首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A baroclinic shallow-water model is developed to investigate the effect of the orientation of the eastern ocean boundary on the behavior of equatorial Kelvin waves. The model is formulated in a spherical polar coordinate system and includes dissipation and non-linear terms, effects which have not been previously included in analytical approaches to the problem. Both equatorial and middle latitude response are considered given the large latitudinal extent used in the model. Baroclinic equatorial Kelvin waves of intraseasonal, seasonal and annual periods are introduced into the domain as pulses of finite width. Their subsequent reflection, transmission and dissipation are investigated. It is found that dissipation is very important for the transmission of wave energy along the boundary and for reflections from the boundary. The dissipation was found to be dependent not only on the presence of the coastal Kelvin waves in the domain, but also on the period of these coastal waves. In particular the dissipation increases with wave period. It is also shown that the equatorial β-plane approximation can allow an anomalous generation of Rossby waves at higher latitudes. Nonlinearities generally have a small effect on the solutions, within the confines of this model.  相似文献   

2.
Numerical model experiments have been performed to analyze the low-latitude baroclinic continental shelf response to a tropical cyclone. The theory of coastally trapped waves suggests that, provided appropriate slope, latitude, stratification and wind stress, bottom-intensified topographic Rossby waves can be generated by the storm. Based on a scale analysis, the Nicaragua Shelf is chosen to study propagating topographic waves excited by a storm, and a model domain is configured with simplified but similar geometry. The model is forced with wind stress representative of a hurricane translating slowly over the region at 6 km h−1. Scale analysis leads to the assumption that baroclinic Kelvin wave modes have minimal effect on the low-frequency wave motions along the slope, and coastal-trapped waves are restricted to topographic Rossby waves. Analysis of the simulated motions suggests that the shallow part of the continental slope is under the influence of barotropic topographic wave motions and at the deeper part of the slope baroclinic topographic Rossby waves dominate the low-frequency motions. Numerical solutions are in a good agreement with theoretical scale analysis. Characteristics of the simulated baroclinic waves are calculated based on linear theory of bottom-intensified topographic Rossby waves. Simulated waves have periods ranging from 153 to 203 h. The length scale of the waves is from 59 to 87 km. Analysis of energy fluxes for a fixed volume on the slope reveals predominantly along-isobath energy propagation in the direction of the group velocity of a topographic Rossby wave. Another model experiment forced with a faster translating hurricane demonstrates that fast moving tropical cyclones do not excite energetic baroclinic topographic Rossby waves. Instead, robust inertial oscillations are identified over the slope.  相似文献   

3.
The tropical Indian Ocean circulation system includes the equatorial and near-equatorial circulations, the marginal sea circulation, and eddies. The dynamic processes of these circulation systems show significant multi-scale variability associated with the Indian Monsoon and the Indian Ocean dipole. This paper summarizes the research progress over recent years on the tropical Indian Ocean circulation system based on the large-scale hydrological observations and numerical simulations by the South China Sea Institute of Oceanology(SCSIO), Chinese Academy of Sciences. Results show that:(1) the wind-driven Kelvin and Rossby waves and eastern boundary-reflected Rossby waves regulate the formation and evolution of the Equatorial Undercurrent and the Equatorial Intermediate Current;(2) the equatorial wind-driven dynamics are the main factor controlling the inter-annual variability of the thermocline in the eastern Indian Ocean upwelling;(3) the equatorial waves transport large amounts of energy into the Bay of Bengal in forms of coastal Kelvin and reflected free Rossby waves. Several unresolved issues within the tropical Indian Ocean are discussed:(i) the potential effects of the momentum balance and the basin resonance on the variability of the equatorial circulation system, and(ii) the potential contribution of wind-driven dynamics to the life cycle of the eastern Indian Ocean upwelling. This paper also briefly introduces the international Indian Ocean investigation project of the SCSIO, which will advance the study of the multi-scale variability of the tropical Indian Ocean circulation system, and provide a theoretical and data basis to support marine environmental security for the countries around the Maritime Silk Road.  相似文献   

