首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser-ablation microanalysis of a large suite of silicate and sulfide melt inclusions from the deeply eroded, Cu-Au-mineralizing Farallón Negro Volcanic Complex (NW Argentina) shows that most phenocrysts in a given rock sample were not formed in equilibrium with each other. Phenocrysts in the andesitic volcano were brought together in dominantly andesitic—dacitic extrusive and intrusive rocks by intense magma mixing. This hybridization process is not apparent from macroscopic mingling textures, but is clearly recorded by systematically contrasting melt inclusions in different minerals from a given sample. Amphibole (and rare pyroxene) phenocrysts consistently contain inclusions of a mafic melt from which they crystallized before and during magma mixing. Most plagioclase and quartz phenocrysts contain melt inclusions of more felsic composition than the host rock. The endmember components of this mixing process are a rhyodacite magma with a likely crustal component, and a very mafic mantle-derived magma similar in composition to lamprophyre dykes emplaced early in the evolution of the complex. The resulting magmas are dominantly andesitic, in sharp contrast to the prominently bimodal distribution of mafic and felsic melts recorded by the inclusions. These results severely limit the use of mineral assemblages to derive information on the conditions of magma formation. Observed mineral associations are primarily the result of the mixing of partially crystallized magmas. The most mafic melt is trapped only in amphibole, suggesting pressures exceeding 350 MPa, temperatures of around 1,000 °C and water contents in excess on 6 wt%. Upon mixing, amphibole crystallized with plagioclase from andesitic magma in the source region of porphyry intrusions at 250 MPa, 950 °C and water contents of 5.5 wt%. During ascent of the extrusive magmas, pyroxene and plagioclase crystallized together, as a result of magma degassing at low pressures (150 MPa). Protracted extrusive activity built a large stratovolcano over the total lifetime of the magmatic complex (>3 m.y.). The mixing process probably triggered eruptions as a result of volatile exsolution.Electronic Supplementary Material Supplementary material (eTable 1and eFigure 1) is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: T.L. Grove  相似文献   

2.
We present a new approach to determine the composition of silicate melt inclusions (SMI) using LA-ICPMS. In this study, we take advantage of the occurrence of SMI in co-precipitated mineral phases to quantify their composition without depending on additional sources of information. Quantitative SMI analyses are obtained by assuming that the ratio of selected elements in SMI trapped in different phases are identical. In addition Fe/Mg exchange equilibrium between olivine and melt was successfully used to quantify LA-ICPMS analyses of SMI in olivine. Results show that compositions of SMI from the different host minerals are identical within their uncertainty. Thus (1) the quantification approach is valid; (2) analyses are not affected by the composition of the host phase; (3) the derived melt compositions are representative of the original melt, excluding significant syn- or postentrapment modification such as boundary layer effects or diffusive reequilibration with the host mineral. With this data we established a large dataset of mineral/melt partition coefficients for the investigated mineral phases in hydrous calc-alkaline basaltic-andesitic melts. The clinopyroxene/melt and plagioclase/melt partition coefficients are consistent with the lattice strain model of Blundy and Wood [Blundy, J., Wood B., 1994. Prediction of crystal-melt partition-coefficients from elastic-moduli. Nature372, 452-454].  相似文献   

