首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 1978 Uppsala Symposium was organized as a geste d'honneur to the memory of Otto Torell and his Ice-Age Theory, published a little more than a hundred years ago. The Symposium opened with a lecture on the development of the Ice-Age Theory, then four regional surveys of our present knowledge of the deglaciation pattern and chronology yielded new and somewhat controversial ideas about the melting of the Scandinavian Continental Ice, and more than forty individual research reports showed the dynamic scientific situation in Quaternary Geology in Norden. The Symposium and this issue of Boreas form part of the joint Nordic activity within the IGCP project entitled 'Quaternary Glaciations in the Northern Hemisphere'.  相似文献   

2.
Various concepts of the deglaciation of Finland are presented in the form of a historical review. The suggestions of an early (12,000–10,000 B.P) deglaciation of eastern and northern Finland are considered to be erroneous. A map depicting the ice recession as successive ice-marginal lines is presented. According to radiocarbon dates the Finnish territory was entirely deglaciated slightly after 9000 B. P.  相似文献   

3.
The deglaciation of Norway after 10,000 B.P.   总被引:1,自引:0,他引:1  
Several distinctive marginal moraines of Preboreal age have been observed in Norway. They are grouped into three major morainal zones that are radiocarbon dated at about 9900±100, 9600±100 and 9300±100 B.P. respectively. The following deglaciation of central Norway was rapid and most likely completed about 8500 B.P. Evidence of glacier fluctuations up to recent time is discussed. The results are based partly on observations by the field parties of the I.G.C.P. project 'Quaternary Glaciations in the Northern Hemisphere'.  相似文献   

4.
A review is given of the past and present research on the deglaciation of Sweden north of the Middle Swedish End Moraines. Problems concerning the differences in the mode of deglaciation above and below the highest coastline and the activity of the ice are discussed. Dating of the deglaciation offers special problems. The clay-varve method and radiocarbon dating of the beginning of organic sedimentation in particular are discussed.  相似文献   

5.
The age and correlation of marginal moraines in Norway is discussed. A tentative location of the ice margin 15,000 B.P. is suggested, as well as a more firmly based location of the 10,000 B.P. ice margin. The results are preliminary and based partly on observations by the field parties of the I.G.C.P. project Quaternary Glaciations in the Northern Hemisphere'.  相似文献   

6.
Because of its well-developed ice-marginal zones, SW Sweden is an important reference area for the study of deglaciation, chronology and palaeoclimate 13,500-10,000 B.P. The ice-marginal zones are described and defined. Earlier research and opinions concerning the deglaciation are summarized. Based on radiocarbon dates from shells, vertebrate bones and limnic sediments, a revised deglaciation chronology is presented. This chronology is supported by biostratigraphic transects of time-space diagrams. The radiocarbon and varve chronologies are compared. Some ice-marginal zones are supposed to be 400 to 900 years older than expected from the varve chronology. The deglaciation chronology is correlated within the southern margin of the Scandinavian inland ice. Various consequences for the interpretation of glacial dynamics, shoreline displacement, and the biological environment are mentioned.  相似文献   

7.
Thinning of the ice sheet took place by two different processes - by the melting of ice over the whole or part of the surface and by the outflow of ice from the central parts of the ice body. A simulation model should therefore include both types of processes. A first draft of a model for the melting is presented, together with some notes about other parts of a complete, complex model for the thinning of the ice.  相似文献   

8.
The deglaciation patterns of the Bergen and Nordfjord-Sunnmøre areas in western Norway are described and correlated. In the Bergen area the coast was first deglaciated at 12,600 B.P., with a succeeding re-advance into the North Sea around 12,200 B.P. Later, during the Allerød, the inland ice retreated at least 50 km, but nearly reached the sea again during the Younger Dryas re-advance, ending at 10,000 B.P. Sunnmøre was ice-free during an interstadial 28,000–38,000 B.P. Later the inland ice reached the sea. The final deglaciation is poorly dated in Sunnmøre, while further south in Nordfjord, it started slightly before 12,300 B.P., followed by a major retreat. No large re-advance of the inland ice occurred during the Younger Dryas. However, in the Sunnmøre-Nordfjord area many local glaciers formed outside the inland ice during the Younger Dryas. Limnic sediments outside one such cirque glacier have been cored and dated, proving that the glacier did not exist at 12,300-11,000 B.P., and that it was formed and disappeared in the time interval 11,000–10,000 B.P. (Younger Dryas). The erosion rate of the cirque glacier was 0.9 mm/year.  相似文献   