4.
Vertical coupling in the low-latitude atmosphere–ionosphere system driven by the 5-day Rossby W1 and 6-day Kelvin E1 waves in the low-latitude MLT region has been investigated. Three different types of data were analysed in order to detect and extract the ∼6-day wave signals. The National Centres for Environmental Prediction (NCEP) geopotential height and zonal wind data at two pressure levels, 30 and 10 hPa, were used to explore the features of the ∼6-day waves present in the stratosphere during the period from 1 July to 31 December 2004. The ∼6-day wave activity was identified in the neutral MLT winds by radar measurements located at four equatorial and three tropical stations. The ∼6-day variations in the ionospheric electric currents (registered by perturbations in the geomagnetic field) were detected in the data from 26 magnetometer stations situated at low latitudes. The analysis shows that the global ∼6-day Kelvin E1 and ∼6-day Rossby W1 waves observed in the low-latitude MLT region are most probably vertically propagating from the stratosphere. The global ∼6-day W1 and E1 waves seen in the ionospheric electric currents are caused by the simultaneous ∼6-day wave activity in the MLT region. The main forcing agent in the equatorial MLT region seems to be the waves themselves, whereas in the tropical MLT region the modulated tides are also of importance.  相似文献   

5.
Two-layer equatorial primitive equations for the free troposphere in the presence of a thin atmospheric boundary layer and thermal dissipation are developed here. An asymptotic theory for the resonant nonlinear interaction of long equatorial baroclinic and barotropic Rossby waves is derived in the presence of such dissipation. In this model, a self-consistent asymptotic derivation establishes that boundary layer flows are generated by meridional pressure gradients in the lower troposphere and give rise to degenerate equatorial Ekman friction. That is to say, the asymptotic model has the property that the dissipation matrix has one eigenvalue which is nearly zero: therefore the dynamics rapidly dissipates flows with pressure at the base of the troposphere and creates barotropic/baroclinic spin up/spin down. The simplified asymptotic equations for the amplitudes of the dissipative equatorial barotropic and baroclinic waves are studied by linear theory and integrated numerically. The results indicate that although the dissipation slightly weakens the tropics to midlatitude connection, strong localized wave packets are nonetheless able to exchange energy between barotropic and baroclinic waves on intraseasonal timescales in the presence of baroclinic mean shear. Interesting dissipation balanced wave-mean flow states are discovered through numerical simulations. In general, the boundary layer dissipation is very efficient for flows in which the barotropic and baroclinic components are of the same sign at the base of the free troposphere whereas the boundary layer dissipation is less efficient for flows whose barotropic and baroclinic components are of opposite sign at the base of the free troposphere.  相似文献   

6.
The linear theory predicts that Rossby waves are the large scale mechanism of adjustment to perturbations of the geophysical fluid. Satellite measurements of sea level anomaly (SLA) provided sturdy evidence of the existence of these waves. Recent studies suggest that the variability in the altimeter records is mostly due to mesoscale nonlinear eddies and challenges the original interpretation of westward propagating features as Rossby waves. The objective of this work is to test whether a classic linear dynamic model is a reasonable explanation for the observed SLA. A linear-reduced gravity non-dispersive Rossby wave model is used to estimate the SLA forced by direct and remote wind stress. Correlations between model results and observations are up to 0.88. The best agreement is in the tropical region of all ocean basins. These correlations decrease towards insignificance in mid-latitudes. The relative contributions of eastern boundary (remote) forcing and local wind forcing in the generation of Rossby waves are also estimated and suggest that the main wave forming mechanism is the remote forcing. Results suggest that linear long baroclinic Rossby wave dynamics explain a significant part of the SLA annual variability at least in the tropical oceans.  相似文献   

7.
Planetary equatorial waves are studied with the shallow water equations in the presence of a mean zonal thermocline gradient. The interactions between this gradient and waves are represented by three non-linear terms in the equations: one in the wind-forcing formulation in the x-momentum equation, and two for the advection of mass and divergence of the velocity field in the continuity equation. When the mean gradient is imposed but small, these three (linearized) terms will perturb the behavior of the equatorial waves. This paper gives a simple analytic treatment of this problem.The equatorial Kelvin mode is first solved with all three contributions, using a Wentzel-Kramers-Brillouin method. The Kelvin mode shows a spatial or/and temporal growth when the thermocline gradient is negative which is the usual situation in the equatorial Pacific ocean (deep thermocline in the west and shallow in the east). The more robust and efficient contribution comes from the advection term.The single effect of the advection of the mean zonal thermocline gradient is then studied for the Kelvin and planetary Rossby modes. The Kelvin mode remains unstable (damped), while the Rossby modes appear damped (unstable) for a negative (positive) thermocline gradient.  相似文献   