3.
Silicate and sulfide melt inclusions from the andesitic Farallón Negro Volcanic Complex in NW Argentina were analyzed by laser ablation ICPMS to track the behavior of Cu and Au during magma evolution, and to identify the processes in the source of fluids responsible for porphyry-Cu-Au mineralization at the 600 Mt Bajo de la Alumbrera deposit. The combination of silicate and sulfide melt inclusion data with previously published geological and geochemical information indicates that the source of ore metals and water was a mantle-derived mafic magma that contained approximately 6 wt.% H2O and 200 ppm Cu. This magma and a rhyodacitic magma mixed in an upper-crustal magma chamber, feeding the volcanic systems and associated subvolcanic intrusions over 2.6 million years. Generation of the ore fluid from this magma occurred towards the end of this protracted evolution and probably involved six important steps: (1) Generation of a sulfide melt upon magma mixing in some parts of the magma chamber. (2) Partitioning of Cu and Au into the sulfide melt (enrichment factor of 10,000 for Cu) leading to Cu and Au concentrations of several wt.% or ppm, respectively. (3) A change in the tectonic regime from local extension to compression at the end of protracted volcanism. (4) Intrusion of a dacitic magma stock from the upper part of the layered magma chamber. (5) Volatile exsolution and resorption of the sulfide melt from the lower and more mafic parts of the magma chamber, generating a fluid with a Cu/Au ratio equal to that of the precursor sulfide. (6) Focused fluid transport and precipitation of the two metals in the porphyry, yielding an ore body containing Au and Cu in the proportions dictated by the magmatic fluid source. The Cu/S ratio in the sulfide melt inclusions requires that approximately 4,000 ppm sulfur is extracted from the andesitic magma upon mixing. This exceeds the solubility of sulfide or sulfate in either of the silicate melts and implies an additional source for S. The extra sulfur could be added in the form of anhydrite phenocrysts present in the rhyodacitic magma. It appears, thus, that unusually sulfur-rich, not Cu-rich magmas are the key to the formation of porphyry-type ore deposits. Our observations imply that dacitic intrusions hosting the porphyry–Cu–Au mineralization are not representative of the magma from which the ore-fluid exsolved. The source of the ore fluid is the underlying more mafic magma, and unaltered andesitic dikes emplaced immediately after ore formation are more likely to represent the magma from which the fluids were generated. At Alumbrera, these andesitic dikes carry relicts of the sulfide melt as inclusions in amphibole. Sulfide inclusions in similar dykes of other, less explored magmatic complexes may be used to predict the Au/Cu ratio of potential ore-forming fluids and the expected metal ratio in any undiscovered porphyry deposit.Editorial handling: B. Lehmann  相似文献   

4.
Analyses of co-existing silicate melt and fluid inclusions, entrapped in quartz crystals in volatile saturated magmatic systems, allowed direct quantitative determination of fluid/melt partition coefficients. Investigations of various granitic systems (peralkaline to peraluminous in composition, log fO2 = NNO−1.7 to NNO+4.5) exsolving fluids with various chlorinities (1-14 mol/kg) allowed us to assess the effect of these variables on the fluid/melt partition coefficients (D). Partition coefficients for Pb, Zn, Ag and Fe show a nearly linear increase with the chlorinity of these fluid (DPb ∼ 6 ∗ mCl, DZn ∼ 8 ∗ mCl, DAg ∼ 4 ∗ mCl, DFe ∼ 1.4 ∗ mCl, where mCl is the molinity of Cl). This suggests that these metals are dissolved primarily as Cl-complexes and neither oxygen fugacity nor the composition of the melt affects significantly their fluid/melt partitioning. By contrast, partition coefficients for Mo, B, As, Sb and Bi are highest in low salinity (1-2 mol/kg Cl) fluids with maximum values of DMo ∼ 20, DB ∼ 15, DAs ∼ 13, DSb ∼ 8, DBi ∼ 15 indicating dissolution as non-chloride (e.g., hydroxy) complexes. Fluid/melt partition coefficients of copper are highly variable, but highest between vapor like fluids and silicate melt (DCu ? 2700), indicating an important role for ligands other than Cl. Partition coefficients for W generally increase with increasing chlorinity, but are exceptionally low in some of the studied brines which may indicate an effect of other parameters. Fluid/melt partition coefficients of Sn show a high variability but likely increase with the chlorinity of the fluid (DSn = 0.3-42, DW = 0.8-60), and decrease with decreasing oxygen fugacity or melt peraluminosity.  相似文献   

5.
6.
A new approach was developed to measure the water content of silicate glasses using Raman spectroscopy, which is independent of the glass matrix composition and structure. Contrary to previous studies, the compositional range of our studied silicate glasses was not restricted to rhyolites, but included andesitic, basaltic and phonolitic glasses. We used 21 glasses with known water contents for calibration. To reduce the uncertainties caused by the baseline removal and correct for the influence of the glass composition on the spectra, we developed the following strategy: (1) application of a frequency-dependent intensity correction of the Raman spectra; (2) normalization of the water peak using the broad T–O and T–O–T vibration band at 850–1250 cm−1 wavenumbers (instead of the low wavenumber T–O–T broad band, which appeared to be highly sensitive to the FeO content and the degree of polymerization of the melt); (3) normalization of the integrated Si-O band area by the total number of tetrahedral cations and the position of the band maximum. The calibration line shows a ±0.4 wt% uncertainty at one relative standard deviation in the range of 0.8–9.5 wt% water and a wide range of natural melt compositions. This method provides a simple, quick, broadly available and cost-effective way for a quantitative determination of the water content of silicate glasses. Application to silicate melt inclusions yielded data in good agreement with SIMS data.  相似文献   