9.
Cores representing a 5.5m long sequence recovered from lake Æråsvatnet have been investigated for lithostratigraphy, micro- and macrofossils and radiocarbon chronology. For the first time in Fennoscandia the maximum Weichselian advance has been closely bracketed with radiocarbon datings (19,000–18,500 B.P.). A continuous stratigraphy from 18,500 B.P. and onwards, partly marine and partly lacustrine, discloses the local shoreline displacement, the palaeovegetation, the palaeoclimate and, together with other data, the deglaciation history. Two phases with a prevailing High Arctic climate have occurred: 18,000 to 16,000 B.P. and 13,700 to 12,800 B.P. Important climatic amelioration accelerating the deglacial recession occurred 16,000, 12,800 and 12,000 B.P. The continental ice sheet was situated close to its maximum position until about 16,000 B.P. The following deglaciation was interrupted by (a minor ?) readvance/halt about 15,000 B.P. (the Flesen event), 13,700-13,000 B.P. (the D-event), 12,500 B.P. (the Skarpnes event) and 11,000–10,000 B.P. (the TromsØ-Lyngen event). The deglaciation chronology and pattern can be correlated with the suggested deep-sea-stratigraphy-based stepwise pattern relying on the old age alternative for termination IA.  相似文献   

10.
Late Wisconsinan age glacial landforms and deposits indicate that an ice shelf of at least 60,000 km2 flowed northwestward into Viscount Melville Sound, probably from the M'Clintock Dome of the Laurentide Ice Sheet. The ice shelf overlapped coastal areas and laid Winter Harbour Till up to 125 m above present sea level on the southern coast of Melville Island, to 135 m on Byam Martin Island, to possibly 90 m on the northeast tip of Banks Island, and to 150 m on the north coast of Victoria Island. The contemporary sea level was 50 to 100 m higher than present (it now rises eastward). A maximum age of 10,340 ± 150 yr B.P. for the till, and thus the ice-shelf advance, is provided by shells in marine sediments which underlie it, whereas a minimum age of 9880 ± 150 yr B.P. is provided by overlying shells that postdate the ice advance. The major advance of shelf ice into Viscount Melville Sound may be the result of the rapid disintegration of the M'Clintock Dome while the climate ameliorated in the western Arctic.  相似文献   

11.
Sea-level changes in Beringia are especially significant because they affect the migration of land plants and animals between Asia and North America, and marine plants and animals between the Pacific and Arctic oceans. Previous studies of cores from the Bering and Chukchi shelves produced sea-level curves. Evaluation of these data suggests that nine of the radiocarbon-dated estimates of sea-level position are most reliable for the time period 19,000 to 10,000 yr B.P. The trend of these nine points is proposed as the basis for a regional sea-level curve for central Beringia. Constraints on the data must be noted, however, by anyone using them.  相似文献   

12.
13.
The author's chronology and pattern of the Late Weichselian deglaciation of southern Scandinavia, with emphasis on southwest Sweden, is based on multiple parameters. Björn E. Berglund (Lund) has proposed a drastic revision of this model. It is shown that Berglund's model leads to impossible consequences and is even contradicted by his own data. It is therefore found not tenable.  相似文献   

14.
Changes in ocean temperature, carbonate productivity, and ice-rafted detritus in the North Atlantic suggest that half of the Northern Hemisphere ice volume at the last glacial maximum had disappeared by 13,000 yr B.P., despite the still-extensive limits of the ice sheets. This early thinning of the ice sheets occurred during a time when summer insolation values were slowly rising but when pollen evidence south of the ice margins indicates cold, dry air masses. We infer that this rapid early ice disintegration (16,000–13,000 yr B.P.) was caused by oceanic mechanisms: (1) rising sea level, causing increased calving along ice margins; (2) the chilling of the sea-surface by icebergs and meltwater, reducing moisture extraction by the atmosphere and transport to the ice sheets; and (3) winter freezing of the low-salinity meltwater layer, suppressing local moisture extraction and the regional influx of moisture-bearing storms from lower latitudes in winter and hence starving the ice sheets. These oceanic feedback mechanisms were strongest from 16,000 to 13,000 yr B.P., and weaker but still active from that date until the end of deglaciation at 6000 yr B.P.  相似文献   

