首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鄂西高磷鲕状赤铁矿原矿全铁品位47.56%,含P 0.93%,主要脉石矿物为绿泥石、磷灰石、石英、方解石、铁白云石,属难选铁矿石。通过磁化焙烧-磨矿-磁选优化工艺,最佳磁化焙烧条件为:焙烧温度800℃、焙烧时间90min、还原剂用量12%,焙烧矿磨矿细度-0.074mm占85.15%,经弱磁选可得到全铁品位为58.13%、磷含量0.70%,铁回收率为90.41%的粗精矿。对磁化焙烧-磁选过程的各产物组成分析表明,焙烧矿和粗精矿中主要矿物为磁铁矿,占比分别为65%和85%;主要脉石矿物为绿泥石、磷灰石、石英、铁白云石等。粗精矿矿物的嵌布粒度较细,-0.074mm粒级占85.15%,但部分矿物仍以相互浸染、包裹、鲕状碎屑、连晶等形式存在,矿物仍未完全单体解离,从而导致粗精矿中杂质磷、铝等含量较高。粗精矿细磨后粒度-0.022mm含量为80%时,磁铁矿的解离度为84.63%,可实现磁铁矿充分单体解离,经过深选可提高铁精矿质量。  相似文献   

2.
以云南文山都龙锡锌多金属矿硫粗精矿为研究对象,通过化学分析、X射线衍射及光学显微镜等手段对该粗精矿进行了详细的工艺矿物学研究。结果表明,硫粗精矿中硫主要赋存状态为六方磁黄铁矿,锌的主要赋存矿物为铁闪锌矿,锡主要赋存状态为锡石,有害元素砷主要赋存状态为毒砂,脉石矿物主要为白云母和绢云母。毒砂已单体解离,磁黄铁矿和铁闪锌矿大部分已单体解离,绝大部分锡石与未单体解离的磁黄铁矿和铁闪锌矿连生,硫、锌、锡的品位总体随着粒级的减小而降低。根据工艺矿物学研究,都龙锡锌多金属矿硫粗精矿宜采用摇床预先抛尾,磁选脱除毒砂,初步试验表明该工艺取得了较好的脱砷效果。该研究结果可以为都龙锡锌多金属矿硫粗精矿提质降杂和资源综合利用提供科学依据。  相似文献   

3.
在对山东汶上低品位磁铁矿矿石进行矿石工艺矿物学研究的基础之上,通过磨矿、磁选管实验及磁选扩大实验研究,确定了其最佳的磁选工艺流程结构及磨选工艺指标。工艺矿物学研究表明,汶上磁铁矿矿石的嵌布粒度较细,大部分磁铁矿的粒度为0.02mm~0.05mm,磁铁矿主要呈细粒浸染状分布在角闪石和石英等脉石矿物中;磨矿磁选管实验研究表明,铁矿石经过一段磨矿,磁铁矿的单体解离度较低,通过一段磁选难以获得品位合格的铁精矿,磁选扩大实验研究表明,控制一段磨矿细度-200目含量58.64%(-325目含量46.41%),经过一段粗选,获得粗精矿;粗精矿再磨至细度为-325目含量98.5%,对再磨粗精矿经过再选和两段精选获得最终合格铁精矿的品位66.20%,磁选扩大试验铁回收率达到70.58%。  相似文献   

4.
土耳其某铜硫铁矿,其原有的生产流程为硫化矿混浮—铜硫分离—浮选尾矿磁选回收磁铁矿工艺,因其生产的铜精矿品位过低而开展了新分离试验研究。本分离研究在原矿工艺矿物学研究基础上,对可能影响选矿指标的因素进行了分析。研究过程发现,该原矿中具有强磁性的方黄铜矿及单斜磁黄铁矿的存在是影响选矿指标的最大因素。分离研究在合理的药剂制度上最终确定了硫化矿混浮—硫化矿精矿磁选分离—磁选精矿及尾矿分别进行铜硫分离—混浮尾矿磁选回收磁铁矿工艺。新工艺可获得达入冶标准的铜精矿、硫精矿、铁精矿,极大地提高了原矿的产出价值。  相似文献   

5.
针对某辉钼矿中伴生石榴石综合利用的可能性研究,采用化学分析、XRD、偏光显微镜以及MLA分析软件对矿石中石榴石工艺矿物学性质进行研究。结果显示,钼矿中主要矿物成分为石榴石,透辉石,白云石等,其含量分别是42.59%,28.01%,7.89%,其中石榴石的晶体化学式为(Ca_(0.859) 8Fe0.119 6 Mn0.020 6)3(Al0.773 2,Fe0.226 8)2[Si0.990 8O4]3,为钙铝石榴石;矿石中石榴石以粗粒块状构造为主,可见粒状变晶结构和包含结构。矿石中1mm以上的石榴石颗粒占67.93%,0.5mm以上的颗粒占79.9%,部分粗颗粒石榴石中包含方解石,透辉石和石英等非金属矿物。将矿石破碎到-4mm以下,钙铝石榴石的单体解离度仅为50.69%,连生体中以60%~90%富连生体为主,其含量为42.14%,二者合计92.83%。根据钙铝石榴石的工艺矿物学性质以及石榴石矿物的物理性质,推荐采用粗粒干式强磁预选-预选粗精矿磨矿-弱磁选除铁-高梯度磁选-重选原则流程对石榴石进行高效回收。  相似文献   

