, 70.232°E) mainshock (Mw 7.6), jolted the entire Saurashtra region of Gujarat. A long series of aftershocks followed hereafter, recorded at nine seismograph/accelerograph stations. Hypocenters of aftershocks were relocated accurately using absolute and relative travel time (double-difference) method. In this study, we, for the first time, determined 3-D tomographic images of the upper crust beneath the 2011 Talala earthquake source zone by inverting about 1135 P and 1125 S wave arrival time data. Estimates of seismic velocities (Vp, Vs) and Poisson’s ratio (σ) structures offer a reliable interpretation of crustal heterogeneities and their bearing on geneses of moderate earthquakes and their aftershock sequences beneath the source zone. It is found that the 2011 Talala mainshock hypocenter depth (6 km) is located near the boundary of the low and high velocity (Vp, Vs) and the source zone is associated with low-σ anomalies guarded by the prominent high-σ anomalies along the active fault zone having strike-slip motion beneath the earthquake source zone. The pattern of distribution of (Vp, Vs, σ) and its association with occurrences of aftershocks provide seismological evidence for the neo-tectonics in the region having left lateral strike-slip motion of the fault.  相似文献   

5.
This study analyzed the rupture directivity of the 2011 Tohoku earthquake by using 100-s Rayleigh-wave travel-times, influenced by the finite source, to derive the fault parameters of the earthquake. The results demonstrated that the earthquake exhibited a slow rupture propagation with a rupture velocity of approximately 1.5–2.0 km/s and asymmetric bilateral faulting. The two rupture directions were N60°E and N127°E, with rupture lengths of approximately 276 km and 231 km, respectively. The rupture toward N60°E had a source duration of approximately 183 s, longer than that toward N127°E (approximately 156 s). Overall, the entire source duration of the earthquake faulting lasted approximately 183 s. Regarding historical seismicity in eastern Japan, the 2011 Tohoku earthquake not only ruptured a locked area in which large earthquakes have rarely occurred, but also ruptured the source regions of several historical earthquakes. With the exception of its slow rupture velocity and generation of a tsunami, the rupture features of the 2011 Tohoku earthquake were inconsistent with those of typical tsunami earthquakes.  相似文献   

6.
In the Zhouqu region (Gansu, China), landslide distribution and activity exploits geological weaknesses in the fault-controlled belt of low-grade metamorphic rocks of the Bailong valley and severely impacts lives and livelihoods in this region. Landslides reactivated by the Wenchuan 2008 earthquake and debris flows triggered by rainfall, such as the 2010 Zhouqu debris flow, have caused more than 1700 casualties and estimated economic losses of some US$0.4 billion. Earthflows presently cover some 79% of the total landslide area and have exerted a strong influence on landscape dynamics and evolution in this region. In this study, we use multi-temporal Advanced Land Observing Satellite and Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) data and time series interferometric synthetic aperture radar to investigate slow-moving landslides in a mountainous region with steep topography for the period December 2007–August 2010 using the Small Baseline Subsets (SBAS) technique. This enabled the identification of 11 active earthflows, 19 active landslides with deformation rates exceeding 100 mm/year and 20 new instabilities added into the pre-existing landslide inventory map. The activity of these earthflows and landslides exhibits seasonal variations and accelerated deformation following the Wenchuan earthquake. Time series analysis of the Suoertou earthflow reveals that seasonal velocity changes are characterized by comparatively rapid acceleration and gradual deceleration with distinct kinematic zones with different mean velocities, although velocity changes appear to occur synchronously along the landslide body over seasonal timescales. The observations suggest that the post-seismic effects (acceleration period) on landslide deformation last some 6–7 months.  相似文献   

7.
The average seismic strain rate is estimated for the seismotectonic zone of the northern/central parts of the Gulf of Suez. The principal strain rate tensor and velocity tensor were derived from a combination of earthquake focal mechanisms data and seismic moment of small-sized earthquakes covering a time span of 13 years (1992–2004). A total of 17 focal mechanism solutions have been used in the calculation of the moment tensor summation. The local magnitudes (MLs) of these events range from 2.8 to 4.7. The analysis indicates that the dominant mode of deformation in the central and northern parts of the Gulf of Suez is extension at a rate of 0.008 mm/year in N28°E direction and a small crustal thinning of 0.0034 mm/year. This low level of strain means that this zone experienced a little seismic deformation. There is also a right lateral shear motion along the ESE–WNW direction. This strain pattern is consistent with the predominant NW–SE normal faulting and ESE–WNW dextral transtensive faults in this zone. Comparing the results obtained from both stress and strain tensors, we find that the orientations of the principal axes of both tensors have the same direction with a small difference between them. Both tensors show a predominantly extensional domain. The nearly good correspondence between principal stress and strain orientations in the area suggests that the tectonic strength is relatively uniform for this crustal volume.  相似文献   

