首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock δ18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4‰ (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member.

Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock δ18O can be best explained by isotopic exchange with discharging18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500°C.18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center.  相似文献   


2.
In the Long Valley caldera, where seismicity has continued essentially uninterrupted since mid-1980 and uplift is documented, samples of water from hot, warm, and cold springs have been collected since September, 1982, and their222Rn concentrations analyzed. Concurrently, rocks encompassing the hydrologic systems feeding the springs were analyzed for their radioelement contents, because their uranium is the ultimate source of the222Rn in the water.The222Rn concentration in the springs varies inversely with their temperature and specific conductance. High concentrations (1500 to 2500 picocuries per liter) occur in dilute cold springs on the margins of the caldera, while low contents (12 to 25 pCi/l) occur in hot to boiling springs. Springwater radon concentrations also correlate slightly with the uranium content of the encompassing rocks.A continuous monitoring system was installed in August, 1983, at a spring issuing from basalt, to provide hourly records of radon concentration. A gamma detector is submerged in a natural pool, and we have observed that the radioactivity measured in this manner is due almost entirely to the222Rn concentration of the water. Initial operation shows diurnal and semidiurnal variations in the222Rn concentration of the springwater that are ascribed to earth tides, suggesting that those variations are responding to small changes in stress in the rocks encompassing the hydrologic system.  相似文献   

3.
Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200°C) reservoirs within the volcanic fill in parts of the west moat. These reservoirs contain fluids which are chemically similar to thermal fluids encountered in the central and eastern parts of the caldera. The roots of the present-day hydrothermal system (the source reservoir, principal zones of upflow, and the magmatic heat source) most likely occur within metamorphic basement rocks beneath the western part of the caldera. Geothermometer-temperature estimates for the source reservoir range from 214 to 248°C. Zones of upflow of hot water could exist beneath the plateau of moat rhyolite located west of the resurgent dome or beneath Mammoth Mountain. Lateral flow of thermal water away from such upflow zones through reservoirs in the Bishop Tuff and early rhyolite accounts for temperature reversals encountered in most existing wells. Dating of hot-spring deposits from active and inactive thermal areas confirms previous interpretations of the evolution of hydrothermal activity that suggest two periods of extensive hot-spring discharge, one peaking about 300 ka and another extending from about 40 ka to the present. The onset of hydrothermal activity around 40 ka coincides with the initiation of rhyolitic volcanism along the Mono-Inyo Craters volcanic chain that extends beneath the caldera's west moat.  相似文献   

4.
Long Valley Caldera is an active volcanic region in east central California. Surface deformation on the resurgent dome within the caldera was an order of magnitude higher for the five-month period September 1997 through January 1998 compared to the previous three-year average. However, the location of the immediate (shallow) source of deformation remained essentially constant, 5–7 km beneath the dome, near the top of a region of probable magma accumulation defined by seismic data. Similarly, although the rate of seismic moment release increased dramatically, earthquake locations remained similar to earlier periods. The rate of deformation increased exponentially between April–May 1997 and late November 1997 with a time constant of ∼55–65 days, after which it decreased exponentially with about the same time constant. We develop a model consistent with these observations and also consistent with independent constraints on sub-surface rheology from thermal, geochemical and laboratory data. Deformation at sites on the resurgent dome most sensitive to the shallow deformation source are well fit by a model with a single pressure source at 6 km depth which experienced a pressure pulse that began in late 1996, peaked in November 1997, close to the time of major seismic moment release, and essentially ended in mid-1999. The pressure source in our model is surrounded by a 1 km thick “shell” of Maxwell viscoelastic material (shell viscosity 1016 Pa s) within an elastic half space, and has peak values that are much lower than corresponding purely elastic half space models. The shell viscosity is characteristic of a weak, deformable solid, e.g. quartz-bearing country rock surrounding the magma chamber at temperatures in the range 500–600°C, i.e. above the brittle–ductile transition, and/or largely crystallized rhyolite near its solidus temperature of ∼670°C, material that probably exists near the top of the zoned magma chamber at Long Valley.  相似文献   