6.
某冶炼镍矿渣中全铁品位为37.82%,为了研究该镍渣中铁矿物综合回收的可能性,在对镍渣进行粒度组成分析、化学全分析、矿物组成分析及铁物相分析的基础之上进行了不同细度和不同磁场强度下的弱磁选实验,研究发现,镍矿渣中的铁主要赋存在+200目以上的粒级中,该粒级中铁分布率为84.74%。镍矿渣中主要金属矿物为磁铁矿和铁镁氧化物类矿物,其含量分别为11.07%和2.09%,杂质矿物铁(镁)橄榄石的含量高达86.58%;镍矿渣中磁性铁含量为36.09%,其占有率为95.43%,将镍矿渣磨矿至-325目97.86%,在不同的磁场强度下进行弱磁选,选矿指标仍不理想,原矿、精矿、尾矿铁品位比较接近,分布在36%~38.5%,通过弱磁选无法对磁铁矿进行有效回收;对镍矿渣进行的MLA磁铁矿嵌布粒度分析结果表明,镍矿渣颗粒中的磁铁矿大多以薄壳的形式存在于镍矿渣颗粒边缘,薄壳厚度大多在10μm以下,通过常规磨矿的方式难以使其从脉石矿物铁(镁)橄榄石及其他伴生杂质矿物中解离出来,磁铁矿解离度达不到分选要求,因此无法采用弱磁选的方式对其进行有效回收,镍矿渣中的磁铁矿无法分离生产铁精粉,建议整体利用,用来生产建筑微晶玻璃、建筑砌块或水泥铁质校正原料。  相似文献   

7.
以平果铝业公司的高铁泥为原料利用拜耳法分析高铁赤泥的基本性质,并研究采用添加煤粉还原的磁化焙烧——磁选工艺,从高铁赤泥中回收铁精矿的工艺技术,对工艺参数进行优化,寻找精矿品位和回收率参数等可能提高的途径,研究结果表明:焙烧温度800℃,焙烧时间30 min,磨矿时间5 min,煤粉用量4倍,磁选磁场强度2 000 Oe工艺条件下获得精矿品位为54.51%,回收率55.01%.回收率低的主要原因是铁矿和脉石没有实现单体分离,可以通过更高解离度的磨矿来实现.  相似文献   

8.
某萤石矿中萤石与石英密切共生.采用磨矿-浮选工艺流程进行选矿试验,虽然所得萤石精矿w(CaF2)达98%以上,但精矿中杂质w(SiO2)>1%.采用阶段磨矿阶段浮选工艺流程,获得了w(CaF2)=98.07%,w(SiO2) =0.77%的优质萤石精矿;粗精矿再磨使萤石充分单体解离,有助于降低浮选精矿中二氧化硅.  相似文献   

9.
采用矿物自动检测仪(MLA)、扫描电镜能谱仪(EDS)、X射线荧光光谱仪(AxiosmAX)等分析技术和光学显微镜(OM)观察,对国外某钒钛铁矿进行了系统的工艺矿物学研究.结果 表明,本矿石为深度蚀变氧化矿,包含了从原生到氧化带的一系列矿物,铁矿物为主要赤铁矿,少量磁铁矿和磁赤铁矿,钒主要赋存于铁矿物中;钛矿物主要为钛铁矿和蚀变钛铁矿.铁矿物与钛矿物嵌布关系十分紧密,难以磨矿解离.在工艺矿物学研究基础上,采用磁选回收工艺,原矿经弱磁选得到了Fe、V2O5、TiO2品位分别为60.28%、1.06%、9.85%,回收率分别为7.98%、8.32%、4.05%的含钒铁精矿;弱磁选尾矿经强磁选得到较高品位的钛铁精矿,Fe、V2O5、TiO2品位分别为49.42%、0.82%、16.46%,回收率分别为78.52%、77.23%、81.19%,该精矿可作为进一步提取钒、钛、铁的原料.  相似文献   

10.
红土夹杂型磁铁矿石是比较特殊的磁铁矿,这类矿石中赤铁矿(Fe_2O_3)和磁铁矿(Fe_3O_4)结合较紧密,其中的赤铁矿在弱磁选矿时也常被选出,而错误的将其归属磁铁矿石类,因此检测该类矿石中的磁性铁,可以通过超声波分离方法使其较彻底的分离。  相似文献   

