首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Altimeter measurements of sea‐level variability have errors due to the altimeter not repeatedly sampling the same point on the ocean surface. The errors are proportional to the local slope of the mean sea surface. Accurate removal of geoid error is essential if altimeter data are to be used to study the relationship between geostrophic turbulence and bathymetry. The error can be reduced by using an accurate model of the mean surface. We use the multiyear TOPEX altimeter data set to develop a model for the mean sea surface along the TOPEX/POSEIDON ground track by estimating the coefficients of a local plane centered on every 2 km x 7 km bin sampled by the altimeter. We have evaluated the ability of this model. compared against two global mean sea‐surface models, to reduce the error associated with steep gradients. The two global models are the Center for Space Research 1995 model and the Ohio State University 1995 model. The three models show similar variability over the oceans, and none shows the large residual errors that can be seen in collinear analysis near some seamounts and trenches. The standard deviation of the variability using the plane model, however, is consistently smaller in low‐variability, high‐geoid‐gradient areas, indicating a slightly better performance than the two global models.  相似文献   

2.
Satellite-measured along-track and gridded sea surface height (SSH) anomaly products from AVISO are compared with in situ SSH anomaly measurements from an array of 43 pressure-recording inverted echo sounders (PIESs) in the Kuroshio Extension. PIESs measure bottom pressure (P bot) and round-trip acoustic travel time from the sea floor to the sea surface (τ). The P bot and τ measurements are used to estimate, respectively, the mass-loading and steric height variations in SSH anomaly. All comparisons are made after accurate removal of tidal components from all data. Overall good correlations are found between along-track and PIES-derived SSH anomalies with mean correlation coefficient of 0.97. Comparisons between the two measurements reveal that the mass-loading component estimated from P bot is relatively small in this geographical region. It improves regression coefficients about 5?% and decreases mean root-mean-squared (rms) differences from 7.8 to 6.4?cm. The AVISO up-to-date gridded product, which merges all available satellite measurements of Jason-1, Envisat, Geosat Follow-On, and TOPEX/Poseidon interlaced, shows better correlations and smaller rms differences than the AVISO reference gridded product, which merges only Jason-1 and Envisat. Especially, the up-to-date gridded product reveals 6.8?cm rms improvement on average at sites away from Jason-1 ground tracks. Gridded products exhibit low correlation (0.75–0.9) with PIES-derived SSH in a subregion where the SSH fluctuations have relatively high energy at periods shorter than 20?days.  相似文献   

3.
4.
海洋环流模式中卫星遥感资料同化的应用进展   总被引:1,自引:0,他引:1  
物理海洋研究长久以来一直受到观测资料不足的制约,然而这一状况随着现代观测技术的迅猛发展得到了很大的改善。卫星遥感技术的发展提供了覆盖全球的、连续、实时的卫星观测数据,这是其他任何资料都无法比拟的。这些数据大部分难以直接运用来改善气候预测或数值模拟分析,然而资料同化技术的出现和发展改善了这一情况。  相似文献   

5.
High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argos and surface drifter data from Global Drifter Program. Maps of Sea Level Anomaly(MSLA) weekly files with a resolution of(1/3)° in both Latitude and Longitude for the period 1993–2012 have been used. The Ekman current is computed using ocean surface mean wind fields from scatterometers onboard ERS 1/2,Quikscat and ASCAT. The derived mean velocity field exhibits the broad flow of Antarctic Circumpolar Current with speeds up to 0.6 m/s.Anomalous field is quite significant in the western part between 20° and 40°E and in the eastern part between 80°E and 100°E with velocity anomaly up to 0.3 m/s. The estimated mean flow pattern well agrees with the dynamic topography derived from in-situ observations. Also,the derived velocity field is consistent with the in-situ ADCP current measurements. Eddy kinetic energy illustrates an increasing trend during 1993–2008 and is in phase coherence with the Southern Annular Mode by three month lag. Periodic modulations are found in the eddy kinetic energy due the low frequency Antarctic Circumpolar Wave propagation.  相似文献   

6.
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns. The annual cycle of the SCS gener- al circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July--August (January--February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which de- velopa into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 e- vent in response to the peak Pacific El Nino in 1997, the overall SCS sea level is found to have a significant rise during 1999~ 2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.  相似文献   

