首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study examined the relationship between carbon isotopic composition of sinking organic matter (OM) and the biological, physical and chemical properties of the surface ocean in the Cariaco Basin. The 13C/12C ratio of OM (δ13Corg) in sinking particles was determined on sediment trap samples from four depths collected from 1996 to 1999 as part of the CArbon Retention In A Colored Ocean time series. Water column properties, including temperature, productivity, chlorophyll and concentration of dissolved CO2, were concurrently measured on monthly cruises. The δ13Corg varied from a high of –17.7‰ to a low of –22.6‰ during the study period. The variation of the δ13Corg throughout seasonal cycles was directly proportional to the strength of upwelling and was negatively correlated with temperature (r2=0.64). During the 1996–1997 upwelling event, the strongest during the study period, the δ13Corg increased by 4.4‰ whereas during the 1998–1999 upwelling event, the weakest during the study period, the δ13Corg only increased by 3.3‰. Contrary to most previous studies, we observed a negative relationship (r2=0.53) between [CO2 aq] and the estimated isotopic fractionation factor (εp). However, there was no correlation between εp and the calculated growth rates indicating that there was non-diffusive uptake of carbon into phytoplankton cells. It thus appears that [CO2 aq] does not control the δ13Corg in the water column of the study site. The best explanation for the isotopic enrichment observed is a carbon concentrating mechanism (CCM) in phytoplankton. The existence of a CCM in phytoplankton has major implications for the interpretation of the δ13Corg in the Cariaco Basin.  相似文献   

2.
The fluxes of total mass, organic carbon (OC), biogenic opal, calcite (CaCO3) and long-chain C37 alkenones (ΣAlk37) were measured at three water depths (275, 455 and 930 m) in the Cariaco Basin (Venezuela) over three separate annual upwelling cycles (1996–1999) as part of the CARIACO sediment trap time-series. The strength and timing of both the primary and secondary upwelling events in the Cariaco Basin varied significantly during the study period, directly affecting the rates of primary productivity (PP) and the vertical transport of biogenic materials. OC fluxes showed a weak positive correlation (r2=0.3) with PP rates throughout the 3 years of the study. The fluxes of opal, CaCO3 and ΣAlk37 were strongly correlated (0.6<r2<0.8) with those of OC. The major exception was the lower than expected ΣAlk37 fluxes measured during periods of strong upwelling. All sediment trap fluxes were significantly attenuated with depth, consistent with marked losses during vertical transport. Annually, strong upwelling conditions, such as those observed during 1996–1997, led to elevated opal fluxes (e.g., 35 g m−2 yr−1 at 275 m) and diminished ΣAlk37 fluxes (e.g., 5 mg m−2 yr−1 at 275 m). The opposite trends were evident during the year of weakest upwelling (1998–1999), indicating that diatom and haptophyte productivity in the Cariaco Basin are inversely correlated depending on upwelling conditions.The analyses of the Cariaco Basin sediments collected via a gravity core showed that the rates of OC and opal burial (10–12 g m−2 yr−1) over the past 5500 years were generally similar to the average annual water column fluxes measured in the deeper traps (10–14 g m−2 yr−1) over the 1996–1999 study period. CaCO3 burial fluxes (30–40 g m−2 yr−1), on the other hand, were considerably higher than the fluxes measured in the deep traps (∼10 g m−2 yr−1) but comparable to those obtained from the shallowest trap (i.e. 38 g m−2 yr−1 at 275 m). In contrast, the burial rates of ΣAlk37 (0.4–1 mg m−2 yr−1) in Cariaco sediments were significantly lower than the water column fluxes measured at all depths (4–6 mg m−2 yr−1), indicating the large attenuation in the flux of these compounds at the sediment–water interface. The major trend throughout the core was the general decrease in all biogenic fluxes with depth, most likely due to post-depositional in situ degradation. The major exception was the relatively low opal fluxes (∼5 g m−2 yr−1) and elevated ΣAlk37 fluxes (∼2 mg m−2 yr−1) measured in the sedimentary interval corresponding to 1600–2000 yr BP. Such compositions are consistent with a period of low diatom and high haptophyte productivity, which based on the trends observed from the sediment traps, is indicative of low upwelling conditions relative to the modern day.  相似文献   