7.
Rare-metal granites of Nuweibi and Abu Dabbab, central Eastern Desert of Egypt, have mineralogical and geochemical specialization. These granites are acidic, slightly peraluminous to metaaluminous, Li–F–Na-rich, and Sn–Nb–Ta-mineralized. Snowball textures, homogenous distribution of rock-forming accessory minerals, disseminated mineralization, and melt inclusions in quartz phenocrysts are typical features indicative of their petrographic specialization. Geochemical characterizations are consistent with low-P-rare metal granite derived from highly evolved I-type magma in the late stage of crystallization. Melt and fluid inclusions were studied in granites, mineralized veins, and greisen. The study revealed that at least two stages of liquid immiscibility played an important role in the evolution of magma–hydrothermal transition as well as mineral deposition. The early stage is melt/fluid case. This stage is represented by the coexistence of type-B melt and aqueous-CO2 inclusions in association with topaz, columbite–tantalite, as well as cassiterite mineral inclusions. This stage seems to have taken place at the late magmatic stage at temperatures between 450 °C and 550 °C. The late magmatic to early hydrothermal stage is represented by vapor-rich H2O and CO2 inclusions, sometimes with small crystallized silicic melt in greisen and the outer margins of the mineralized veins. These inclusions are associated with beryl, topaz, and cassiterite mineralization and probably trapped at 400 °C. The last stage of immiscibility is fluid–fluid and represented by the coexisting H2O-rich and CO2-rich inclusions. Cassiterite, wolframite ± chalcopyrite, and fluorite are the main mineral assemblage in this stage. The trapping temperature was estimated between 200 °C and 350 °C. The latest phase of fluid is low-saline, low-temperature (100–180 °C), and liquid-rich aqueous fluid.  相似文献   

8.
The evolution of a carbonated nephelinitic magma can be followed by the study of a statistically significant number of melt inclusions, entrapped in co-precipitated perovskite, nepheline and magnetite in a clinopyroxene- and nepheline-rich rock (afrikandite) from Kerimasi volcano (Tanzania). Temperatures are estimated to be 1,100°C for the early stage of the melt evolution of the magma, which formed the rock. During evolution, the magma became enriched in CaO, depleted in SiO2 and Al2O3, resulting in immiscibility at ~1,050°C and crustal pressures (0.5–1 GPa) with the formation of three fluid-saturated melts: an alkali- and MgO-bearing, CaO- and FeO-rich silicate melt; an alkali- and F-bearing, CaO- and P2O5-rich carbonate melt; and a Cu–Fe sulfide melt. The sulfide and the carbonate melt could be physically separated from their silicate parent and form a Cu–Fe–S ore and a carbonatite rock. The separated carbonate melt could initially crystallize calciocarbonatite and ultimately become alkali rich in composition and similar to natrocarbonatite, demonstrating an evolution from nephelinite to natrocarbonatite through Ca-rich carbonatite magma. The distribution of major elements between perovskite-hosted coexisting immiscible silicate and carbonate melts shows strong partitioning of Ca, P and F relative to FeT, Si, Al, Mn, Ti and Mg in the carbonate melt, suggesting that immiscibility occurred at crustal pressures and plays a significant role in explaining the dominance of calciocarbonatites (sövites) relative to dolomitic or sideritic carbonatites. Our data suggest that Cu–Fe–S compositions are characteristic of immiscible sulfide melts originating from the parental silicate melts of alkaline silicate–carbonatite complexes.  相似文献   