5.
Recent drilling and sampling of hydrothermal fluids from Long Valley permit an accurate characterization of chemical concentrations and equilibrium conditions in the hydrothermal reservoir. Hydrothermal fluids are thermodynamically saturated with secondary quartz, calcite, and pyrite but are in disequilibrium with respect to aqueous sulfide-sulfate speciation. Hydrothermal fluids are enriched in 18O by approximately 1‰ relative to recharge waters. 18O and Cl concentrations in well cuttings and core from high-temperature zones of the reservoir are extensively depleted relative to fresh rhyolitic tuff compositions. Approximately 80% of the Li and 50% of the B are retained in the altered reservoir rock. Cl mass balance and open-system 18O fractionation models produce similar water-rock ratios of between 1.0 and 2.5 kg kg−1. These water-rock ratios coupled with estimates of reservoir porosity and density produce a minimum fluid residence time of 1.3 ka. The low fluid Cl concentrations in Long Valley correlate with corresponding low rock concentrations. Mass balance calculations indicate that leaching of these reservoir rocks accounts for Cl losses during hydrothermal activity over the last 40 ka.  相似文献   

6.
An evaluation of the Hg distribution in soils of the Long Valley, California, geothermal area, was made. A1-horizon soil samples were collected utilizing a grid system from the resurgent dome area and the Long Valley area. In addition, samples were collected in five traverses across three fault systems and four traverses across east-west-oriented gullies to measure the importance of aspect. Additional samples were collected in an analysis of variance design to evaluate natural variability in soil composition with sampling interval distance.The primary objectives of this study were to further evaluate the applicability of anomalously high Hg concentration in soils to exploration for geothermal systems and the importance of secondary controls on Hg concentration in soils above geothermal systems.Statistical analysis indicates that there are two populations of Hg concentrations in soils; one affected by geothermal activity and the other unaffected. Samples from the resurgent dome are shown to be statistically different from the samples collected in Long Valley proper with respect to Hg, organic carbon, and pH. This suggests that secondary influences may be important in controlling Hg distribution in soils.Organic carbon in soils is shown by stepwise multiple regression to be the most important secondary parameter controlling Hg concentration. For the most part, the secondary controls of Hg are overwhelmed in an area of prominent geothermal activity. Some faults exhibit prominent anomalies in total Hg concentration and others do not, indicating the possibility of low levels of hydrothermal activity or effective sealing of faults to gas leakage.The analysis of variance results indicate that there is a regional trend in Hg concentration across the resurgent dome. Soils can be sampled for Hg by utilizing a grid of about 0.4 km spacing. However, some local irregularities appear in this pattern and anomalous areas should be prospected at intervals of 100 m or less.  相似文献   

7.
A 23-m.y.-old, fossil meteoric-hydrothermal system in the Lake City caldera (11 × 14 km) has been mapped out by measuring δ 18O values of 300 rock and mineral samples. δ 18O varies systematically throughout the caldera, reaching values as low as −2. Great topographic relief, regional tilting, and variable degrees of erosion within the caldera all combine to give us a very complete section through the hydrothermal system, from the surface down to a depth of more than 2000 m. The initial δ 18O value of the caldera-fill Sunshine Peak Tuff was very uniform (+7.2 ± 0.1), making it easy to determine the exact amount of 18O depletion experienced by each sample during hydrothermal alteration. Also, we have excellent stratigraphic control on depths beneath the mid-Tertiary surface, quantitative information on mineralogical alteration products, and accurate data on the shape of the central resurgent intrusion, which was the principal ‘heat engine’ that drove the hydrothermal circulation. Major conclusions are: (1) Although pristine mid-Tertiary meteoric waters in this area had δ 18O −14, these fluids were 18O-shifted upward to about δ18O = −8 to −5 prior to entering the shallow convective system associated with the resurgent intrusive rocks. Although there was undoubtedly radial inflow toward the caldera from all directions, the highly fractured Eureka Graben, southwest of the caldera, was probably the principal source of recharge groundwater for the Lake City system. (2) Fluid flow within the caldera was dominated by three major categories of permeable zones: the porous megabreccia units (which dip outward from the resurgent dome), vertical fractures and faults related to resurgence, and the caldera ring fault itself. All of these zones exhibit marked 18O depletions, and they are also typically intensely mineralogically altered. (3) The resurgent intrusive stock and its contact metamorphic aureole of hornfels both experienced water/rock ratios lower than the permeable zones; however, they have similarly low δ 18O values because they were altered at higher temperatures. (4) Throughout the caldera, the δ 18O of Sunshine Peak Tuff decreases with increasing depth (about 6 per mil/km), indicative of a shallow thermal gradient, typical of a convective hydrothermal system. The near-surface portion of this gradient was controlled by the temperature drop associated with boiling in the uprising fluid. (5) Deeply circulating meteoric water rose along permeable ring fractures 3 to 5 km beneath the mid-Tertiary surface. These fluids were drawn into the shallow convective system through the lower, porous, megabreccia units. Near the resurgent intrusions, fluid flow was again directed upward where resurgence-related, near-vertical fractures intersect the megabreccia units.  相似文献   