3.
Downward fluxes of microbial assemblages associated with sinking particles sampled in sediment traps deployed at nominal depths of 1000 m (trap A), 3000 m (trap B) and 4700 m (trap C) were measured between October 1995 and August 1998 on the Porcupine Abyssal Plain (PAP, NE Atlantic). The goal of the study was to provide detailed information on the microbial contributions to the particulate organic carbon and DNA fluxes. Bacterial fluxes associated with settling particles in the PAP area were generally low and significantly lower than bacterial fluxes reported from the same area during 1989–90. Marked seasonal pulses in the microbial assemblages were observed in all years that were associated with particle flux maxima in April–June. No significant differences were found in microbial fluxes between 1000 and 4700 m depth, but both the bacterial biomass flux and the frequency of dividing bacteria increased with depth, suggesting that organic matter turnover and conversion into bacterial biomass increased in the deeper traps. The structure of microbial assemblages displayed clear changes with increasing depth; the ratios of bacteria to both flagellates and cyanobacteria increased up to 4-fold between 1000 and 4700 m, showing a marked increase in bacterial dominance in the deeper layers of the water column. A parallel increase of the bacterial contribution to particulate organic carbon (POC) and DNA fluxes was observed. Total microbial contribution to the POC flux in the PAP area was about 2%, whereas the contribution of cyanobacteria was negligible. Fluxes of microbial assemblages were significantly correlated with DNA fluxes and on average the bacteria accounted for 5% of DNA fluxes. Data reported here confirm that the “rain” of particulate bacterial DNA may represent an important source of nucleotides for deep-sea bacteria, but also suggests that a much larger pool of detrital DNA is potentially available to deep-sea micro-organisms.  相似文献   

4.
A method to determine the concentrations of the particulate mineral matter (C PMM) and the particulate organic matter (C POM) is suggested. The values of C PMM and C POM are calculated from the measurements of the spectral coefficients of the light absorption a POM(440) and a PMM(750) using empirical equations. The latter have been obtained by comparing the concentrations of the suspended solids measured by means of the gravimetric method with the spectral values of the optical density of the suspended matter settled on membrane filters. The data used are typical of the coastal waters of inland and marginal seas and the open ocean and cover the range of three and two orders of magnitude for the concentrations of C PMM and C POM, respectively.  相似文献   

5.
We examine the diatom flux collected between November 1996 and April 1998, and between January and October 1999 at the time-series study site in the Cariaco Basin, off Venezuela. The temporal dynamics of the total diatom flux mainly reflect seasonal, trade wind-driven changes in surface hydrographic conditions, including changes associated with the El Niño/Southern Oscillation (ENSO). Highest diatom fluxes (>1.8×107 valves m?2 d?1) coincided with the upwelling season in boreal winters 1997 and 1999. Changes in the composition of the diverse diatom community reflect variations in hydrographic and atmospheric conditions, as well as nutrient availability. Cyclotella litoralis, a neritic diatom typical of nutrient-rich waters, along with resting spores of several Chaetoceros spp., dominate during periods of high diatom flux, following trade wind-driven upwelling. During the boreal summers of 1997 and 1999, nutrient-depleted surface waters resulted in low diatom fluxes (<5.2×106 valves m?2 d?1). The seasonal pattern of high diatom production was altered from July 1997 through April 1998, when the ENSO affected the Caribbean Sea. The occurrence of ENSO during boreal winter 1997–1998 caused a major change in the qualitative composition of the diatom assemblage: the highly diverse diatom assemblage was composed of a mixture of pelagic (Nitzschia bicapitata, Thalassionema nitzschioides var. inflata, T. nitzschioides var. parva, Azpeitia tabularis) and coastal species (C. litoralis, resting spores of Chaetoceros, T. nitzschioides var. nitzschioides). The simultaneous occurrence of neritic and open-ocean diatoms during boreal summers reflects the fact that the Cariaco Basin is influenced by both offshore and coastal waters, with considerable short-term variability in hydrographic conditions and nutrient availability.  相似文献   