9.
Partitioning behavior of Sc, Ti, V, Mn, Sr, Y, Zr, Nb, Ba, La, Nd, Sm, Eu, Gd, Dy, Ho, Yb, Hf, and Pb between dacitic silicate melt and clinopyroxene, orthopyroxene, and plagioclase has been determined based on laser ablation-inductively coupled plasma mass spectrometric (LA-ICPMS) analysis of melt inclusions and the immediately adjacent host mineral. Samples from the 1988 eruption of White Island, New Zealand were selected because petrographic evidence suggests that all three mineral phases are in equilibrium with each other and with the melt inclusions. All three phenocryst types are found as mineral inclusions within each of the other phases, and mineral inclusions often coexist with melt inclusions in growth-zone assemblages. Compositions of melt inclusions do not vary between the different host minerals, suggesting that boundary layer processes did not affect compositions of melt inclusions and that post-trapping modifications have not occurred.Partition coefficients were calculated from the host and melt inclusion compositions and results were compared to published values. All trace elements examined in this study except Sr are incompatible in plagioclase, and all measured trace elements except for Mn are incompatible in orthopyroxene. In clinopyroxene, Sc, V, and Mn are compatible, and Y, Ti, HREE, and the MREE are only slightly incompatible. Most partition coefficients overlap the wide range of values reported in the literature, but the White Island data are consistently at the lower end of the range in published values. Results from the literature obtained using modern microanalytical techniques such as secondary ion mass spectrometry (SIMS) or proton induced X-ray emission spectroscopy (PIXE) also fall at the lower end of the published values, whereas partition coefficients determined from bulk analysis of glass and crystals separated from volcanic rocks typically extend to higher values. Rapid crystal growth-rates, crystal zonation, or the presence of accessory mineral inclusions in phenocrysts likely accounts for the wide range and generally higher partition coefficients obtained using bulk sampling techniques. The results for 3+ cations from this study are consistent with theoretical predictions based on a lattice strain model for site occupancy. The results also confirm that the melt inclusion-mineral (MIM) technique is a reliable method for determining partition coefficients, as long as the melt inclusions have not experienced post-entrapment reequilibration.  相似文献   

10.
Olivine-hosted melt inclusions in the O95 pyroclastic layer of Izu-Oshima volcano, Japan are basaltic to basaltic-andesitic in composition. The negative correlation between SiO2 and H2O in melt inclusions and reverse compositional zoning observed in olivine and other mineral phenocrysts is inferred to arise from mixing between a highly evolved and a less evolved magma. The latter is characterized by the highest S (0.15 wt.%) and H2O (3.4 wt.%) concentrations among those described in reports of previous studies. The S6+/Stotal ratios in melt inclusions were 0.64?–?0.73, suggesting a relatively high oxidation state (NNO + 0.87 at 1150°C). The presence of pyrrhotites, which are found only in titanomagnetite microlites, suggests that sulfide saturation occurred during microlite growth under at a sulfur fugacity (log fS2) value of around + 0.5 for T = 1060°C. The groundmass glass compositions are more evolved (andesitic composition) than any melt inclusions containing high amounts of Cl (0.13 wt.%) but negligible H2O (0.20 wt.%) and S (< 70 ppm), suggesting that Cl was retained in the magma, in contrast to S and H2O, which degassed strongly during magma effusion.  相似文献   

11.
The diffusion properties of Na, Cs, Sr, Ba, Co, Mn, Fe and Sc ions in a basaltic and an andesitic melt have been determined experimentally using the radiotracer residual-activity method, and narrow platinum capillaries, over the temperature range 1,300–1,400° C. Diffusion of all cations follows an Arrhenius relationship; the values of the activation energies range from 24 kcal mol–1 for Na to 67 kcal mol–1 for Co in the andesitic melt, and from 39 kcal mol–1 for Na to 65 kcal mol–1 for Cs in the basaltic melt. Relative diffusivities in the basaltic melt, but not in the andesitic melt, correlate with assumed ionic radii values. Each cation, except Na+, diffuses faster in the basaltic melt than in the andesitic melt over the studied temperature range. Sodium shows similar diffusivity in the two melts.Compensation diagrams incorporating new and some previously-published data indicate that Cs probably diffuses by different mechanisms in different silicate glass and melt systems. Iron has a relatively high activation energy which is consistent with its part occupancy of tetrahedral co-ordination polyhedra.  相似文献   