7.
The high primary production enhanced by anticyclonic eddies and hourly variation pattern in the productivity during the spring season in the East Sea were first investigated using the first Korean Geostationary Ocean Color Imager (GOCI). Even though the stratification for a seasonal spring bloom is not well developed in the water column in early April in the East Sea, a physical upward water flux movement at the periphery of the anticyclonic eddies could remain the phytoplankton in euphotic zone to sustain high chlorophyll-a concentration conditions in the Ulleung Basin. At this time, nutrients were no major controlling factor for phytoplankton growth since concentrations of major nutrients (nitrate, silicate, and phosphate) were relatively high in the observed eddy sites based on the observation data from the Korean Oceanographic Data Center (KODC). The estimated mixed layer depth (MLD) significantly shallower at the periphery supports for this mechanism. The hourly primary productivity estimation based on a Carbon-based Productivity Model (CbPM) provides a bimodal pattern along the time especially in L1 with an approximately one order magnitude difference between the lowest and highest values of productivities on 5 April, 2011. Potential possibilities for this large discrepancy in the hourly productivity and some thoughts on a short time in situ incubation method were discussed.  相似文献   

8.
We present results from a suite of methods using in situ temperature and salinity data, and satellite altimetric observations to obtain an enhanced set of mean fields of temperature, salinity (down to 2000-m depth) and steric height (0/2000 m) for a time-specific period (1992–2007). Firstly, the improved global sampling resulting from the introduction of the Argo program, enables a representative determination of the large-scale mean oceanic structure. However, shortcomings in the coverage remain. High variability western boundary current eddy fields, continental slope and shelf boundaries may all be below their optimal sampling requirements. We describe a simple method to supplement and improve standard spatial interpolation schemes and apply them to the available data within the waters surrounding Australia (100°E–180°W; 50°S–10°N). This region includes a major current system, the East Australian Current (EAC), complex topography, unique boundary currents such as the Leeuwin Current, and large ENSO related interannual variability in the southwest Pacific. We use satellite altimetry sea level anomalies (SLA) to directly correct sampling errors in in situ derived mean surface steric height and subsurface temperature and salinity fields. The surface correction is projected through the water column (using an empirical model) to modify the mean subsurface temperature and salinity fields. The errors inherent in all these calculations are examined. The spatial distribution of the barotropic–baroclinic balance is obtained for the region and a ‘baroclinic factor’ to convert the altimetry SLA into an equivalent in situ height is determined. The mean fields in the EAC region are compared with independent estimates on repeated XBT sections, a mooring array and full-depth CTD transects.  相似文献   

9.
Combined measurements of satellite altimeters make it possible to determine anomalies of the sea level of the Black Sea on a regular grid with a high spatial resolution 1/8°. In this work arrays of total geostrophic velocities of currents in the Black Sea basin are retrieved and compared with drifter measurements of current velocities for 1999–2007. The comparison is performed both for the whole array of drifter measurements (~110000 measurements) and individually for each drifter. To retrieve the velocities, two different arrays of mean dynamic topography (MDT) are used: synthetic and climatic mean dynamic topography. The comparison results demonstrate that using synthetic MDT is preferable for calculating geostrophic velocities. Velocities calculated by from satellite altimetry data agree with velocities obtained by in-situ data.  相似文献   

10.
The sea-surface height signatures of internal tides in the deep ocean, amounting to a few centimeters or less, are studied using two complementary measurement types: satellite altimetry and island tide gauges. Altimetry can detect internal tides that maintain coherence with the astronomical forcing; island gauges can monitor temporal variability which, in some circumstances, is due to internal tides varying in response to changes in the oceanic medium. This latter mechanism is at work at Hilo and other stations on the northern coasts of the Hawaiian Islands. By detecting spatially coherent low-frequency internal-tide modulations, the tide gauges, along with inverted echo sounders at sea, suggest that the mean internal tide is also spatially coherent; satellite altimetry confirms this. At Hawaii and in many other places, Topex/Poseidon altimetry detects mean surface waves, spatially coherent and propagating great distances (> 1000 km) before decaying below background noise. When temporal variability is small, the altimetry (plus information on ocean density) sets useful constraints on energy fluxes into internal tides. At the Hawaiian Ridge, 15 GW of tidal power is being converted from barotropic to first-mode baroclinic motion. Examples elsewhere warn that a simplistic interpretation of the altimetry, without regard to variability, noise, or in situ information, may be highly misleading. With such uncertainties, extension of the Hawaiian results into a usefully realistic estimate of the global internal-tide energy balance appears premature at this time.  相似文献   

