首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This purpose of this paper is to study the dynamic characteristics of the Fei-Tsui arch dam using the seismic response data and the ambient vibration data. For the identification of dam properties from seismic response data, the multiple inputs from the abutment of the dam to represent the nonuniform excitations of seismic input motion are considered, and the ARX model is applied using the discrete-time linear filtering approach with least-squares approximation to identify the dynamic characteristics of the dam. The system modal dampings, natural frequencies and frequency response functions are identified. A comparison of the identified modal parameters is made among different seismic events. Post-earthquake safety evaluation of the dam can be made based on the identified model. Finally, the ambient vibration test of the dam is performed to identify the mode shapes along the dam crest.  相似文献   

2.
Deamplification of strong motion and the increase of the effective period of soil deposits are typical nonlinear effects; we seek them in SMART1-array data by applying the horizontal-to-vertical spectral ratio (HVSR) technique. The recordings, from four soil and one rock stations, represent 23 earthquakes (ML 4.9–7.0); PGA varies between 20–260 cm/s2. For each station, mean HVSR curves are calculated for two PGA ranges: <75 cm/s2 and >100 cm/s2 (weak and strong motion). At the soil stations, the “weak” (linear) and “strong” (nonlinear) responses are significantly different. Below 1–1.8 Hz, the nonlinear response exceeds the linear one. Above 2 Hz, the nonlinear response drops below the linear one and above 4–6 Hz below unity (deamplification). From 10 to 16 Hz, the two responses converge. One soil site shows significant negative correlation between resonance frequency and ground acceleration. Such behaviour agrees with other empirical studies and theoretical predictions. Our results imply that the HVSR technique is sensitive to ground-motion intensity and can be used to detect and study nonlinear site response.  相似文献   

3.
采用汶川地震强余震26个强震动台站记录,基于H/V谱比法,计算台站场地的强、弱震作用下场地卓越频率之比R_(fp)和体现强、弱震作用下场地H/V谱比曲线差异程度的DNL,进而识别并分析场地非线性反应特征。结果显示,R_(fp)、DNL与PGA之间存在显著相关性;其中10个台站出现明显的场地非线性反应特征;大部分台站发生场地非线性反应的PGA阈值为100 cm/s~2,部分为50 cm/s~2;实例证明,因某些台站不易通过H/V谱比法识别场地卓越频率,因此采用R_(fp)识别场地非线性反应具有一定局限性。  相似文献   

4.
To identify the model structure parameters in shaking table tests from seismic response, especially from timevarying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models(AFMM) and offline Auto-Regression with eXogenous variables(ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identifi ed from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identifi ed by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete(RC) frame structure in a shaking table test.  相似文献   

5.
This paper presents the implementation details of a real‐time pseudodynamic test system that adopts an implicit time integration scheme. The basic configuration of the system is presented. Physical tests were conducted to evaluate the performance of the system and validate a theoretical system model that incorporates the dynamics and nonlinearity of a test structure and servo‐hydraulic actuators, control algorithm, actuator delay compensation methods, and the flexibility of an actuator reaction system. The robustness and accuracy of the computational scheme under displacement control errors and severe structural softening are examined with numerical simulations using the model. Different delay compensation schemes have been implemented and compared. One of the schemes also compensates for the deformation of an actuator reaction system. It has been shown that the test method is able to attain a good performance in terms of numerical stability and accuracy. However, it has been shown that test results obtained with this method can underestimate the inelastic displacement drift when severe strain softening develops in a test structure. This can be attributed to the fact that the numerical damping effect introduced by convergence errors becomes more significant as a structure softens. In a real‐time test, a significant portion of the convergence errors is caused by the time delay in actuator response. Hence, a softening structure demands higher precision in displacement control. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Both linear and nonlinear behaviors of soil deposits were evaluated by strong and weak motion data observed on the surface and at depths of 6, 11, 17, 47 m at the Large Scale Seismic Test (LSST) array in Lotung, Taiwan. The soil properties measured by well logging and by the shear wave velocity profile measured by uphole and cross-hole methods are available. Both one-dimensional equivalent-linear method and nonlinear method are used for the evaluation have been used. The synthetic records at various depths are obtained by using the records at the bottom as input motion. These synthetic records are then compared with actual records at corresponding depths. Records of 13 earthquakes are used. We find that the synthetic records obtained from a linear model match well with actual records for small input motions, but the results obtained from a nonlinear model match poorly. On the other hand, the synthetic records using both the nonlinear model and equivalent-linear model are in good agreement with the observed records for large input motions. In these cases, the predicted response spectra using the linear model consistently overestimate the observed records. The threshold distinguishing the large and small input motions is 0.04 g at depth of 47 m for the LSST data. Thus, the nonlinearity started at 0.04 g and occurred unequivocally at 0.075 g. Furthermore, the dominant frequencies shift toward lower values when input motions become large. Clearly, the observed records at the LSST site manifest nonlinearity of soil response. The hysteresis loops evaluated by the nonlinear method show a permanent strain of about 0.01% in soil layers at higher ground motion input levels in this case.  相似文献   