6.
《Oceanologica Acta》1998,21(4):521-532
A sediment trap experiment was carried out in the West Caroline Basin, located in the equatorial western Pacific between influences of the Asian monsoon and the open ocean. Annual mass flux at the shallow trap at Site 1 was 57.10 g m-2 yr-1. Generally, the higher flux of organic matter was associated with higher activities of biogenic opal-producing and carbonate-producing plankton communities. In addition, as the organic matter content increases, the organic carbon/carbonate carbon ratio shows a tendency to increase. Carbonate-producing plankton was predominant during periods 1 and 3 (May to July and November to the beginning of December), which could be due to limited silica supply to the euphotic zone. On the other hand, surface sea water was more nutrient-rich during periods 2 and 4 (August to October and the end of December to April) at Site 1. These high total mass fluxes could be stimulated by wind.The amount of biogenic components collected in the sediment traps and the accumulation in surface sediments at Site 1 could be compared with primary productivity values. Carbonate and biogenic opal fluxes were 99% and 90% less, respectively, in the surface sediments compared to those in the shallow sediment trap. This could be due to the reaction of sinking particles with undersaturated deep sea water just above the sea floor, rather than with the water column during sinking. About 20% of the organic matter was decomposed between the shallow and deep sediment traps and more than 98% between the deep sediment trap and final burial in the surface sediments. The relative amount of organic carbon preserved in surface sediments was about 0.10% of annual primary productivity.  相似文献   

7.
The combination of nearly saturated salt concentration and corresponding high density, high hydrostatic pressure, absence of light, anoxia, and a sharp chemocline make the deep hypersaline anoxic basins in the Eastern Mediterranean Sea some of the most polyextreme habitats on Earth. Using kinetoplastid-specific primers, we detected kinetoplastid flagellates in some of the harshest deep-sea environments known to date, including some whose small subunit ribosomal RNA gene sequences are not closely related to cultured representatives. Kinetoplastids, including presumably novel representatives appear to be specialists of halocline environments in the Eastern Mediterranean, and to comprise a significant fraction of the protist communities in the brines and haloclines of several basins. Fluorescent in situ hybridization data indicate a novel ‘unidentified’ sequence clade of kinetoplastids related to bodonids represents as much as 10% of the total protist community in the Discovery Basin halocline. Different kinetoplastid groups are unevenly represented in the different basins and habitats we sampled, which we discuss as a result of environmental selection.  相似文献   

8.
In the anoxic hypersaline Tyro and Bannock Basins of the eastern Mediterranean, extremely high concentrations of Co (0.015%), Cu (1.35%) and Zn (0.28%) were found in suspended matter collected at the sharp interface between seawater and the anoxic brine. The high particulate Co, Cu and Zn concentrations can be explained by the sharp increase in dissolved sulphide at these interfaces, and the resultant precipitation of metal sulphides. The particulate As, Sb and Mo concentrations also showed a sharp maximum at or close to the interface. However, the contributions of As, Sb and Mo contents in suspended matter to the total concentrations in the water column are small. Scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDAX) of suspended particulate matter from the Tyro Basin revealed spherical particles strongly enriched in Fe, Cu and Zn at the seawater-brine interface.  相似文献   

9.
对中国第四次北极科学考察期间在白令海北部获取的海水样品进行悬浮体含量及其颗粒组分特征的分析。结果表明,白令海陆架海区悬浮体含量大体呈现出表层浓度低而底层浓度高的特点。表层海水悬浮体含量在白令海峡西侧和陆架东侧靠近阿拉斯加沿岸含量较高,而底层海水中悬浮体含量则在白令海峡西侧,以及白令海陆架西南部的圣马修岛西北侧较高。陆架流系对底床物质的再悬浮作用致使白令海悬浮颗粒物浓度的高值区多位于近底层海水中。受白令陆坡流沿陆架坡折带输运作用,研究区西南部悬浮体浓度较高。白令海陆架水以及阿纳德尔流携带悬浮颗粒向北输运,使得底层悬浮体浓度呈现出自南向北逐渐减弱的模式。圣劳仑斯岛以北靠近楚科奇半岛一侧海域,受高营养盐的阿纳德尔流的影响,悬浮颗粒物以藻类为主;东侧阿拉斯加沿岸流区悬浮颗粒则以陆源的碎屑矿物为主。  相似文献   