12.
We have explored first-principles molecular dynamics simulation data for hydrous MgSiO3 liquid (with 10 wt% water) to gain insight into its structural and dynamical behavior as a function of pressure (0–150 GPa) and temperature (2,000–6,000 K). By visualizing/analyzing a number of parameters associated with short- and mid-range orders, we have shown that the melt structure changes substantially on compression. The speciation of the water component at low pressures is dominated by the isolated structures (with over 90% hydrogen participated) consisting of hydroxyls, water molecules, O–H–O bridging and four-atom (O–H–O–H and H–O–H–O) groups, where every oxygen atom may be a part of polyhedron or free (i.e., bound to only magnesium atom). Hydroxyls favor polyhedral sites over magnesium sites whereas molecular water is almost entirely bound to magnesium sites, and also interpolyhedral bridging (Si–O–H–O–Si) dominates other types of bridging. Water content is shown to enhance and suppress, respectively, the proportions of hydroxyls and molecular water. As compression increases, these isolated structures increasingly combine with each other to form extended structures involving a total of five or more O and H atoms and also containing threefold coordination species, which together consume over 80% hydrogen at the highest compression studied. Our results show that water lowers the mean coordination numbers of different types including all cation–anion environments. The hydrous melt tends to be more tetrahedrally coordinated but with the Si–Si network being more disrupted compared to the anhydrous melt. Protons increase the content of non-bridging oxygen and decrease the contents of bridging oxygen as well as oxygen triclusters (present at pressures above 10 GPa). The calculated self-diffusion coefficients of all atomic species are enhanced in the presence of water compared to those of the anhydrous melt. This is consistent with the prediction that water depolymerizes the melt structure at all pressures. Our analysis also suggests that proton diffusion involves two processes—the transfer of H atoms (requiring the rupture and formation of O–H bonds) and the motion of hydroxyls as hydrogen carriers (requiring the rupture and formation of Si–O and/or Mg–O bonds). Both the processes are operative at low compression whereas only the first process is operative at high compression.  相似文献   

13.
The Mantos Blancos copper deposit (500 Mt at 1.0% Cu) was affected by two superimposed hydrothermal events: (i) phyllic alteration related to a rhyolitic dome emplacement and brecciation at ca 155 Ma; and (ii) potassic, sodic and propylitic alteration at ca 142 Ma, coeval with stocks and sills emplacement of dioritic and granodioritic porphyries, that locally grade upwards into polymictic magmatic hydrothermal breccias. Major hypogene copper sulfide mineralization is related to the second event. A late‐ore mafic dike swarm cross‐cuts all rocks in the deposit. Two types of granodioritic porphyries can be distinguished from petrographic observations and geochemical data: granodiorite porphyry I (GP I) and granodiorite porphyry II (GP II), which resulted from two different trends of magmatic evolution. The concave shape of the rare earth element (REE) distribution pattern together with the weak or absence of negative Eu anomalies in mafic dikes, dioritic and GP I porphyries, suggest hornblende‐dominated fractionation for this magmatic suite. In contrast, distinct negative Eu anomalies and the flat REE patterns suggest plagioclase‐dominated fractionation, at low oxygen fugacity, for the GP II porphyry suite. But shallow mixing and mingling between silicic and dioritic melts are also likely for the formation of the GP II and polymictic breccias, respectively. Sr‐Nd isotopic compositions suggest that the rhyolitic dome rocks were generated from a dominantly crustal source, while the GP I has mantle affinity. The composition of melt inclusions (MI) in quartz crystals from the rhyolitic dome is similar to the bulk composition of their host rock. The MI analyzed in quartz from GP II and in the polymictic magmatic hydrothermal breccia of the deposit are compositionally more evolved than their host rocks. Field, geochemical and petrographic data provided here point to dioritic and siliceous melt interaction as an inducing mechanism for the release of hydrothermal fluids to form the Cu mineralization.  相似文献   