7.
可控震源非线性扫描地震响应的数值模拟   总被引:5,自引:1,他引:5       下载免费PDF全文
讨论了几种非线性扫描信号自相关函数的旁瓣特性.对可控震源非线性扫描的地震响应进行了数值模拟.当震源扫描持续时间是检波器接收时间的一半时,相关运算把反射扫描信号压缩成脉冲信号的效果是显著的.有限度地增加震源扫描持续时间以及与之相适应的接收时间可以使反射扫描信号得到进一步的压缩,但在固定扫描与接收时间的条件下,增加采样点个数对反射扫描信号的压缩并不起作用.采用具有低频相关子波特性的非线性扫描震源信号,将有利于相关噪声的消除.模拟结果还证实了二次扫描在某些特定条件下会出现鞍点效应这样一个事实.  相似文献   

8.
The horizontal-to-vertical spectral ratio has become popular in studies of the site effect and the determination of the predominant period of a site.  相似文献   

9.
Summary In order to study the nonlinear physical processes connected with substorm activity we analyse time series of local geomagnetic field variations. The concepts of deterministic chaos and magnetospheric chaotic attractors are examined. The general objective of this article is to detect low dimensional magnetosphere chaos and to properly interpret it as a consequence of magnetosphere — ionosphere informational — energetic coupling.  相似文献   

10.
Hydrothermal systems are often studied by collecting thermal gradient data and temperature/depth curves. These data contain important information about the flow field, the evolution of the hydrothermal system, and the location and nature of the ultimate heat sources. Thermal data are interpreted by the “forward” method; the thermal field is calculated based on selected initial conditions and boundary conditions such as temperature and permeability distributions. If the calculated thermal field matches the data, the chosen conditions are inferred to be possibly correct. Because many sets of initial conditions may produce similar thermal fields, users of the “forward” method may inadvertently miss the correct set of initial conditions. Analytical methods for “inverting” data also allow the determination of all the possible solutions consistent with the definition of the problem. In this paper we suggest an approach for inverting thermal data from a hydrothermal system, and compare it to the more conventional approach. We illustrate the difference in the methods by comparing their application to the Salton Sea Geothermal Field by Lau (1980a) and Kasameyer, et al. (1984). In this particular example, the inverse method was used to draw conclusions about the age and total rate of fluid flow into the hydrothermal system.  相似文献   

11.
The possibility of determining parameters of complex geophysical processes is considered in terms of nonlinear dynamics. In accordance with modern approaches in the theory of nonlinear dynamic systems, the number of independent parameters controlling the behavior of a nonlinear system can be estimated from the available time realization of only one of these parameters. Model calculations showed that the dimension of the phase space of a dynamic system can be estimated from a sample of one variable. Experimental data on variations in the apparent electric resistivity (AER) and the relative vertical movement of the surface (RVMS) in a seismically active region are analyzed and the dimension of the dynamic system determining its behavior in the phase space is estimated. The resulting estimates of the embedding dimension m = 7?8 for AER variations and m = 6 for RVMS variations possibly characterize the complexity of the dynamic system describing the given fields. The method presented in the paper is also applied to the analysis of the degree of connectivity of different dynamic systems and their parameters. By the connectivity we mean the number of independent parameters simultaneously involved in the formation of the dynamic behavior of various physical fields. The model estimates demonstrate the possibility of such an approach. It is shown that variations in the AER in perpendicular directions are described by a general system of dynamic equations, whereas dynamic systems controlling the AER field and the RVMSs are interconnected only partially. The resulting dimension m = 12 estimated for the AER-RVMS system provides an estimate for the number of common controlling parameters: n = (8 + 6)?12 = 2. The methods and results presented in the paper are applicable to the construction of models of complex geophysical processes and the development and the development of new approaches and methods of identification of prognostic characteristics for the behavior of physical fields of various origins.  相似文献   