15.
16.
In the summer of 1960, mammoth bones were discovered by a dragline operator in southern Wyoming at the Union Pacific (U.P.) Mammoth site. Although subsequent archaeological work during 1960 and 1961 identified artifacts in association with the mammoth remains, many authors have since questioned the nature of that association. Also, little has been published about the site other than a brief article in National Geographic Magazine in 1962. In this paper, we present additional information on the U.P. Mammoth site including stratigraphic profiles from the first author's geoarchaeological work in 1961, stratigraphic and spatial location of bones and artifacts derived from the original field notes, and new radiocarbon dates. Although the precise stratigraphic provenance for many artifacts and skeletal elements remains unclear, a compelling argument can be made for spatial and stratigraphic association of the mammoth remains with the artifact assemblage suggesting some kind of human interaction with the animal.  相似文献   

17.
The development of reliable paleoclimatic maps at a global scale requires data at the following three levels of analysis: (1) well-recorded observations of evenly positioned, well-dated geological evidence (Level I), (2) paleoclimatic estimates derived from this evidence by well-defined quantitative repeatable methods (Level II), and (3) maps synthesizing the estimates from several independent sources of geological evidence (Level III). Our paper describes much of the currently available paleoclimatic data from unglaciated terrestrial areas at ca. 18,000 yr B.P. and illustrates the quantity and quality of the data at both the Level I and the Level II stages of analysis. Although the scarcity of well-dated evidence for this time period precluded any major Level III syntheses of the information, comparisons were drawn where possible between the geological evidence and the climatic conditions simulated by general-circulation model experiments of Gates, 1976a, Gates, 1976b and Manabe and Hahn (1977). Of the more than 320 sites with data from 18,000 yr B.P., only 65 are well-dated with bracketing dates within the interval of 23,000 to 13,000 yr B.P., whereas about 100 are undated or poorly dated. We concentrated our survey on palynological and paleobotanical evidence and also thoroughly reviewed the evidence for water levels in lakes at 18,000 yr B.P. In areas with few of these sources of evidence, data on former snowlines, periglacial features, and eolian deposits were included, but the survey of these data is far from complete. Maps of the assembled data reveal the consistency of the paleoclimatic estimates in “data-rich” areas and also show which areas required additional information. The maps show that conditions were colder than present at 18,000 yr B.P. for all sites with temperature estimates. Estimated temperature depressions varied from ca. 1° to 12°C or more, depending on the location of the sample, the type of geological evidence, and the method of temperature estimation. Interpreted hydrological conditions were more variable spatially than the temperature estimates. The southwestern U.S. was moister than present, whereas the southeast may have been drier. Europe and the northern Mediterranean across to Afghanistan were drier than present, but northwest Africa was wetter. Australia was mainly drier than present, but several sites there as well as in Africa show significant climatic changes between 21,000 and 16,000 yr B.P. This latter evidence suggests that considerable variability may have occurred during the several thousand-year period centered on 18,000 yr B.P. Accurate time control is therefore required for the geological data used to study the climate dynamics of 18,000 yr ago. Large portions of South America and Asia as well as significant portions of the other continents lack the data base, or at least the well-dated base, required to define the 18,000 yr B.P. climate. In the few areas where comparisons were made with the Ice Age climates simulated by general-circulation models, general agreement existed between the geological evidence and the model simulations. Many critical comparisons were thwarted, however, by the lack of model simulations for all seasons at 18,000 yr B.P. Difficulty in validating precipitation anomalies in the tropics also arose because surface-albedo values, which are a vital input to the general circulation models, are estimated from the same evidence that is used to validate the results of the models.  相似文献   