14.
Partition coefficients (zircon/meltDM) for rare earth elements (REE) (La, Ce, Nd, Sm, Dy, Er and Yb) and other trace elements (Ba, Rb, B, Sr, Ti, Y and Nb) between zircon and melt have been calculated from secondary ion mass spectrometric (SIMS) analyses of zircon/melt inclusion pairs. The melt inclusion-mineral (MIM) technique shows that DREE increase in compatibility with increasing atomic number, similar to results of previous studies. However, DREE determined using the MIM technique are, in general, lower than previously reported values. Calculated DREE indicate that light REE with atomic numbers less than Sm are incompatible in zircon and become more incompatible with decreasing atomic number. This behavior is in contrast to most previously published results which indicate D > 1 and define a flat partitioning pattern for elements from La through Sm. The partition coefficients for the heavy REE determined using the MIM technique are lower than previously published results by factors of ≈15 to 20 but follow a similar trend. These differences are thought to reflect the effects of mineral and/or glass contaminants in samples from earlier studies which employed bulk analysis techniques.DREE determined using the MIM technique agree well with values predicted using the equations of Brice (1975), which are based on the size and elasticity of crystallographic sites. The presence of Ce4+ in the melt results in elevated DCe compared to neighboring REE due to the similar valence and size of Ce4+ and Zr4+. Predicted zircon/meltD values for Ce4+ and Ce3+ indicate that the Ce4+/Ce3+ ratios of the melt ranged from about 10−3 to 10−2. Partition coefficients for other trace elements determined in this study increase in compatibility in the order Ba < Rb < B < Sr < Ti < Y < Nb, with Ba, Rb, B and Sr showing incompatible behavior (DM < 1.0), and Ti, Y and Nb showing compatible behavior (DM > 1.0).The effect of partition coefficients on melt evolution during petrogenetic modeling was examined using partition coefficients determined in this study and compared to trends obtained using published partition coefficients. The lower DREE determined in this study result in smaller REE bulk distribution coefficients, for a given mineral assemblage, compared to those calculated using previously reported values. As an example, fractional crystallization of an assemblage composed of 35% hornblende, 64.5% plagioclase and 0.5% zircon produces a melt that becomes increasingly more enriched in Yb using the DYb from this study. Using DYb from Fujimaki (1986) results in a melt that becomes progressively depleted in Yb during crystallization.  相似文献   

15.
16.
Quantitative analysis of melt and fluid inclusions by LA-ICP-MS: Practical aspects and selected resultsAudétatA.,GüntherD.,andHeinrichC.A.1998.Formation of a m agm atic- hydrothermal ore deposit:Insights withL A-ICP-MS analysis of fluid inclusions.Science,279:2091~2094 AudétatA .,GüntherD.,andHeinrichC.A.2000 a.Causes for large- scale m etal zonation around mineralized plutons:FluidinclusionL A-ICP-MS evidence from theMoleGranite,Australia.EconomicGeology,(in press) …  相似文献   

17.
Magmatic sulfide deposits are the most significant source of platinum-group elements (PGE) in the world. Key to understanding their genesis is determining the processes and timing of sulfide saturation, metal enrichment and crustal contamination. In this study, we have identified droplets of magmatic sulfide from the Platreef, South Africa, where droplets of sulfide have been trapped in the earliest crystallising phase, chromite. Due to their early entrapment at high temperatures, metal concentrations and ratios that they display are indicative of a very early-stage sulfide liquid in the system, as they will have cooled and fractionated within an essentially closed system, unlike interstitial blebs that crystallise in an open system as the magma cools. Analysis of these droplets in an opaque mineral like chromite by LA-ICP-MS is problematic as some of the fractionated inclusion is necessarily lost during cutting and polishing to initially identify the inclusion. This particularly affects the ability to representatively sample the most fractionated phases such as gold and platinum minerals. Here, using a novel technique whereby the inclusions are homogenized and quickly quenched, so that any cutting, polishing and subsequent LA-ICP-MS analysis samples a truly representative portion of the droplet. This has been used to show that early sulfide liquids in the Platreef were highly PGE-rich and had Pt/Pd ratios of close to unity that supports genetic models invoking sulfide saturation and metal enrichment prior to intrusion, with pre-enriched sulfides entrained within the Platreef magma.  相似文献   

18.
Glass-bearing inclusions hosted by Cr-spinel in harzburgite xenoliths from Avacha are grouped based on homogenization temperatures and daughter minerals into high-T (1,200°C; opx + cpx), intermediate (900–1,100°C; cpx ± amph), and low-T (900°C; amph) and are commonly accompanied by larger “melt pockets”. Unlike previous work on unheated inclusions and interstitial glass in xenoliths from Kamchatka, the homogenized glass compositions in this study are not affected by low-pressure melt fractionation during transport and cooling or by interaction with host magma. Primary melt compositions constrained for each inclusion type differ in major and trace element abundances and were formed by different events, but all are silica saturated, Ca-rich, and K-poor, with enrichments in LREE, Sr, Rb, and Ba and negative Nb anomalies. These melts are inferred to have been formed with participation of fluids produced by dehydration of slab materials. The high-T inclusions trapped liquids produced by ancient high-degree, fluid-induced melting in the mantle wedge. The low-T inclusions are related to percolation of low-T melts or hydrous fluids in arc mantle lithosphere. Melt pockets arise from localized heating and fluid-assisted melting induced by rising magmas shortly before the entrapment of the xenoliths. The “high-T” melt inclusions in Avacha xenoliths are unique in preserving evidence of ancient, high-T melting events in arc mantle, whereas the published data appear to characterize pre-eruption enrichment events.  相似文献   