8.
The mechanism of the effects of the upwelling mean on the ENSO event mature phase locking is ex-amined by using a mixed-mode model. The results show that the positive feedback process of the ef-fects of the seasonal variation of the upwelling mean on the Kelvin wave is the mechanism of the locking of the event mature phase to the end of the calendar year. The memory of the Rossby waves for the sign-shifting of the sea surface temperature anomaly from positive to negative 6 months before the cold peak time is the other mechanism of the locking of the La Nia event mature phase to the end of the calendar year. The results here are different from previous ones which suggest that the balance between cold and warm trends of sea surface temperature anomaly is the mechanism involved. The cold trend is caused by the upwelling Kelvin wave from upwelling Rossby wave reflected at the western boundary, excited by the westerly anomaly stress over the central Pacific and amplified by the seasonal variation of the coupled strength in its way propagating westward. The warm trend is caused by the Kelvin wave forced by the western wind stress over the middle and eastern equatorial Pacific. The cause of the differences is due to the opposite phase of the seasonal variation of the upwelling mean to that in the observation and an improper parameterization scheme for the effects of the seasonal varia-tion of the upwelling mean on the ENSO cycle in previous studies.  相似文献   

9.
北太平洋海表面高度的年际变化及其机制   总被引:4,自引:0,他引:4       下载免费PDF全文
利用15年(1993~2007年)月平均的海表面高度(SSH)异常资料,分析了北太平洋海表面高度的年际变化的时空结构,并研究了热通量和风应力两个因子对其的强迫作用.结果表明,北太平洋年际时间尺度SSH变化的大值区在黑潮延伸区和西太平洋暖池区.EOF分解第一模态的空间结构沿纬向呈带状分布,第二模态为沿经向呈带状分布.热通量强迫作用在中纬度的东北太平洋可以解释SSH年际变化40%以上.风应力对SSH的作用包括正压和斜压两个方面.正压Sverdrup平衡模型模拟的SSH年际变化较弱,仅能解释高纬度副极地环流西部的20%~40%.由大尺度风应力强迫的第一阶斜压Rossby波模型可以解释热带地区的20%~60%,中纬度中部的20%~40%,以及阿拉斯加环流东部和副极地环流西部的20%~60%.风应力强迫的一阶斜压Rossby波模型对SSH的强迫机理又可分为局地风应力强迫和西传Rossby波作用.其中,风应力的局地强迫作用(Ekman抽吸)在东北太平洋、白令海以及热带中部有显著的预报技巧,可以解释SSH年际变异的40%以上.Rossby波的传播作用在中纬度海域的副热带环流中西部和夏威夷岛以东起着重要作用,可解释20%~60%.  相似文献   

10.
The interannual variability of the tropical Indian Ocean is studied using Simple Ocean Data Assimilation (SODA) sea surface height anomalies (SSHA) and Hadley Centre Ice Sea Surface Temperature anomalies. Biannual Rossby waves (BRW) were observed along the 1.5° S and 10.5° S latitudes during the Indian Ocean Dipole (IOD) years. The SODA SSHA and its BRW components were comparable with those of Topex/Poseidon. The phase speed of BRW along 1.5° S is −28 cm/s, which is comparable with the theoretical speed of first mode baroclinic (equatorially trapped) Rossby waves. This is the first study to show that no such propagation is seen along 1.5° S during El Nino years in the absence of IOD. Thus the westward propagating downwelling BRW in the equatorial Indian Ocean is hypothesized as a potential predictor for IOD. These waves transport heat from the eastern equatorial Indian Ocean to west, long before the dipole formation. Along 10.5° S, the BRW formation mechanisms during the El Nino and IOD years were found to be different. The eastern boundary variations along 10.5° S, being localized, do not influence the ocean interior considerably. Major portion of the interannual variability of the thermocline, is caused by the Ekman pumping integrated along the characteristic lines of Rossby waves. The study provides evidence of internal dynamics in the IOD formation. The positive trend in the downwelling BRW (both in SODA and Topex/Poseidon) is of great concern, as it contributes to the Indian Ocean warming.  相似文献   

11.
Based on the merged satellite altimeter data and in-situ observations,as well as a diagnosis of linear baroclinic Rossby wave solutions,this study analyzed the rapidly rise of sea level/sea surface height(SSH)in the tropical Pacific and Indian Oceans during recent two decades.Results show that the sea level rise signals in the tropical west Pacific and the southeast Indian Ocean are closely linked to each other through the pathways of oceanic waveguide within the Indonesian Seas in the form of thermocline adjustment.The sea level changes in the southeast Indian Ocean are strongly influenced by the low-frequency westward-propagating waves originated in the tropical Pacific,whereas those in the southwest Indian Ocean respond mainly to the local wind forcing.Analyses of the lead-lag correlation further reveal the different origins of interannual and interdecadal variabilities in the tropical Pacific.The interannual wave signals are dominated by the wind variability along the equatorial Pacific,which is associated with the El Ni?o-Southern Oscillation;whereas the interdecadal signals are driven mainly by the wind curl off the equatorial Pacific,which is closely related to the Pacific Decadal Oscillation.  相似文献   