10.
Temporal and spatial variations in the composition of particulate organic matter (POM) from Florida Bay, USA were examined. The predominance of short-chain homologues for n-alkanes, n-alcohols and n-fatty acids as well as relatively high abundance of C(27) and C(28) sterols suggested that an autochthonous/marine source of OM was dominant bay-wide. Several biomarker proxies such as P(aq) [(C(23)+C(25))/(C(23)+C(25)+C(29)+C(31)) n-alkanes], short/long chain n-alkanes, (C(29)+C(31)) n-alkanes and taraxerol indicated a spatial shift in OM sources, where terrestrial OM rapidly decreased while seagrass and microbial OM markedly increased along a northeastern to southwestern transect. Regarding seasonal variations, POM collected during the dry season was enriched in terrestrial constituents relative to the wet season, likely as a result of reduced primary productivity of planktonic species and seagrasses during the dry season. Principal component analysis (PCA) classified the sample set into sub-groups based on PC1 which seemed to be spatially controlled by OM origin (terrestrial-mangrove vs. marine-planktonic/seagrass). The PC2 seemed to be more seasonally controlled suggesting that hydrological fluctuations and seasonal primary productivity are the drivers controlling the POM composition in Florida Bay.  相似文献   

11.
Temporal and spatial variations in the composition of particulate organic matter (POM) from Florida Bay, USA were examined. The predominance of short-chain homologues for n-alkanes, n-alcohols and n-fatty acids as well as relatively high abundance of C27 and C28 sterols suggested that an autochthonous/marine source of OM was dominant bay-wide. Several biomarker proxies such as Paq [(C23 + C25)/(C23 + C25 + C29 + C31) n-alkanes], short/long chain n-alkanes, (C29 + C31) n-alkanes and taraxerol indicated a spatial shift in OM sources, where terrestrial OM rapidly decreased while seagrass and microbial OM markedly increased along a northeastern to southwestern transect. Regarding seasonal variations, POM collected during the dry season was enriched in terrestrial constituents relative to the wet season, likely as a result of reduced primary productivity of planktonic species and seagrasses during the dry season. Principal component analysis (PCA) classified the sample set into sub-groups based on PC1 which seemed to be spatially controlled by OM origin (terrestrial-mangrove vs. marine-planktonic/seagrass). The PC2 seemed to be more seasonally controlled suggesting that hydrological fluctuations and seasonal primary productivity are the drivers controlling the POM composition in Florida Bay.  相似文献   

12.
It has recently been postulated that lithogenic particles such as Saharan dust strongly influence particulate organic carbon export to the deep ocean by acting as mineral ballast. However, our understanding of the processes involved remains scant. In the present study, optical measurements were performed to monitor variations in the concentration, composition and size distribution of particles in suspension within the water column after simulating a Saharan dust event in very clear Mediterranean waters off Corsica in June 2010. A new methodology set up in large mesocosms proved very successful in this regard. Values obtained simultaneously from three instruments (WetLabs ECO-BB3, WetLabs ac-9, Sequoia Scientific LISST-100) provided evidence that (1) part of the Saharan dust pool has a rapid settling velocity (∼24–86 m day−1), (2) particulate export following a dust event is a nonlinear multi-step process and (3) export is controlled in part by the formation of organic-mineral aggregates. This experimental study provides the first insight of the complex export processes occurring after a dust event involving both physical and biogeochemical forcings in clear oligotrophic waters.  相似文献   

13.
A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait for a complete year from December 25, 1998 to December 24, 1999. About 99% of total mass flux was trapped during an austral summer, showing distinct seasonal variation. Biogenic particles (biogenic opal, particulate organic carbon, and calcium carbonate) account for about two thirds of annual total mass flux (49.2 g m-2), among which biogenic opal flux is the most dominant (42% of the total flux). A positive relationship (except January) between biogenic opal and total organic carbon fluxes suggests that these two variables were coupled, due to the surface-water production (mainly diatoms). The relatively low δ13C values of settling particles result from effects on C-fixation processes at low temperature and the high CO2 availability to phytoplankton. The correspondingly low δ15N values are due to intense and steady input of nitrates into surface waters, reflecting an unlikely nitrate isotope fractionation by degree of surface-water production. The δ15N and δ13C values of sinking particles increased from the beginning to the end of a presumed phytoplankton bloom, except for anomalous δ15N values. Krill and the zooplankton fecal pellets, the most important carriers of sinking particles, may have contributed gradually to the increasing δ13C values towards the unproductive period through the biomodification of the δ13C values in the food web, respiring preferentially and selectively12C atoms. Correspondingly, the increasing δ15N values in the intermediate-water trap are likely associated with a switch in source from diatom aggregates to some remains of zooplankton, because organic matter dominated by diatom may be more liable and prone to remineralization, leading to greater isotopic alteration. In particular, the tendency for abnormally high δ15N values in February seems to be enigmatic. A specific species dominancy during the production may be suggested as a possible and speculative reason.  相似文献   