19.
We studied the mineralogy, mineral chemistry, and compositions of 48 interior silicate inclusions and a large K-rich surface inclusion from the Colomera IIE iron meteorite. Common minerals in the interior silicate inclusions are Cr diopside and Na plagioclase (albite). They are often enclosed by or coexist with albitic glasses with excess silica and minor Fe-Mg components. This mineral assemblage is similar to the “andesitic” material found in the Caddo County IAB iron meteorite for which a partial melt origin has been proposed. The fairly uniform compositions of Cr diopside (Ca44Mg46Fe10) and Na plagioclase (Or2.5Ab90.0An7.5 to Or3.5Ab96.1An0.4) in Colomera interior inclusions and the angular boundaries between minerals and metal suggest that diopside and plagioclase partially crystallized under near-equilibrium conditions from a common melt before emplacement into molten metal. The melt-crystal assemblage has been called “crystal mush.” The bulk compositions of the individual composite inclusions form an array between the most diopside-rich inclusion and plagioclase. This is consistent only with a simple mechanical mixing relationship, not a magmatic evolution series. We propose a model in which partly molten metal and crystal mush were mixed together by impact on the IIE parent body. Other models involving impact melting of the chondritic source material followed by growth of diopside and plagioclase do not easily explain near equilibrium growth of diopside and Na plagioclase, followed by rapid cooling. In the K-rich surface inclusion, K feldspar, orthopyroxene, and olivine were found together with diopside for the first time. K feldspar (sanidine, Or92.7Ab7.2An0.1 to Or87.3Ab11.0An1.7) occurs in an irregular veinlike region in contact with large orthopyroxene crystals of nearly uniform composition (Ca1.3Mg80.5Fe17.8 to Ca3.1Mg78.1Fe18.9) and intruding into a relict olivine with deformed-oval shape. Silica and subrounded Cr diopside are present within such K-feldspar regions. Some enrichments of the albite component have been detected at the end of curved elongated nodules of K feldspar intruded into the mafic silicates. The textural relationships suggest that a K-rich melt was present. A K-rich melt is neither the first melt of a chondritic system nor a differentiation product of a Na-rich partial melt of chondritic material. The K-rich material may have originated as a fluid phase that leached K from surrounding materials and segregated by a mechanism similar to that proposed for the Na-rich inclusions.  相似文献   

20.
Perovskite and melilite crystals from melilitolites of the ultramafic alkaline Gardiner complex (East Greenland) contain crystallised melt inclusions derived from: (1) melilitite; (2) low-alkali carbonatite; (3) natrocarbonatite. The melilitite inclusion (1) homogenisation temperature of 1060 °C is similar to liquidus temperatures of experimentally investigated natural melilitites. The compositions are peralkaline, low in MgO (ca.␣5 wt%), Ni and Cr, and they are low-pressure fractionates of more magnesian larnite-normative ultramafic lamprophyre-type melts of primary mantle origin. Low-alkali carbonatite compositions (2) homogenise at 1060–1030 °C and are compositionally similar to immiscible calcite carbonatite dykes derived from the melilitolite magma. Natrocarbonatite inclusions (3) homogenise between 1030 and 900 °C and are compositionally similar to natrocarbonatite lava from Oldoinyo Lengai. Nephelinitic to phonolitic dykes which are related to the calcite carbonatite dykes, are very Zr-rich and agpaitic (molecular Na2O + K2O/Al2O3 > 1.2) and resemble nephelinites of Oldoinyo Lengai. The petrographic, geochemical and temporal relationships indicate unmixing of carbonatite compositions (ca. 10% alkalies) from evolving melilitite melt and continued fractionation of melilitite to nephelinite. It is suggested that the natrocarbonatite compositions represent degassed supercritical high temperature fluid formed in a cooling body of strongly larnite-normative nephelinite or evolved melilitite. The Gardiner complex and similar melilitolite and carbonatite-bearing ultramafic alkaline complexes are believed to represent subvolcanic complexes formed beneath volcanoes comparable to Oldoinyo Lengai and that the suggested origin of natrocarbonatite may be applied to natrocarbonatites of Oldoinyo Lengai. Received: 18 January 1996 / Accepted: 2 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号