11.
杨波  童雄  谢贤  黄凌云  王晓 《矿物学报》2021,41(3):294-300
随着矿产资源开发利用程度的逐年加剧,目前大部分有色金属选厂处理的都是品位低、嵌布粒度细的复杂多金属矿,为提高有价金属的选矿回收率、降低磨矿成本,大部分选厂都采用"阶段磨矿、阶段选别"工艺,其中以浮选粗精矿的再磨最为常见.硫化矿浮选粗精矿的再磨可显著提高磨矿效率及目的 矿物解离度,但生产实践中大部分选厂仅关注目的 矿物的解离度,而忽视了硫化矿浮选粗精矿再磨过程中磨矿介质、磨矿方式、矿浆电化学环境等多种因素对矿物表面性质及浮选行为的影响.文章系统总结了硫化矿浮选粗精矿矿物组成特点及矿浆化学性质的基础上,综述了硫化矿浮选粗精矿再磨过程中磨机类型及磨矿方式、磨矿介质材质及形状、矿浆电化学环境、药剂浓度等多种因素对再磨后矿物表面性质及浮选行为的影响规律,指出通过精矿再磨工艺参数及矿浆电化学环境的合理优化调整,增强矿物表面间的亲水/疏水性差异,提高精选分离效果应是未来硫化矿浮选粗精矿再磨研究关注的重要方向.  相似文献   

12.
为确定云南某硫化铜矿矿石性质,制定合适的选矿方案.采用化学多元素分析、X射线衍射分析仪(XRD)、物相分析、矿物解离分析(MLA)和扫描电镜等分析测试技术,研究了矿石的矿物组成、连生体矿物共生特性及铜、硫的嵌布状态等.结果 表明,原矿含铜0.141%、硫9.80%,铜主要以硫化铜形式存在,硫的赋存形式以硫化物(黄铁矿)为主.黄铜矿多呈它形粒状,主要与黄铁矿、磁黄铁矿、褐铁矿、菱铁矿、石英、绿泥石共生;黄铁矿多呈它形粒状,主要与磁黄铁矿、菱铁矿、石英、钙铁榴石共生.脉石矿物主要为石英和钙铁榴石.针对矿石性质,采用"混合浮选—铜硫分离"的选铜工艺流程,根据最佳条件参数进行铜硫分离闭路试验,得到了铜品位、回收率分别为15.34%、58.75%的铜精矿;硫品位、回收率分别为30.44%、55.04%,含铁39.13%的硫精矿.相较现场生产指标,铜精矿品位提高了5%,回收率提高了近20%.铜硫分离效果显著,为低品位硫化铜矿铜的回收提供了借鉴.  相似文献   

13.
磁性铁是超贫磁铁矿勘查中的基本分析项目之一,为准确测定磁性铁的含量,首先需要实现磁性铁的定量分离。目前常用的手工内磁选法由于所用磁铁的有效磁场强度难以保证,而且受人为操作的影响较大,导致分析结果的重现性差。本文应用50 m L滴定管、电磁铁和三相异步电动机,研制了一种新型磁选装置——电磁式磁性铁分选装置,实现了超贫磁铁矿中磁性铁与非磁性铁的定量分离,结合重铬酸钾容量法建立了超贫磁铁矿中磁性铁的分析方法。在选定的磁选条件下(电流2.5 A,磁选管运动频率40 r/min,磁选时间5 min)分析铁矿石标准物质,磁性铁的测定值与标准值的相对误差小于1.0%;分析采自实际矿区的超贫磁铁矿样品,磁性铁的测定结果与手工内磁选法一致,且相对标准偏差(RSD,n=5)小于1.0%,优于手工内磁选法的精密度。本方法采用的电磁式磁性铁分选装置有效地控制了磁场强度的强弱,避免永磁铁出现磁损失,同时可以量化磁性铁分离的参数,提高了磁性铁的分析精度。  相似文献   

14.
论述了含假象赤铁矿铁矿石磁选工艺流程的改进。利用磁团聚工艺省去了赤铁矿回收段单独的粗精矿再磨设备及后继的中磁场精选作业。节省了设备投资费用及生产成本,而且铁实收率较之传统工艺有所提高。对类似该矿石性质的氧化带混合铁矿石磁选流程的制定及现场流程改造有启迪意义。  相似文献   

15.
张予钊 《江苏地质》1998,22(4):216-218
论述了含假象赤铁矿铁矿石磁选工艺流程的改进。利用磁团聚工艺省去了赤铁矿回收段单独的粗精矿再磨设备及后继的中磁场精选作业。节省了设备投资费用及生产成本,而且铁实收率较之传统工艺有所提高。对类似该矿石性质的氧化带混合铁矿石磁选流程的制定及现场流程改造有启迪意义。  相似文献   