8.
Lake Baringo, a freshwater lake in the central Kenya Rift Valley, is fed by perennial and ephemeral rivers, direct rainfall, and hot springs on Ol Kokwe Island near the centre of the lake. The lake has no surface outlet, but despite high evaporation rates it maintains dilute waters by subsurface seepage through permeable sediments and faulted lavas. New geochemical analyses (major ions, trace elements) of the river, lake, and hot spring waters and the suspended sediments have been made to determine the main controls of lake water quality. The results show that evaporative concentration and the binary mixing between two end members (rivers and thermal waters) can explain the hydrochemistry of the lake waters. Two zones are recognized from water composition. The southern part of the lake near sites of perennial river inflow is weakly influenced by evaporation, has low total dissolved species (TDS), and has a seasonally variable load of mainly detrital suspended sediments. In contrast, waters of the northern part of the lake show evidence for strong evaporation (TDS of up to eight times inflow). Authigenic clay minerals and calcite may be precipitating from those more concentrated fluids. The subaerial hot‐spring waters have a distinctive chemistry and are enriched in some elements that are also present in the lake water. Comparison of the chemical composition of the inflowing surface waters and lake water shows (1) an enrichment of some species (HCO3?, Cl, SO42?, F, Na, B, V, Cr, As, Mo, Ba and U) in the lake, (2) a depletion in SiO2 in the lake, and (3) a possible hydrothermal origin for most F. The rare earth element distribution and the F/Cl and Na/Cl ratios give valuable information on the rate of mixing of the river and hydrothermal fluids in the lake water. Calculations imply that thermal fluids may be seeping upward locally into the lake through grid‐faulted lavas, particularly south of Ol Kokwe Island. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Active thermal springs associated with the late Pleistocene Calabozos caldera complex occur in two groups: the Colorado group which issues along structures related to caldera collapse and resurgence, and the Puesto Calabozos group, a nearby cluster that is chemically distinct and probably unrelated to the Colorado springs. Most of the Colorado group can be related to a hypothetical parent water containing ∼400 ppm Cl at ∼250°C by dilution with ≥50% of cold meteoric water. The thermal springs in the most deeply eroded part of the caldera were derived from the same parent water by boiling.The hydrothermal system has probably been active for at least as long as 300,000 years, based on geologic evidence and calculations of paleo-heat flow. There is no evidence for economic mineralization at shallow depth. The Calabozos hydrothermal system would be an attractive geothermal prospect were its location not so remote.  相似文献   

10.
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210–300°C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas δ13C–CO2 values (−3 to −5‰) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ≤1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982–1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987–1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone).  相似文献   