12.
The issue is addressed as to whether the horizontal-to-vertical spectral ratio (HVSR) method is sensitive to the amplitude of ground motion from near-field earthquakes. Twenty-one three-component accelerograms from two closely located similar soil sites in the town of Lefkas are used. The recordings represent 17 earthquakes covering a wide range of magnitudes, epicentral distances and azimuths. Peak horizontal accelerations (PGA) and velocities (PGV) lie in the ranges 20–540 cm/s2 and 1.4–55.2 cm/s. For each HVS ratio, the site's fundamental-resonance frequency, fres, is determined visually. Linear correlation analysis shows that fres is strongly (negatively) correlated to PGA and PGV (r between −0.7 and −0.8); no correlation is found with resonance amplitude or epicentral distance. We show that the observed correlation is attributable to soil nonlinearity and indicate how weak-motion estimates of fres can be corrected for use in assessing site response during strong shaking.  相似文献   

13.
A procedure has been presented in this paper to identify the structural parameters, viz. mass and stiffness matrices, from modal test data for multistorey shear buildings. The first two orders of modal data have been used by other researchers to estimate the global matrices where they depend only on measurable points which are less than the total number of structural degrees of freedom. The above method has been refined here by using Holzer criteria along with other numerical methods to estimate the global mass and stiffness matrices of the structure. This shows the methodology to be more efficient and accurate. The reliability of the procedure has been shown by examples of multistorey buildings. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Northern landscapes are dominated by a mosaic of lakes and streams, yet only a limited number of studies have explored how these lake-stream networks influence streamflow regimes. In order to gain further insight into the hydrologic behaviour of lake-stream systems, we conducted a study using long-term streamflow data to investigate the annual-, seasonal- and event-scale streamflow regimes of a lake-stream network at the Turkey Lakes Watershed (TLW) in central Ontario, Canada. Streamflow metrics were compared for seven lake and 12 no-lake catchments within the TLW, in addition to 14 no-lake catchments from other forested landscapes. It was difficult to attribute patterns in annual streamflow regimes to the influence of lakes due to the confounding influence of catchment size; however, streamflow regimes appeared to be less flashy at locations with more lake influence. In addition, lake catchments showed high similarity in streamflow regimes across seasons, whereas no-lake catchments showed more similarity to lake catchments during wet seasons but less similarity during dry seasons. Event-scale streamflow regimes further downstream from lake outlets were associated with greater increases in peakflow response and hydrograph rise rate following rain events than locations closer to lake outlets. Antecedent conditions were also important for both the peakflow response and rise rate, but less so than the amount of rainfall during the event. Variability in streamflow across lake-stream networks appears to be driven by interactions between delayed contributions from lakes and relatively rapid runoff contributions from hillslopes and tributaries without lakes. In addition, streamflow regimes are influenced by temporal changes in lake storage deficits, which are a function of lake and catchment properties, as well as hydrometeorological conditions. Our results highlight that a network-scale perspective that incorporates lakes and streams is needed to understand how these landscapes will hydrologically respond to environmental change.  相似文献   

15.
完整Coriolis力作用下非线性Rossby波的精确解   总被引:4,自引:0,他引:4       下载免费PDF全文
赵强  于鑫 《地球物理学报》2008,51(5):1304-1308
从包含完整Coriolis力的Boussinesq近似的斜压大气运动方程组出发,利用半地转近似导出β效应和地球旋转水平分量fH=2Ωcosφ共同作用下的大气非线性Rossby波动所满足的KdV方程,求得了椭圆余弦波解和孤立波解.结果分析表明,若扰动与纬度有关,Coriolis参数分量fH将影响波动传播的频率特征,并加强水平散度对斜压Rossby波的作用;如果扰动与纬度无关,则 Coriolis 参数分量fH的影响消失.  相似文献   