8.
GPS-derived deformation rates in northwestern Himalaya and Ladakh   总被引:1,自引:0,他引:1  
Deformation rates derived from GPS measurements made at two continuously operating stations at Leh (34.1°N, 77.6°E) and Hanle (32.7°N, 78.9°E), and eight campaign sites in the trans-Himalayan Ladakh spanning 11 years (1997–2008), provide a clear picture of the kinematics of this region as well as the convergence rate across northwestern Himalaya. All the Ladakh sites move 32–34 mm/year NE in the ITRF2005 reference frame, and their relative velocities are 13–16 mm/year SW in the Indian reference frame and ~19 mm/year W with reference to the Lhasa IGS station in southeastern Tibet. The results indicate that there is no statistically significant deformation in the 200-km stretch between the continuous sites Leh and Hanle as well as between Leh and Nubra valley sites along the Karakoram fault, whereas the sites in and around the splayed Karakoram fault region indicate surface deformation of 2.5 mm/year. Campaign sites along the Karakoram fault zone indicate a fault parallel surface motion of 1.4–2.5 mm/year in the Tangste and western Panamik segment of the Karakoram fault, which quantifies the best possible GPS-derived dextral slip rate of 3 mm/year along this fault during this 11-year period. Baselines of Ladakh sites show convergence rates of 15–18 mm/year with respect to south India and 12–15 mm/year with respect to Delhi in north India and Almora in the Himalaya ~400 km north-northeast of Delhi. These constitute an arc normal convergence of 12–15 mm/year across the western Himalaya, which is consistent with arc normal convergence all along the Himalayan arc from west to east. Baseline extension rates of 14–16 mm/year between Lhasa and Ladakh sites are consistent with the east–west extension rate of Tibetan Plateau.  相似文献   

9.
This paper examines the variability of seismic activity observed in the case of different geological zones of peninsular India (10°N–26°N; 68°E–90°E) based on earthquake catalog between the period 1842 and 2002 and estimates earthquake hazard for the region. With compilation of earthquake catalog in terms of moment magnitude and establishing broad completeness criteria, we derive the seismicity parameters for each geologic zone of peninsular India using maximum likelihood procedure. The estimated parameters provide the basis for understanding the historical seismicity associated with different geological zones of peninsular India and also provide important inputs for future seismic hazard estimation studies in the region. Based on present investigation, it is clear that earthquake recurrence activity in various geologic zones of peninsular India is distinct and varies considerably between its cratonic and rifting zones. The study identifies the likely hazards due to the possibility of moderate to large earthquakes in peninsular India and also presents the influence of spatial rate variation in the seismic activity of this region. This paper presents the influence of source zone characterization and recurrence rate variation pattern on the maximum earthquake magnitude estimation. The results presented in the paper provide a useful basis for probabilistic seismic hazard studies and microzonation studies in peninsular India.  相似文献   

10.
为了研究芦山地震的孕震过程和震源区的长期构造过程以及解释实测的震后形变和重力资料, 采用分层介质模型, 利用数值模拟的方法, 考虑区域流变系数, 计算了地震引起的地表同震、震后的形变和重力变化以及区域内部分GPS与重力连续观测台站的震后形变和重力变化的时间序列.结果表明: 芦山地震的地表同震形变显示出发震断层明显的逆冲特性; 粘弹性松弛效应引起的震后地表形变和重力变化比同震形变和重力变化的范围明显扩大, 但随着粘滞系数的增加, 变化量明显减小; 观测台站的震后变化时变曲线显示震后形变和重力变化在震后50 a间变化显著, 100 a后基本平缓, 趋于稳定; 模拟计算的GPS台站中除了MEIG台和MYAN台以外, 其余台站的震后观测必须考虑粘弹性松弛的影响.   相似文献   