18.
Chemical analyses of the acid-soluble and clay-size fractions of sediment samples (1500-yr resolution) reveal oscillations of lake salinity and of glacial advances in core OL-92 back to 155,000 yr B.P. Relatively saline conditions are indicated by the abundance of carbonate and smectite (both pedogenic and authigenic), reflected by Ca, Sr, and Mg in the acid-soluble suite, and by Cs2O, excess MgO, and LOI (loss on ignition) in the clay-size fraction. Rock flour produced during glacial advances is represented by the abundance of detrital plagioclase and biotite in the clay-size fraction, the ratio of which remains essentially constant over the entire time span. These phases are quantitatively represented by Na2O, TiO2, Ba, and Mn in the clay fraction. The rock-flour record indicates two major ice-advances during the penultimate glacial cycle corresponding to marine isotope stage (MIS) 6, no major advances during the last interglaciation (entire MIS 5), and three major advances during the last glacial cycle (MIS 2, 3, and 4). The ages of the latter three correspond rather well to36Cl dates reported for Sierra Nevada moraines. The onset of the last interglaciation is shown by abrupt increases in authigenic CaCO3and an abrupt decrease in rock flour, at about 118,000 yr B.P. according to our time scale. In contrast, the boundary appears to be gradual in the δ18O record in which the change from light to heavy values begins at about 140,000 yrs B.P. The exact position of the termination, therefore, may be proxy-dependent. Conditions of high carbonate and low rock flour prevailed during the entire period from 118,000 yr B.P. until the glacial advance at 53,000 yr B.P. signaled the end of this long interglaciation.  相似文献   

19.
Detailed outcrop studies at the flanks of Al Kufrah Basin, Libya, reveal the nature of glacially-related sedimentation and post-depositional deformation styles produced in association with the Late Ordovician glaciation, during which ice sheets expanded northward over North Africa to deposit the Mamuniyat Formation. At the SE basin flank (Jabal Azbah), the Mamuniyat Formation is sand-dominated, and incises interfingering braidplain and shallow marine deposits of the Hawaz Formation. The glacially-related sediments include intercalations of mud-chip bearing tabular sandstones and intraformational conglomerates, which are interpreted as turbidite and debrite facies respectively. These record aggradation of an extensive sediment wedge in front of a stable former ice margin. An increase in mudstone content northward is accompanied by the occurrence of more evolved turbidites. A widespread surface, bearing streamlined NW–SE striking ridges and grooves, punctuates this succession. The structures on the surface are interpreted to have formed during a regional north-westward ice advance. Above, siltstones bearing Arthrophycus burrows, and Orthocone-bearing sandstones beneath tidal bars testify to glaciomarine conditions for deposition of the underflow deposits beneath. By contrast, the northern basin margin (Jabal az-Zalmah) is appreciably different in recording shallower water/paralic sedimentation styles and major glaciotectonic deformation features, although facies analysis also reveals northward deepening. Here, a siltstone wedging from 8 to 50 m toward the north was deposited (lower delta plain), succeeded by climbing ripple cross-laminated sandstones up to 60 m in thickness (distal through proximal delta mouth bar deposits) with occasional diamictite interbeds. These rocks are deformed by thrusts and > 50 m amplitude fault-propagation folds, the deformation locally sealed by a diamictite then overlain by conglomeratic lag during ultimate deglaciation. Integrating observations from both basin margins, a model of fluvial-dominated delta systems feeding a pulsed debrite and turbidite fan system in a shallow proglacial shelf is proposed.  相似文献   

20.
The Quaternary of the Kattegat area, Scandinavia: a review   总被引:1,自引:0,他引:1  
The Quaternary sedimentary history and its relations to the pre-Quaternary in the Kattegat region are reviewed. The Quaternary in the area is restricted to relatively young sediments, including scattered findings of Saalian deposits and more continuous occurrences from the Eemian, the Weichselian and the Holocene. Glacial and interglacial palaeoenvironmental reconstructions, including Holocene changes in oceanographic circulation, are reviewed, and the recent sedimentary processes and the present hydrographic regime are outlined. Furthermore, Quaternary and present tectonic activity in connection with some of the pre-Quaternary fault zones is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号