11.
Temperatures of aquifers feeding thermal springs and wells in Long Valley, California, estimated using silica and Na-K-Ca geothermometers and warm spring mixing models, range from 160/dg to about 220°C. This information was used to construct a diagram showing enthalpy-chloride relations for the various thermal waters in the Long Valley region. The enthalpy-chloride information suggests that a 282 ± 10°C aquifer with water containing about 375 mg chloride per kilogram of water is present somewhere deep in the system. That deep water would be related to 220°C Casa Diablo water by mixing with cold water, and to Hot Creek water by first boiling with steam loss and then mixing with cold water. Oxygen and deuterium isotopic data are consistent with that interpretation. An aquifer at 282°C with 375 mg/kg chloride implies a convective heat flow in Long Valley of 6.6 × 107 cal/s.  相似文献   

12.
Rocks of the Miocene Macquarie Island ophiolite, south of New Zealand, have oxygen and carbon isotopic compositions comparable to those of seafloor rocks. Basalt glass and weathered basalts have δ18O values at 5.8–6.0‰ and 7.9–9.5‰, respectively, similar to drilled seafloor rocks including samples from the Leg 29 DSDP holes near Macquarie Island. Compared to the basalt glass, the greenschist to amphibolite facies metaintrusives are depleted in18O (δ18O=3.2–5.9‰) similar to dredged seafloor samples, whereas the metabasalts are enriched (δ18O=7.1–9.7‰). Although the gabbros are only slightly altered in thin-section they have exchanged oxygen with a hydrothermal fluid to a depth of at least 4.5 km. There is an approximate balance between18O depletion and enrichment in the exposed ophiolite section. The carbon isotopic composition of calcite in the weathered basalts (δ13C=1.0–2.0‰) is similar to those of drilled basalts, but the metamorphosed rocks have low δ13C values (?14.6 to 0.9‰).These data are compatible with two seawater circulation regimes. In the upper regime, basalts were weathered by cold seawater in a circulation system with high water/rock ratios (?1.0). Based on calcite compositions weathering temperatures were less than 20°C and the carbon was derived from a predominantly inorganic marine source. As previously suggested for the Samail ophiolite, it is postulated that the lower hydrothermal regime consisted of two coupled parts. At the deeper levels, seawater circulating at low water/rock ratios (0.2–0.3) and high temperatures (300–600°C) gave rise to18O-depleted gabbro and sheeted dikes via open system exchange reactions. During reaction the seawater underwent a shift in oxygen isotopic composition (δ18O=1.0–5.0‰) and subsequently caused18O enrichment of the overlying metabasalts. In the shallower part of the hydrothermal regime the metabasalts were altered at relatively high water/rock ratios (1.0–10.0) and temperatures in the range 200–300°C. The relatively low water/rock ratios in the hydrothermal regime are supported by the low δ13C values of calcite, interpreted as evidence of juvenile carbon in contrast to the inorganic marine carbon found in the weathered basalts.  相似文献   

13.
The Inyo Craters (North Inyo Crater and South Inyo Crater), and a third crater, Summit Crater, are the largest of more than a dozen 650- to 550-yr-B.p. phreatic craters that lie in a 1-km-square area at the south end of the Inyo Volcanic Chain, on the west side of the Long Valley Caldera in eastern California. The three craters are aligned within a 1-km-long northsouth system of fissures and normal faults, and coincide in age with aligned magmatic vents farther north in the Inyo Volcanic Chain, suggesting that they were all produced by intrusion of one or more dikes. To study the sequence and mechanisms of the eruptions, the deposits were mapped, sampled, and compared with subsurface stratigraphy obtained from the core of a slant hole drilled directly below the center of South Inyo Crater from the southwest. The deposits from the two Inyo Craters are fine-grained (median diameter less than 1 mm), are several meters thick at the crater walls, and cover at most a few km2 of ground surface. Stratigraphic relationships between the Inyo Craters and Summit Crater indicate that the eruptions proceeded from north to south, overlapped slightly in time, and produced indistinctly plane-parallel bedded, poorly sorted deposits, containing debris derived primarily from within 450 m of the surface. Debris from the deepest identifiable unit (whose top is at 450 m depth) is present at the very base of both Inyo Craters deposits, suggesting that the eruptive vents were open and tapping debris from at least that depth, probably along preexisting fractures, even at their inception. According to ballistic studies, the greatest velocity of ejected blocks was of the order of 100 m/s. All eruptions, particularly the least powerful, selectively removed debris from the finest-grained, most easily eroded subsurface units. Although juvenile fragments have been previously identified in these deposits, they are confined primarily to the grain-size fraction smaller than 0.25 mm dia. and probably did not constitute more than several percent of the deposit. It is therefore suggested that these juvenile fragments were not the main source of heat for the eruptions, and that the eruptions were caused either by: (1) heating of water by fragmented magma that was not ejected before the eruption shut off; (2) slow heating (over months to years) of groundwater under confined conditions without fragmentation of magma, followed by a second process (pressure buildup, seismic faulting, or intrusions) that breached the confinement; or (3) breach of a pre-existing confined geothermal aquifer.  相似文献   