12.
In this paper, we examine the behavior of internal Kelvin waves on an f-plane in finite-difference models using the Arakawa C-grid. The dependence of Kelvin wave phase speed on offshore grid resolution and propagation direction relative to the numerical grid is illustrated by numerical experiments for three different geometries: (1) Kelvin wave propagating along a straight coastline; (2) Kelvin wave propagating at a 45° angle to the numerical grid along a stairstep coastline with stairstep size equal to the grid spacing; (3) Kelvin wave propagating at a 45° angle to the numerical grid along a coarse resolution stairstep coastline with stairstep size greater than the grid spacing. It can be shown theoretically that the phase speed of a Kelvin wave propagating along a straight coastline on an Arakawa C-grid is equal to the analytical inviscid wave speed and is not dependent on offshore grid resolution. However, we found that finite-difference models considerably underestimate the Kelvin wave phase speed when the wave is propagating at an angle to the grid and the grid spacing is comparable with the Rossby deformation radius. In this case, the phase speed converges toward the correct value only as grid spacing decreases well below the Rossby radius. A grid spacing of one-fifth the Rossby radius was required to produce results for the stairstep boundary case comparable with the straight coast case. This effect does not appear to depend on the resolution of the coastline, but rather on the direction of wave propagation relative to the grid. This behavior is important for modeling internal Kelvin waves in realistic geometries where the Rossby radius is often comparable with the grid spacing, and the waves propagate along irregular coastlines.©1998 Published by Elsevier Science Limited. All rights reserved  相似文献   

13.
14.
Previous literature has suggested that multiple peaks in sea level anomalies (SLA) detected by two-dimensional Fourier Transform (2D-FT) analysis are spectral components of multiple propagating signals, which may correspond to different baroclinic Rossby wave modes. We test this hypothesis in the South Pacific Ocean by applying a 2D-FT analysis to the long Rossby wave signal determined from filtered TOPEX/Poseidon and European Remote Sensing-1/2 satellite altimeter derived SLA. The first four baroclinic mode dispersion curves for the classical linear wave theory and the Killworth and Blundell extended theory are used to determine the spectral signature and energy contributions of each mode. South of 17°S, the first two extended theory modes explain up to 60% more of the variance in the observed power spectral energy than their classical linear theory counterparts. We find that Rossby wave modes 2–3 contribute to the total Rossby wave energy in the SLA data. The second mode contributes significantly over most of the basin. The third mode is also evident in some localized regions of the South Pacific but may be ignored at the large scale. Examination of a selection of case study sites suggests that bathymetric effects may dominate at longer wavelengths or permit higher order mode solutions, but mean flow tends to be the more influential factor in the extended theory. We discuss the regional variations in frequency and wave number characteristics of the extended theory modes across the South Pacific basin.  相似文献   

15.
热带大洋对纬向和经向风应力的联合响应   总被引:1,自引:0,他引:1       下载免费PDF全文
考虑了经向风应力和纬向风应力联合作用下热带大洋的响应问题.结果表明,只有一阶的经向风应力或具有辐合辐散的经向风应力才对最后的速度场和位势场造成影响.零阶的扰动温跃层和纬圈流受风应力的直接驱动和Kelvin波、Rossby短波的影响,而Rossby短波由经向风应力直接造成;二阶模则受风应力的直接驱动和Rossby短波的作用,同时经向风应力也产生了附加的Rossby短波.另外,在西边界处存在很强的暖水补充到赤道的现象,经向风应力有使暖水向赤道输送的作用,而西风应力使西边界处的暖水向东输送.  相似文献   

16.
简单热带海气耦合模型中不同扰动形式的作用   总被引:3,自引:2,他引:1       下载免费PDF全文
在局地热平衡情况下,将物理量先用韦伯函数展开,然后去掉相应分量的滤波方 法,讨论了简单热带海气耦合模型中不同形式扰动的作用和贡献,结果表明,在热带海气耦合 系统中,大气准定常 Rossby波和海洋 Rossby波对于耦合系统贡献较大,它们决定着耦合系统 与耦合扰动的性质,而大气准定常Kelvin波和海洋Kelvin波对于耦合系统贡献相对较小.  相似文献   