16.
中国云南省有大量的铜铅锌多金属硫化矿资源,该类矿产资源的高效选矿分离是影响企业经济效益的主要问题之一.针对云南迪庆地区的硫化混合精矿,该混合精矿铜、铅、锌三种有价金属共存,分离难度较大,导致其产品难以销售或冶炼.本文采用化学分析、X射线衍射法和矿物解离度分析(MLA)等多种检测方法,对该混合精矿的主要元素含量、矿物组成...  相似文献   

17.
河南省方城北碱性岩从北西-南东主要由宋坟碱性岩体、双山碱性岩体、塔山碱性岩体组成.本次对该碱性岩采用化学分析、人工重砂、电子探针等方法进行了研究,结果表明宋坟和双山碱性岩体内部相霞石正长岩、塔山北霓石正长细晶岩铌含量较高,且从北西-南东向铌含量增高趋势明显;宋坟霞石正长岩含铌矿物为烧绿石,常被磁铁矿包裹;双山霞石正长岩含铌矿物为烧绿石,主要与磁铁矿呈连体分布;塔山北霓石正长细晶岩含铌单矿物主要为铌铁矿,多呈单体解离分布.根据含矿岩体规模大小、铌钽含量高低及含铌矿物分离解体难易程度,建议下步对双山霞石正长岩、塔山北霓石正长细晶岩开展工作,该处有望成为中型铌钽矿产地.  相似文献   

18.
安徽泥河铁矿是一个典型的玢岩型铁矿,矿体埋深大,在地表产生的重磁异常幅值较小。为评估重磁资料精细处理与三维反演在磁铁矿深部勘查中的应用效果,选择泥河铁矿开展基于已知信息约束的重磁反演试验:首先通过模型试验对比了不同已知信息约束条件下的三维反演效果,然后通过针对性的位场分离方法提取了泥河铁矿的剩余重磁异常,将已知的地表地质信息转化为物性信息,构建了剩余密度和磁化率参考模型,用以约束重磁三维反演。根据反演所得密度体及磁化率体的三维分布模型,结合物性与岩性之间的关系,确定了泥河铁矿体的三维空间形态,该结果与地质勘探结果基本吻合。研究结果表明,基于已知信息约束的重磁三维反演,可以大幅提高反演结果的可靠性,对于高磁高密度的磁铁矿而言,是寻找和刻画深部磁铁矿体的有效方法。  相似文献   

19.
乌腊德矿区磁铁矿石中磁铁矿粒度相对较粗,以+0.074mm为主,约占60.74%。磁铁矿粒度虽较粗,但多包裹有非金属矿物,因此要获得高品质铁精矿,需使磁铁矿中包裹的非金属矿物基本解离。通过实验研究,采用阶段磨矿(一段磨矿细度-0.074mm55%,二段磨矿细度-0.074mm85%)-阶段磁选(一次精选)工艺处理该矿区铁矿石在当前钢铁市场低迷时期具有较好的经济效益,可获得了含TFe 62.70%、铁回收率93.31%的铁精矿。  相似文献   

20.
曾广圣  欧乐明 《岩矿测试》2019,38(2):160-168
秘鲁铜硫矿石的主要回收对象是铜和硫矿物,由于铜矿物嵌布复杂、粒度过细以及与各种脉石矿物或金属矿物交生关系紧密,利用传统工艺矿物学研究方法如化学分析、光学显微镜检测等较难准确定量其工艺矿物学参数。本文采用化学分析、X射线衍射、扫描电镜、偏光显微镜及矿物参数自动分析系统(MLA)等技术手段,研究秘鲁铜硫矿石的化学成分、矿物组成和主要矿物的嵌布特征、粒度分布及单体解离特性等,并对影响选矿指标的主要矿物学因素进行分析。结果表明:矿石中主要元素为Cu(0.65%)和S(9.53%)。矿石中黄铁矿(16.57%)含量较高,形态较为规则,与其他矿物之间的交生关系相对简单,粒度普遍偏粗,其中粒径大于0.30mm的黄铁矿占95.06%。铜矿物主要以不规则粒状、皮壳状、网脉状、纤维状、尘粒状、斑点状分布于脉石中或与黄铁矿、闪锌矿、磁铁矿等金属矿物交生紧密,粒度极不均匀,使得铜矿物解离难度加大,且矿石中云母(12.51%)、绿泥石(3.74%)、滑石(3.34%)、高岭石、蒙脱石(3.59%)等黏土质矿物含量较高,在磨矿过程中易发生泥化从而恶化分选环境。根据该类型矿石的工艺矿物学特性,本文建议采用"粗磨-部分优先浮铜-铜硫混浮-混合精矿再磨再选分离"的工艺流程,可得到质量高的铜、硫精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号