11.
孟加拉湾上层地转环流周年变化的遥感研究   总被引:2,自引:1,他引:1  
邱云  李立 《海洋学报》2007,29(3):39-46
应用1993~2003年TOPEX/Poseidon卫星测高数据结合历史水文资料,反演了孟加拉湾海面动力地形的平均周年变化,探讨了孟加拉湾上层环流季节特征和演变规律.结果显示,虽然孟加拉湾的大气环流受季风支配年周期波动显著,但表层环流形态的周年演变却呈3个不同的阶段.1~4月间(东北季风后期)湾内受一个海盆尺度的强大反气旋式环流的支配,湾口为西向流;5月西南季风骤起,印度季风漂流越过印度半岛南端出现在湾口,湾内反气旋环流弱化,在其南北两侧各出现一气旋式涡,构成5~9月间南北相间的三涡结构;10月东北季风再起,湾口漂流再次转向,10~12月间湾内则为海盆尺度的弱气旋式环流.受上述环流格局影响,位于西边界的印度沿岸流亦呈相应的3个阶段变化.分析表明,孟加拉湾风应力旋度的变化是造成湾内环流3个阶段演变的主要原因.本地风场和来自赤道海域的外强迫的共同驱动形成了孟加拉湾环流周年演变的独特规律.  相似文献   

12.
13.
Using satellite altimetry measurement data for 1993–2013, we study the spectral characteristics of Rossby waves in the Northwestern Pacific (25°–50° N, 140°–180° E). For each latitude degree, we draw integral plots of spectral power density calculated with a two-dimensional Fourier transform (2D-FFT). We compare the dispersion equations of Rossby waves calculated from the WKB-approximation and an approximation of a two-layer ocean model with the empirical velocities determined by the slope of isopleths by the Radon method; also, we compare the dispersion equations with the spectral distributions of level variations. It is shown that the main energy of Rossby waves in the Northwestern Pacific corresponds to the first baroclinic mode. At almost all latitudes, there is good agreement between the empirical phase velocities calculated by isopleths by the Radon method and the theoretical values; also, the spectral peaks correspond to graphs of the dispersion equations for the first baroclinic mode Rossby waves, except for the Kuroshio region, where some peaks correspond to the second mode.  相似文献   

14.
南大洋太平洋扇区中尺度涡旋的统计特性及其变化   总被引:1,自引:0,他引:1  
中尺度涡旋在南大洋海洋动力学中具有重要地位,其对气候变化的响应表现也引起了海洋学家与气候学家的广泛关注。本文利用涡动动能与涡旋自动探测技术两种方法对南大洋太平洋扇区的涡旋特性及其变化进行了分析。与前人结果相一致的是,高值的涡动动能主要集中在南极极锋海区,并且自西向东逐渐减弱。在过去的20年里,涡动动能在太平洋扇区的显著增强也集中在中西部海域,这里也是南极绕极流斜压性较强的海域。涡旋统计特性揭示了涡动动能的空间分布及其年际变化主要归因于涡旋振幅与旋转速度,而并非涡旋个数或者涡旋半径。这些结果进一步确认了对应于南半球环状模正位相的绕极西风异常改变了南大洋的涡旋特性,从而表现出涡旋活跃性增强。  相似文献   

15.
The variability of the geostrophic eddy kinetic energy (EKE) in the Sea of Japan derived from weekly altimetric sea level anomalies spanning from 1992 through 2009 is studied. Nonorthogonal modes of variability are revealed accounting for more than 60% of the total variance. They capture the seasonal variation of the mesoscale energetics in the entire Sea of Japan with the EKE growing in the warm season up to the maximum in October through November and diminishing in the cold season down to the minimum in March through April. In the northern Sea of Japan (northward of the Subarctic Front), where the mean EKE is several times less than in the southern sea, areas of considerable variability are detected. Quasi-biennial EKE oscillations are revealed but not the trends covering the whole record.  相似文献   