14.
Concentrations of Cd, Cu, Cr, Co, Ni, Zn, Fe, Mn, Pb, As, and Sb were determined in sediment trap and bottom sediment samples collected seasonally from a station on the eastern Turkish coast of the Black Sea. Cd, Pb and Mn concentrations were highest in the sediment trap samples except during the summer period, whereas Co, Ni, Zn and Fe levels were much lower than corresponding levels found in the surface sediments. Cu, Cr, As and Sb levels showed no definite trend with sediment type. In general, with the exception of Cr, relatively lower metal concentrations in the sediment trap material were determined in the summer period. The highest mass flux, 56.5 g m−2 day−1, was measured during autumn. The highest flux of heavy metals also occurred during autumn and was strongly dependent on particle mass flux. Based on these results, we suggest that the downward vertical transport of particulate heavy metals in this region is related to the high degree of land erosion and the resultant particulate flux dynamics, which occur here. It was noteworthy that the highest concentrations of Cd, Cu, Co, Zn, Fe and Sb in particles were measured during winter a finding which suggests that enhanced fossil fuel combustion, which occurs during this period in adjacent urban and industrial areas plays an important role in the metal composition of sinking particles in nearshore waters.  相似文献   

15.
We used time-series sediment trap data for four major components, organic matter and ballast minerals (CaCO3, opal, and lithogenic matter) from 150, 540, and 1000 m in the western subarctic Pacific (WSAP), where opal is the predominant mineral in sinking particles, to develop four simple models for settling particles, including the “ballast model”. The ballast model is based on the concept that most of the organic matter “rain” in the deep sea is carried by the minerals. These four models are designed to simultaneously reproduce the flux of each major component of settling particles at 540 and 1000 m by using the data for each component at 150 m as initial values. Among the four models, the ballast model, which considers the sinking velocity increase with depth, was identified as the best using the Akaike information criterion as a measure of the model fit to data. This model successfully reproduced the flux of organic matter at 540 and 1000 m, indicating that the ballast model concept works well in the shallow zone of the WSAP on a seasonal timescale. This also suggests that ballast minerals not only physically protect the organic matter from degradation during the settling process but also enhance the sinking velocity and reduce the degree of decomposition.  相似文献   

16.
Optical transmissometer measurements were coupled with particulate organic matter (POM) observations to understand suspended sediment composition and distribution in the eastern Cariaco Basin during the rainy seasons of September 2003 and 2006. Our results suggest that nepheloid layers originating at the mouth of small mountainous rivers discharging into the eastern Basin are a major delivery mechanism of terrigenous sediments to the Basin interior. Intermediate nepheloid layers (INL) were observed near the shelf break (~100 m) and appear to effectively transport terrigenous material laterally from the shelf to deep waters, thereby providing a plausible supply mechanism of the terrestrial material observed in sediment traps. These findings highlight the importance of small, local rivers in the Cariaco Basin as sources of terrestrial material. In contrast, these nepheloid layers contained only limited POM. When this information is combined with published sediment trap POM data, it suggests that nepheloid layers may not be a primary mechanism for delivering terrigenous POM to the deeper waters of the basin during the rainy season. Rather, BNL may redistribute marine-derived POM from shallow waters to the Basin's interior by providing ballast materials, particularly during episodic events driven by wind and precipitation. Though we have determined that nepheloid layers play an important role in the seaward transport of particulate material in the Cariaco Basin, their composition and temporal variability have not been fully characterized. This is critical to understand lateral particle transport, since nepheloid layers constitute a significant source of sediment to the deep Cariaco Basin.  相似文献   