11.
The Himalayan region has been studied extensively during the past few decades in terms of present ongoing deformations. Various models have been proposed for the evolution of the Himalaya to explain the cause of earthquake occurrences and to understand the seismotectonics of the Himalayan collision zone. However, the information on displacements from field geodetic surveys is still too scarce in time and spatial domains so as to provide convincing evidences. Moreover, classical Probabilistic Seismic Hazard Approaches also fail due to paucity of data in higher magnitude range, thus emphasizing the need of spatial level displacement measurements. It is in this context that the present study has been carried out to estimate the surface displacement in a seismically active region of the Himalaya between Ganga and Yamuna Tear using Differential SAR interferometry. Three single-look complex images, obtained from ASAR sensor onboard ENVISAT satellite, have been used. A displacement rate of 8?C10?mm per year in N15°E direction of Indian plate has been obtained in this three-pass SAR interferometry study. It has been noted that the estimated convergence rate using Differential SAR interferometry technique is relatively low in comparison with those obtained from previous classical studies. The reported low convergence rate may be due to occurrence of silent/quite earthquakes, aseismic slip, differential movement of Delhi Hardwar ridge, etc. Therefore, in view of the contemporary seismicity and conspicuous displacements, a study of long-term observations of this surface movement has been recommended in future through a time-series SAR interferometry analysis.  相似文献   

12.
The Gradenbach mass movement (GMM) is an example of DGSD (deep-seated gravitational slope deformation) in crystalline rocks of the Eastern Alps (12.85°E, 47.00°N). The main body of the GMM covers an area of 1.7 km2 and its volume is about 120?×?106 m3. A reconstruction of the deformation history yields a mean displacement of?~?22 m from 1962 to 2011. In 1965/66, 1975, 2001, and 2009 high sliding velocities, exceeding several meters per year, interrupt the quasi-stationary periods of slow movement (≤0.3 m/year). Since 1999 the displacement of the main body of the GMM has been observed by GPS. Time series of extensometer readings, precipitation, snow cover water equivalent, water discharge, and hydrostatic water level observed in boreholes were re-processed and are presented in this paper. Continuous recording of seismic activity by a seismic monitoring network at the GMM began in the summer of 2006. Deformation has been monitored since 2007 by an embedded strain rosette based on fiber optics technology and a local conventional geodetic deformation network. The velocity of the GMM could be modeled to a large extent by a quantitative relation to hydro-meteorological data. During the phase of high sliding velocity in spring 2009, the seismic activity in the area increased significantly. Several types of seismic events were identified with some of them preceding the acceleration of the main body by about 6 weeks. The potential inherent in the Gradenbach Observatory data to supply early warning and hazard estimation is discussed.  相似文献   

13.
The Sichuan – Yunnan region is divided into nine active secondary crustal blocks, based on several GPS repeat surveys at more than 200 GPS sites during the period 1999 – 2005. Velocities of the nine secondary blocks are calculated and analysed. The strain field within the area related to the 2004 Sumatra – Andaman earthquake event is also analysed. Results indicate that the crustal movement in the northern and western areas of the Sichuan – Yunnan region is stronger than that in the south and east. The horizontal velocities change from 19 – 20 mm/y in the northern and the central rhombic block to 11.7 mm/y in the southern rhombic block. The orientations of block motion vary from 99° in the north to 126 – 150° in the central area and 156 – 188° in the south, implying that the motion of the Sichuan – Yunnan rhombic block is dominated by a clockwise rotation. The velocity differences between blocks inside and outside the rhombic block are about 6.5 – 7.7 mm/y in the northern and central Sichuan – Yunnan region. The southeastward extrusion rate of the Tibetan Plateau shows a remarkable downtrend of up to 47% along the Xianshuihe Fault, suggesting an increase in strain accumulation and hence an area prone to strong earthquakes. The horizontal coseismic deformation caused by the Mw9.0 Sumatra – Andaman earthquake is <10 mm with a south-southeast orientation towards the earthquake epicentre. The dilatational strain rates from coseismic displacements reveal a possible interaction between the extrusion from the Tibet plateau interior and the underthrust effects from the Sumatra – Andaman earthquake.  相似文献   