14.
Geochemical variations in mid-ocean ridge basalts have been attributed to differing proportions of compositionally distinct mantle components in their sources, some of which may be recycled crust. Oxygen isotopes are strongly fractionated by near-surface interactions of rocks with the hydrosphere, and thus provide a tracer of near-surface materials that have been recycled into the mantle. We present here oxygen isotope analyses of basaltic glasses from the mid-Atlantic ridge south of and across the Azores platform. Variations in δ18O in these samples are subtle (range of 0.47‰) and may partly reflect shallow fractional crystallization; we present a method to correct for these effects. Relatively high fractionation-corrected δ18O in these samples is associated with geochemical indices of enrichment, including high La/Sm, Ce/Pb, and 87Sr/86Sr and low 143Nd/144Nd. Our results suggest two first-order conclusions about these enriched materials: (1) they are derived (directly or indirectly) from recycled upper oceanic crustal rocks and/or sediments; and (2) these materials are present in the north Atlantic MORB sources in abundances of less than 10% (average 2–5%). Modeling of variations of δ18O with other geochemical variables further indicates that the enriched component is not derived from incorporation of sediment or bulk altered oceanic crust, from metasomatism of the mantle by hydrous or carbonate-rich fluids, or from partial melting of subducted sediment. Instead, the data appear to require a model in which the enriched component is depleted mantle that has been metasomatized by small-degree partial melts of subducted, dehydrated, altered oceanic crust. The age of this partial melting is broadly constrained to 250 Ma. Reconstructed plate motions suggest that the enriched component in the north Atlantic mantle may have originated by subduction along the western margin of Pangea.  相似文献   

15.
The loci and abundance of U and Th were examined in tuffaceous rocks encompassing hydrothermal systems at the Long Valley caldera, California and the Valles caldera, New Mexico. Aspects of these systems may be analogous to conditions expected in a potential site for a high-level waste repository in welded tuff. Examination of radioelements in core from scientific drill holes at these sites was accomplished by gamma-ray spectrometry and fission-track radiography. In the lateral-flowing hydrothermal system at the Long Valley caldera, where temperatures range from 140 to 200 °C, U is concentrated to 20 ppm in Fe-rich zones of varved tuff and to 50 ppm with Fe-rich mineral phases in tuff fragments of a calcite-cemented breccia. U-series disequilibrium in some of these samples suggests mobilization/deposition of parent U and/or its daughters. In the vapor zone of the Valles caldera's hydrothermal system (temperature ˜ 100 °C), the concordance of high U, low Th/U and decreasing whole-rock O-isotope ratios suggests that U was concentrated in response to hydrothermal circulation when the system was formerly liquid-dominated. In the underlying present-day liquid-dominated zone (temperature to 210 °C), U, up to several tens of parts per million, occurs with pyrite and Fe-oxide minerals, and in concentrations to several percents with a Ti-Nb-Y-rare earth mineral. In the Valles system's outflow zone, U is also concentrated in Fe-rich zones as well as in carbonaceous-rich zones in the Paleozoic sedimentary rocks that underlie the Quaternary tuff. Th, associated with accessory minerals, predominates in breccia zones and in a mineralized fault zone near the base of the Paleozoic sedimentary sequence. Relatively high concentrations of U occur in springs representative of water recharging the Valles caldera's hydrothermal system. In contrast, considerably lower U concentrations occur in hot waters (> 220 °C) and in the system's outflow plume, suggesting that U is concentrating in the hotter part of the system. The Long Valley and Valles observations indicate that U and Ra are locally mobile under hydrothermal conditions, and that reducing conditions associated with Fe-rich minerals and carbonaceous material are important factors in the adsorption of U, and thus can retard its transport in water at elevated temperature.  相似文献   