17.
Stable carbon and nitrogen isotopic composition of zooplankton, suspended particulate organic matter (SPOM), and sinking particles collected using sediment traps were measured for samples obtained from the southeastern Bering Sea middle and outer shelf during 1997–1999. The quantity of material collected by the middle shelf sediment trap was greater in both spring and late summer and fall than in early and mid-summer. The δ15N of SPOM, sinking material and zooplankton showed greater inter-annual variability at the middle shelf site (M2) than at the outer shelf site (M3). Zooplankton and sinking organic matter collected by M2 sediment traps became more depleted in 15N from 1997 through 1999, associated with a change from unusually warm to unusually cold conditions. Suspended and sinking organic matter and zooplankton collected from M3 decreased only slightly in δ15N from 1998 to 1999. SPOM, zooplankton, and sediment trap samples collected at M2 were usually enriched in δ15N and δ13C over those from M3. However, in 1999 sediment trap samples from the middle shelf were enriched in 13C over M3 material, but the δ15N of samples from the two sites was similar. The geographic pattern could be explained greater productivity over the middle shelf, associated with either isotopically heavy nitrogen being regenerated from sediments, or with utilization of a greater fraction of the available inorganic nitrogen pool during most years.  相似文献   

18.
Methyl esters of saturated and unsaturated fatty acids were isolated as trace components from organic material suspended in seawater. Methyl palmitate and methyl stearate were accumulated from the filtrate by adsorption onto Amberlite XAD-2 resin. Identification of most methyl esters is based on the comparison of gas chromatographic retention indices and mass spectrometric fragmentation with those of authentic standard compounds. In cases where reference substances were not available, identification is based on mass spectrometric and gas chromatographic properties of the unknown compounds.  相似文献   

19.
Seasonal and depth variations in alkenone flux and molecular and isotopic composition of sinking particles were examined using a 21-month time-series sediment trap experiment at a mooring station WCT-2 (39°N, 147°E) in the mid-latitude NW Pacific to assess the influences of seasonality, production depth, and degradation in the water column on the alkenone unsaturation index UK′37. Analysis of the underlying sediments was also conducted to evaluate the effects of alkenone degradation at the water–sediment interface on UK′37. Alkenone sinking flux and UK′37-based temperature showed strong seasonal variability. Alkenone fluxes were higher from spring to fall than they were from fall to spring. During periods of high alkenone flux, the UK′37-based temperatures were lower than the contemporary sea-surface temperatures (SSTs), suggesting alkenone production in a well-developed thermocline (shallower than 30 m). During low alkenone flux periods, the UK′37-based temperatures were nearly constant and were higher than the contemporary SSTs. The nearly constant carbon isotopic ratios of C37:2 and C38:2 alkenones suggest that alkenones produced in early fall were suspended in the surface water until sinking. The alkenone sinking flux decreased exponentially with increasing depth. The decreasing trend was enhanced during the periods of high alkenone flux, suggesting that fresh and labile particles sank from spring to fall, while old and stable particles sank from fall to spring. The UK′37-based temperature usually increased with increasing depth. The preservation efficiency of alkenones was ∼2.7–5.2% at the water–sediment interface. Despite the significant degradation of the alkenones, there was little difference in UK′37 levels between sinking particles and the surface sediment.  相似文献   

20.
北部湾悬浮颗粒现场剖面测量与粒度分析   总被引:2,自引:0,他引:2  
应用LISST-100现场激光粒度仪于2006年8月在北部湾首次进行了悬浮颗粒剖面测量,获得了整个垂直剖面的悬浮颗粒现场粒径分布、体积比和光衰减系数,并计算得到了垂直剖面的总浓度和各层的粒度参数及粒级组成。结果表明,悬浮颗粒自上而下均为双峰分布,只是表层的双峰位于5.57μm和34.4μm,中间层和底层的双峰位于34.4μm和129.4μm。悬浮颗粒体积比自上而下逐渐增大,到达底层时达到最大。光衰减系数的变化趋势与颗粒体积比非常相似,且二者存在很好的相关性,相关系数高达0.98。整个垂直剖面上,表层粒度较细,随着深度增加粒度逐渐变粗,到达底层时粒度最粗。悬浮体总体上正偏,峰态值较小,分选较差。粒度以砂为主,粉砂含量次之,不舍黏土。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号