14.
A probabilistic seismic hazard assessment is developed here using maximum credible earthquake magnitude statistics and earthquake perceptibility hazard. Earthquake perceptibility hazard is defined as the probability a site perceives ground shaking equal to or greater than a selected ground motion level X, resulting from an earthquake of magnitude M, and develops estimates for the most perceptible earthquake magnitude, M P(max). Realistic and usable maximum magnitude statistics are obtained from both whole process and part process statistical recurrence models. These approaches are extended to develop relationships between perceptible earthquake magnitude hazard and maximum magnitude recurrence models that are governed by asymptotic and finite return period properties, respectively. Integrated perceptibility curves illustrating the probability of a specific level of perceptible ground motion due to all earthquakes over the magnitude range extending from ?∞ to a magnitude M i are then developed from reviewing site-specific magnitude perceptibility. These lead on to achieving site-specific annual probability of exceedance hazard curves for the example cities of Sofia and Thessaloniki for both horizontal ground acceleration and ground velocity. Both the maximum credible earthquake magnitude M 3 and the most perceptible earthquake magnitude M P(max) are of importance to the earthquake engineer when approaching anti-seismic building design. Both forms of hazard are illustrated using contoured hazard maps for the region bounded by 39°–45°N, 19°–29°E. Patterns are observed for these magnitude hazard estimates—especially M P(max) specific to horizontal ground acceleration and horizontal ground velocity—and compared to inferred patterns of crustal deformation across the region. The full geographic region considered is estimated to be subject to a maximum credible earthquake magnitude M 3—estimated using cumulative seismic moment release statistics—of 7.53 M w, calculated from the full content of the adopted earthquake catalogue, while Bulgaria’s capital, Sofia, is estimated a comparable value of 7.36 M w. Sofia is also forecast most perceptible earthquake magnitudes for the lowest levels considered for horizontal ground acceleration of M PA(50) = 7.20 M w and horizontal ground velocity of M PV(5) = 7.23 M w for a specimen focal depth of 15 km.  相似文献   

15.
The paper presents a detailed analysis of 1st April 2015 earthquake, whose epicenter (30.16° N, 79.28° E) was located near Simtoli village of Chamoli district, Uttarakhand. The focal depth is refined to 7 km by the grid search technique using moment tensor inversion. The source parameters of the earthquake as estimated by spectral analysis method suggested the source radius of ~1.0 km, seismic moment as 1.99E+23 dyne-cm with moment magnitude (Mw) of 4.8 and stress drop of 69 bar. The fault plane solution inferred using full waveform inversion indicated two nodal planes, the northeast dipping plane having strike 334° and dip 5° and the southwest dipping plane with dip 86° and strike 118°. The parallelism of the nodal plane striking 334° with dip 5° as indicated in depth cross sections of the tectonic elements suggested the north dipping Main Boundary Thrust (MBT) to be the causative fault for this earthquake. Spatio-temporal distribution of earthquakes during the period 1960-2015 showed seismic quiescence during 2006-2010 and migration of seismicity towards south.  相似文献   

16.
The authors have made a comparative study of surface deformations deduced from the analysis of recent faults, and deformation in depth deduced from, focal mechanisms associated with shallow earthquakes. The initial results obtained in the Paphos region of Cyprus are presented.Study of striations on centi- to decametric-scale fracture surfaces which affect Plio-Quaternary beaches in the Paphos region has enabled the authors to determine statistically the position of the principal axes of Plio-Quaternary deformation: lengthening X (strike N32°, dip 12°NE), shortening Z (N297°, 23°NW) and intermediate Y (N138°, 65°SE).On the 10th of September 1953 a superficial earthquake (depth 6 km) of 6.5 magnitude occurred near Paphos (location 34.9°N, 32.2°E) whose focal mechanism has been studied. Fault-plane solutions were obtained using 36 data points relating to the initial movements of the P-waves measured by longand short-period seismographs. Unfortunately the distribution of data with respect to the focus is such that it does not permit a single, but rather three possible solutions. Two of these are compatible with the model of deformation deduced from surface study. While the most probable solution favours a normal fault (solution no. 3), the system of deep strike-slip faults (solution no. 2) is equally compatible with the existence of predominantly normal surface faults.The preliminary results constitute part of a more regional study of the eastern Mediterranean. The authors consider it fundamental to establish this type of correlation when studying neotectonics.  相似文献   