16.
Abstract

The problem of identifying and reproducing the hydrological behaviour of groundwater systems can often be set in terms of ordinary differential equations relating the inputs and outputs of their physical components under simplifying assumptions. Conceptual linear and nonlinear models described as ordinary differential equations are widely used in hydrology and can be found in several studies. Groundwater systems can be described conceptually as an interlinked reservoir model structured as a series of nonlinear tanks, so that the groundwater table can be schematized as the water level in one of the interconnected tanks. In this work, we propose a methodology for inferring the dynamics of a groundwater system response to rainfall, based on recorded time series data. The use of evolutionary techniques to infer differential equations from data in order to obtain their intrinsic phenomenological dynamics has been investigated recently by a few authors and is referred to as evolutionary modelling. A strategy named Evolutionary Polynomial Regression (EPR) has been applied to a real hydrogeological system, the shallow unconfined aquifer of Brindisi, southern Italy, for which 528 recorded monthly data over a 44-year period are available. The EPR returns a set of non-dominated models, as ordinary differential equations, reproducing the system dynamics. The choice of the representative model can be made both on the basis of its performance against a test data set and based on its incorporation of terms that actually entail physical meaning with respect to the conceptualization of the system.

Citation Doglioni, A., Mancarella, D., Simeone, V. & Giustolisi, O. (2010) Inferring groundwater system dynamics from hydrological time-series data. Hydrol. Sci. J. 55(4), 593–608.  相似文献   

17.
This work presents a novel procedure for identifying the dynamic characteristics of a building and diagnosing whether the building has been damaged by earthquakes, using a back‐propagation neural network approach. The dynamic characteristics are directly evaluated from the weighting matrices of the neural network trained by observed acceleration responses and input base excitations. Whether the building is damaged under a large earthquake is assessed by comparing the modal parameters and responses for this large earthquake with those for a small earthquake that has not caused this building any damage. The feasibility of the approach is demonstrated through processing the dynamic responses of a five‐storey steel frame, subjected to different strengths of the Kobe earthquake, in shaking table tests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Journal of Seismology - Seismologists found a significant deterioration in station quality after installation of wind turbines (WTs), which led to conflicts between WT operators and seismic...  相似文献   

19.
Strongback-braced frames employ an essentially elastic steel truss, or strongback, that distributes demands more uniformly to delay or prevent story mechanisms. Because inertial forces are no longer limited by the formation of a story mechanism, strongback-braced frames can exhibit large elastic force demands, particularly in the higher modes. This paper characterizes the higher-mode force response of strongback-braced frames. Four-story archetypes were designed using nonlinear dynamic analyses to incorporate higher-mode force demands into the design process. The response of the archetypes was compared with that of reference buckling-restrained braced frames that were allowed to form story mechanisms. The force demands in the strongback were then described using equivalent-static forces to represent the inertial forces induced by the higher modes. Force demands in the strongback arise from a yielding first-mode ‘pivoting’ and elastic higher-mode ‘bending’ response. These higher-mode force demands are elastic, ill-constrained by the strength of the yield mechanism, and depend significantly on the choice of ground motion record used for the analysis. In remaining elastic in the higher modes, the strongback distributes demands more uniformly and mitigates the formation of story mechanisms. Consequently, design and analysis methods for strongback-braced frames need to include estimates for these near-elastic higher-mode force demands.  相似文献   

20.
This paper presents an input and system identification technique for a soil–structure interaction system using earthquake response data. Identification is carried out on the Hualien large‐scale seismic test structure, which was built in Taiwan for international joint research. The identified quantities are the input ground acceleration as well as the shear wave velocities of the near‐field soil regions and Young's moduli of the shell sections of the structure. The earthquake response analysis on the soil–structure interaction system is carried out using the finite element method incorporating the infinite element formulation for the unbounded layered soil medium and the substructured wave input technique. The criterion function for the parameter estimation is constructed using the frequency response amplitude ratios of the earthquake responses measured at several points of the structure, so that the information on the input motion may be excluded. The constrained steepest descent method is employed to obtain the revised parameters. The simulated earthquake responses using the identified parameters and input ground motion show excellent agreement with the measured responses. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号