16.
A comprehensive analysis of velocity data from subsurface floats in the northwestern tropical Atlantic at two depth layers is presented: one representing the Antarctic Intermediate Water (AAIW, pressure range 600–1050 dbar), the other the upper North Atlantic Deep Water (uNADW, pressure range 1200–2050 dbar). New data from three independent research programs are combined with previously available data to achieve blanket coverage in space for the AAIW layer, while coverage in the uNADW remains more intermittent. Results from the AAIW mainly confirm previous studies on the mean flow, namely the equatorial zonal and the boundary currents, but clarify details on pathways, mostly by virtue of the spatial data coverage that sets float observations apart from e.g. shipborne or mooring observations. Mean transports in each of five zonal equatorial current bands is found to be between 2.7 and 4.5 Sv. Pathways carrying AAIW northward beyond the North Brazil Undercurrent are clearly visible in the mean velocity field, in particular a northward transport of 3.7 Sv across 16°N between the Antilles islands and the Mid-Atlantic Ridge. New maps of Lagrangian eddy kinetic energy and integral time scales are presented to quantify mesoscale activity. For the uNADW, mean flow and mesoscale properties are discussed as data availability allows. Trajectories in the uNADW east of the Lesser Antilles reveal interactions between the Deep Western Boundary Current (DWBC) and the basin interior, which can explain recent hydrographic observations of changes in composition of DWBC water along its southward flow.  相似文献   

17.
The conditions under which the interaction between internal waves and the rough bottom topography may be the reason for synchronous fluctuations of pressure at the bottom have been studied. Disturbances of the depth are assumed to be small compared with the mean depth of the ocean, and the Väisälä-Brunt frequency is constant. It is shown that synchronous fluctuations of pressure exist with a frequency equal to that of internal waves. The amplitude of pulsations can be approximately an order lower than the amplitude of fluctuations generated by standing surface waves. However, local maxima can exist in the low-frequency minimum of the spectrum of microseisms (in the range of 20–1000 s).Translated by Mikhail M. Trufanov.  相似文献   

18.
The nonlinear dynamics of the low-frequency variability of a mid-latitude ocean are studied. The mechanism of the separation of the western boundary current from the western wall, as well as the meridional displacements of the separation point and the separated eastward jet, is analyzed. A regional barotropic quasigeostrophic eddy-resolving numerical model is used for the analysis. The flow in a rectangular domain is simulated by the constant inflow and outflow of fluid through the boundaries. A regime when the nonlinearity prevails over the dissipation and the advection and β terms are of the same order of magnitude is considered, which is characteristic of the actual ocean. When the nonlinearity exceeds the threshold value, a periodic solution is obtained. The solution is determined by the nonslip boundary condition at the western wall. The solution obtained is studied in detail. The meridional displacements of the western boundary current separation point with respect to the western wall and the separated eastward jet can reach a few hundred kilometers. Their intensities and the intensity of the recirculation gyre in the western boundary current are found to oscillate with a period of about five years.  相似文献   

19.
We present a methodology to derive surface geostrophic current from a newly released altimetric sea-level data set. TOPEX/Poseidon data were first completely reprocessed from Geophysical Data Records using new algorithms accommodating marginal seas and coastal conditions. The methodology applied to the reprocessed data essentially consists of a smoothing of the raw along-track coastal altimetric data at scales at which the geostrophic equilibrium holds. This was reduced to a computational procedure using a set of objective criteria. We have applied the method to the East India Coastal Current (EICC) at the western boundary of the Bay of Bengal. This paper first examines the quality of the new data set, which compares well with tide-gauge data; the current we derived is consistent with independent estimates. Our methodology reveals the full spectrum of the along-shore current, ranging from intra-seasonal to inter-annual time scales, from the deep ocean to the shelf-break area where the EICC exists. The algorithm can be applied to any coastal region where an order of the Rossby radius can be defined, and it therefore opens up bright prospects for mapping the variability of other boundary-current systems in the world ocean from altimetry.  相似文献   

20.
This study investigates a freshwater budget in the Yellow and East China Seas (YECS) using a global f general circulation model with a regional focus on the YECS. A freshwater budget analysis finds that major freshwater contributors over the YECS change seasonally. In summer, freshwater inflow from Changjiang and positive precipitation minus evaporation (P-E) dominates freshwater outflow across the boundaries around the YECS, resulting in net freshwater gain in the YECS. In winter, evaporation, intensified by strong winds, dominates freshwater inflow from Changjiang and precipitation, while net freshwater transport across the boundaries around the YECS is negligible, causing freshwater loss in total over the YECS. Although P-E has often been assumed to be negligible by supposing that the annual mean of precipitation is nearly equal to that of evaporation, this study suggests that P-E needs to be included in the seasonal freshwater budget in the YECS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号