17.
青藏高原现今构造变形特征与GPS速度场   总被引:105,自引:12,他引:105  
张培震  王琪  马宗晋 《地学前缘》2002,9(2):442-450
文章以青藏高原的GPS观测数据为基础 ,结合活动地质构造资料 ,研究了青藏高原的现今构造变形状态和机制 ,并探讨青藏高原现今构造变形所反映的大陆内部动力学过程。GPS观测的速度矢量揭示了青藏高原整体向北和向东运动的趋势 ,平行于印度和欧亚板块碰撞方向上的地壳缩短量约是 38mm/a ,而青藏高原周边主要断裂带的滑动速率均在 10mm/a以下。大约 90 %的印度与欧亚板块相对运动量被青藏高原的地壳缩短所吸收和调节。GPS速度矢量由南向北逐渐向东偏转 ,向东的分量也增加 ,形成了以羌塘地块北部 (或玛尼—玉树—鲜水河断裂 )和祁连山中部为中心的两个地壳物质向东流动带。青藏高原的向东挤出实际上是地壳物质在印度板块推挤下和周边刚性地块阻挡下围绕东构造结发生的顺时针旋转。  相似文献   

18.
On 4 May 1910, the most destructive earthquake in the history of Costa Rica (Ms 6.4) destroyed the city of Cartago, a major city located in the Valle Central of Costa Rica. Using both palaeo‐seismological and morphotectonic analyses, we have found evidence that points to the Aguacaliente Fault (AF) as the source of this earthquake. This structure is a N100° E trending, strike‐slip fault situated to the south of Cartago and within a wide band of deformation. We excavated two trenches near Bermejo, south of Cartago. We found evidence of three surface ruptures within the last 1000 years on this fault. The age of the most recent rupture is consistent with the Cartago 1910 earthquake. The AF is a seismogenic source capable of producing large earthquakes (Mw 6.5–6.9) with an estimated recurrence interval of about 500 years.  相似文献   

19.
The recent 10 August 2009 Coco earthquake (Mw 7.5), the largest aftershock of the giant 2004 Sumatra Andaman earthquake, occurred within the subducting India plate under the Burma plate. The Coco earthquake nucleated near the northwestern edge of the 2004 Sumatra-Andaman earthquake rupture under the unruptured updip segment of the plate boundary interface. The earthquake with predominant normal motion on approximately north-south to northeast-southwest oriented plane is very similar to the 27 June 2008 Little Andaman earthquake which occurred in the South Andaman region near the trench. We provide the only available estimate of coseismic offset due to the 2009 Coco earthquake at a survey-mode GPS site in the north Andaman, located about 60 km south of the Coco earthquake epicentre. The not so large coseismic displacement of about 2 cm in the ESE direction is consistent with the earthquake focal mechanism and its magnitude. We suggest that, like the 2008 Little Andaman earthquake, this earthquake too occurred on one of the approximately north-south to northeast-southwest oriented steep planes of the obliquely subducting 90°E ridge which was reactivated in normal motion after subduction, under the favourable influence of coseismic and ongoing postseismic deformation due to the 2004 Sumatra-Andaman earthquake. Another notable feature of this earthquake is its relatively low aftershock productivity. We suggest that the earthquake occurred very close to the aseismic region of the Irrawaddy frontal arc of very low seismicity where pre-existing faults are not so critically stressed and because of which the earthquake could trigger only a few aftershocks in its immediate vicinity.  相似文献   

20.
The Africa–Arabia plate boundary comprises the Red Sea oceanic spreading centre and the left‐lateral Dead Sea Fault Zone (DSFZ); however, previous work has indicated kinematic inconsistency between its continental and oceanic parts. The Palmyra Fold Belt (PFB) splays ENE from the DSFZ in SW Syria and persists for ~400 km to the River Euphrates, but its significance within the regional pattern of active crustal deformation has hitherto been unclear. We report deformation of Euphrates terraces consistent with Quaternary right‐lateral transpression within the PFB, indicating anticlockwise rotation (estimated as 0.3° Ma?1 about 36.0°N 39.8°E) of the block between the PFB and the northern DSFZ relative to the Arabian Plate interior. The northern DSFZ is shown to be kinematically consistent with the combination of Euler vectors for the PFB and the Red Sea spreading, resolving the inconsistency previously evident. The SW PFB causes a significant earthquake hazard, previously unrecognized, to the city of Damascus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号