16.
Abstract

The geodynamo simulation of Glatzmaier and Roberts (1996, Physica D97, 81) is driven by the cooling of the model Earth, which releases latent heat and light components of core fluid at the freezing surface of the inner core as it advances outwards. At some time in the past, the inner core was only a quarter of its present size and at some time in the future it will be twice its present size. The geodynamo operating during those epochs are studied here, the three models (past, present and future) being tied together in an evolutionary sense. The time taken for the models to evolve from past to future depends on the cooling rate, which is controlled by the dynamics of the mantle and is not studied here. All three models generate external fields of comparable strength and all three appear to be close to Taylor states. Unexpectedly, the future model showed considerable variability in time, while the past model does not. Deviations from axisymmetry in the external field increase with inner core radius and the relative predominance of the centered dipole over other multipole components declines.  相似文献   

17.
We model the source inflation of the Long Valley Caldera, California, using a genetic algorithm technique and micro-gravity data. While there have been numerous attempts to model the magma injection at Long Valley Caldera from deformation data, this has proven difficult given the complicated spatial and temporal nature of the volcanic source. Recent work illustrates the effectiveness of considering micro-gravity measurements in volcanic areas. A genetic algorithm is a problem-solving technique which combines genetic and prescribed random information exchange. We perform two inversions, one for a single spherical point source and another for two-sources that might represent a more spatially distributed source. The forward model we use to interpret the results is the elastic-gravitational Earth model which takes into account the source mass and its interaction with the gravity field. The results demonstrate the need to incorporate more variations in the model, including another source geometry and the faulting mechanism. In order to provide better constraints on intrusion volumes, future work should include the joint inversion of gravity and deformation data during the same epoch.  相似文献   

18.
Continental Scientific Drilling Program (CSDP) drill hole VC-2B [total depth 1761.7 m (5780 ft); maximum temperature 295 °C] was continuously cored through the Sulphur Springs hydrothermal system in the western ring-fracture zone of the 1.14 Ma Valles caldera. Among other units, the hole penetrated 760.2 m (2494.1 ft) of Paleozoic carbonate and siliciclastic strata underlying caldera fill and precaldera volcanic and epiclastic rocks. Comparison of the VC-2B Paleozoic rocks with corresponding lithologies within and around the 32.1 Ma Socorro caldera, 192 km ( 119 miles) to the south-southwest, provides insight into the variability of alteration responses to similar caldera-related hydrothermal regimes.The Pennsylvanian Madera Limestone and Sandia Formation from VC-2B preserve many of the sedimentological and diagenetic features observed in these units on a regional basis and where unaffected by high temperatures or hydrothermal activity. Micrites in these formations in VC-2B are generally altered and mineralized only where fractured or brecciated, that is, where hydrothermal solutions could invade carbonate rocks which were otherwise essentially impermeable. Alteration intensity (and correspondingly inferred paleopermeability) is only slightly higher in carbonate packstones and grainstones, low to intermediate in siltstones and claystones, and high in poorly cemented sandstones. Hydrothermal fracture-filling phases in these rocks comprise sericite (and phengite), chlorite, allanite, apatite, an unidentified zeolite and sphene in various combinations, locally with sphalerite, galena, pyrite and chalcopyrite. Terrigenous feldspars and clays are commonly altered to chlorite and seriate, and euhedral anhydrite “porphyroblasts” with minor chlorite occur in Sandia Formation siltstone. Fossils are typically unaltered, but the walls of some colonial bryozoans in the Madera Limestone are altered to the assemblage chlorite-sericite-epidote-allanite. La, Ce and Nd are present in an unidentified hydrothermal mineral occurring throughout much of the VC-2B Pennsylvanian sequence.Carboniferous carbonate and siliciclastic formations within and around the Socorro caldera show a similar style of alteration and mineralization to their Valles caldera counterparts, but by contrast locally host commercial, caldera-related, base-metal sulfide deposits. As in the Valles rocks, mineralization and alteration in those of the Socorro caldera were strongly controlled by porosity. Unless disrupted by fractures, breccias, or karst cavities ( not identified in Valles caldera drill holes), the rocks remained relatively unaltered. Where these features allowed ingress of mineralizing hydrothermal solutions, base-metal sulfides and rare-earth-element-bearing minerals were precipitated.  相似文献   