17.
The Solomon Sea is a key region in the Pacific Ocean where equatorial and subtropical circulations are connected. The region exhibits the highest levels in sea level variability in the entire south tropical Pacific Ocean. Altimeter data was utilized to explore sea level and western boundary currents in this poorly understood portion of the ocean. Since the geography of the region is extremely intricate, with numerous islands and complex bathymetry, specifically reprocessed along-track data in addition to standard gridded data were utilized in this study. Sea level anomalies (SLA) in the Solomon Sea principally evolve at seasonal and interannual time scales. The annual cycle is phased by Rossby waves arriving in the Solomon Strait, whereas the interannual signature corresponds to the basin-scale ENSO mode. The highest SLA variability are concentrated in the eastern Solomon Sea, particularly at the mouth of the Solomon Strait, where they are associated with a high eddy kinetic energy signal that was particularly active during the phase transition during the 1997–1998 ENSO event. Track data appear especially helpful for documenting the fine structure of surface coastal currents. The annual variability of the boundary currents that emerged from altimetry compared quite well with the variability seen at the thermocline level, as based on numerical simulations. At interannual time scales, western boundary current transport anomalies counterbalance changes in western equatorial Pacific warm water volume, confirming the phasing of South Pacific western boundary currents to ENSO. Altimetry appears to be a valuable source of information for variability in low latitude western boundary currents and their associated transport in the South Pacific.  相似文献   

18.
Abstract

The generation of stationary Rossby waves by sources of potential vorticity in a westerly flow is examined here in the context of a two-layer, quasi-geostrophic, β-plane model. The response in each layer consists of a combination of a barotropic Rossby wave disturbance that extends far downstream of the source, and a baroclinic disturbance which is evanescent or wave-like in character, depending on the shear and degree of stratification. Contributions from each of these modes in each layer are strongly dependent on the basic flows in each layer; the degree of stratification; and the depths of the two layers. The lower layer response is dominated by an evanescent baroclinic mode when the upper layer westerlies are much larger than those in the lower layer. In this case, weak stationary Rossby waves of large wavelengths are confined to the upper layer and the disturbance in the lower layer is confined to the source region.

Increasing the upper layer flow (with the lower layer flow fixed) increases the Rossby wavelength and decreases the amplitude. Decreasing the lower layer flow (with the upper layer flow fixed) decreases the wavelength and increases the amplitude. Stratification increases the contribution from the barotropic wave-like mode and causes the response to be confined to the lower layer.

The finite amplitude response to westerly flow over two sources of potential vorticity is also considered. In this case stationary Rossby waves induced by both sources interact to reinforce or diminish the downstream wave pattern depending on the separation distance of the sources relative to the Rossby wavelength. For fixed separation distance, enhancement of the downstreatm Rossby waves will only occur for a narrow range of flow variables and stratification.  相似文献   

19.
切变基本纬向流中非线性赤道Rossby长波   总被引:5,自引:1,他引:4  
为了解决观测和理论研究中的一些问题以及更好地了解热带大气动力学 ,有必要进一步研究基本气流的变化对大气中赤道Rossby波动的影响 .本文研究分析基本气流对赤道Rossby长波的影响 ,利用一个简单赤道 β平面浅水模式和摄动法 ,研究纬向基本气流切变中非线性赤道Rossby波 ,推导出在切变基本纬向流中赤道Rossby长波振幅演变所满足的非线性KdV方程并得到其孤立波解 .分析表明 ,孤立波存在的必要条件是基本气流有切变 ,而且基流切变不能太强 ,否则将产生正压不稳定 .  相似文献   

20.
We show a mechanism whereby the jets result during the development of β-plumes (i.e., low-frequency Rossby waves that establish gyre circulations) in a model of ocean-basin circulation. The energy originates in baroclinic meanders of circulation at the eastern boundary of the ocean. Eddies are intimately related and occur as a result of the instability of this process. This mechanism does not rely on the existence of the small-scale turbulence to establish zonal flows. Zonal jets can then be amplified by eddies arranged in certain order in the flow. The underlying dynamics include the propagation of linear and nonlinear basin scale Rossby waves. The related barotropic theory for these waves is developed here. We demonstrate the radiative development of jets and β-plumes in a laboratory experiment using a rotating fluid with a paraboloidal free surface. The dynamical fields are measured by the laboratory analog of the satellite altimetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号