19.
The Miocene Tejeda caldera on Gran Canaria erupted ~ 20 rhyolite–trachyte ignimbrites (Mogán Group 14–13.3 Ma), followed by ~ 20 phonolitic lava flows and ignimbrites (Fataga Group 13–8.5 Ma). Upper-Mogán tuffs have been severely altered immediately within the caldera margin, whereas extra-caldera Mogán ignimbrites, and overlying Fataga units, are apparently unaltered. The altered intra-caldera samples contain minerals characteristic of secondary fluid–rock interaction (clays, zeolites, adularia), and relics of the primary mineral assemblage identified in unaltered ignimbrites (K-feldspar, plagioclase, pyroxene, amphibole, and groundmass quartz). Major and trace-element data indicate that Si, Na, K, Pb, Sr, and Rb, were strongly mobilized during fluid–rock interaction, whereas Ti, Zr, and Nb behaved in a more refractory manner, experiencing only minor mobilization. The δ18O values of the altered intra-caldera tuffs are significantly higher than in unaltered extra-caldera ignimbrites, consistent with an overall low-temperature alteration environment. Unaltered extra-caldera ignimbrites have δD values between − 110‰ and − 173‰, which may reflect Rayleigh-type magma degassing and/or post-depositional vapour release. The δD values of the altered intra-caldera tuffs range from − 52‰ to − 131‰, with ambient meteoric water at the alteration site estimated at ca. − 15‰. Interaction and equilibration of the intra-caldera tuffs with ambient meteoric water at low temperature can only account for whole-rock δD values of around − 45‰, given that ?Dclay–water is ca. − 30‰ at 100 °C, and decreases in magnitude at higher temperatures. All altered tuff samples have δD values that are substantially lower than − 45‰, indicating interaction with a meteoric water source with a δD value more negative than − 15‰, which may have been produced in low-temperature steam fumaroles. Supported by numerical modeling, our Gran Canaria data reflect the near-surface, epithermal part of a larger, fault-controlled hydrothermal system associated with the emplacement of the high-level Fataga magma chamber system. In this near-surface environment, fluid temperatures probably did not exceed 200–250 °C.  相似文献   

20.
As part of a plant survivability and ground water study in Owens Valley, California, semipermanent installations are used to measure continuous range-land evapotranspiration in the valley's phreatophyte community. A proposed mobile installation also has been designed. The semipermanent micrometeoro-logical station collects continuous data for solution of the Bowen ratio/energy budget equation and the Penman combination equation. Three sites were chosen for this type of installation to provide a representative sampling of Owens Valley. The proposed mobile aerodynamic installation should be capable of calculating evapotranspiration by the eddy correlation method. This instrumentation will be used throughout the valley for short periods of time (up to five days). Many problems with equipment operation, calibration and design have been identified and resolved by means of improved calibration techniques, systematic error-removal techniques, reduced cycle times, modified equipment design and proper observer training. The collected evapotranspiration data will be instrumental in developing a one-dimensional evapotranspiration flux algorithm for a model of valleywide ground water flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号