首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文利用中国地震科学探测台阵2013-2015年在南北地震带北段及其周缘架设的673个台站所记录到的远震波形所提取到的接收函数并应用H-κ扫描方法获取了南北地震带北段及其周缘的地壳厚度和泊松比,结果显示研究区地壳厚度从青藏高原东北缘向鄂尔多斯块体逐渐减小,从65 km逐渐减薄至40 km,不同块体之间地壳厚度存在明显差异.祁连造山带西部地壳厚度超过60 km,而东部地壳厚度仅为约50 km左右,表明祁连造山带东、西部地壳增厚变形存在着明显差异.西秦岭造山带地壳厚度从60 km减薄到40 km,其东部具有较薄的地壳厚度可能经历了拆沉.阿拉善块体作为华北克拉通西部块体的一部分,西部地壳厚度约50 km,而东部约45 km,表明阿拉善块体西部由于印度一欧亚板块碰撞也受到了活化改造,其克拉通性质只在其中东部残留.研究区泊松比变化范围为0.20~0.31,平均泊松比约0.25,表明地壳主要由长英质矿物组成,较高的泊松比主要分布在六盘山断裂带和银川一河套地堑.研究结果显示地壳厚度与高程之间具有较好的相关性,表明地壳整体上处于相对均衡的状态,而西秦岭造山带和祁连造山带东部的部分区域地壳可能处于不均衡状态.  相似文献   

2.
We present the 1-D crustal velocity structure of the major tectonic blocks of the North China Craton(NCC) along 36°N based on synthetic seismogram modeling of long-range wide-angle reflection/refraction data. This profile extends from southwest Yan'an of central Shaanxi Province of China(109.47°E), across the southern Trans-North China Orogen(TNCO), the southwestern part of the North China Plain(NCP), the Luxi Uplift(LU) and the Sulu Orogen(SLO), ending at Qingdao City of Shandong Province, the eastern margin of China(120.12°E) along 36°N. We utilized reflectivity synthetic seismogram modeling of the active source data to develop 1-D velocity structures of the sub-blocks of the NCC. Our final model shows that the NCC crust varies remarkably among the tectonic units with different velocity structure features. Higher lower crustal velocity and Moho depth ~42 km is a major feature of the crust beneath southern Ordos Blockt. The TNCO which is composed of Lyuliangshan Mountains(LM), Shanxi Graben(SXG) and Taihangshan Mountains(TM) shows dominant trans-orogenic features. The NCP shows a dominant thickening of sediments, sharp crust thinning with Moho depth ~32 km and significant lower average velocity. The SLO and the LU shows a stratified crust, higher average velocity and crust thinning with Moho depth of ~35 km. Our model shows the coincidence between the deep structure and the surface geology among all the tectonic sub-blocks of the NCC.  相似文献   

3.
本研究使用中国数字地震台网(CDSN)(2009—2016)走时数据开展青藏高原地壳地震波速度三维层析成像研究,获得分辨率达到1°×1°×20 km的青藏高原地壳S波三维速度结构和泊松比分布.结果表明,分布在可可西里和羌塘北部的高钾质和钾质火山岩带,其上地壳到下地壳都存在S波波速扰动负异常和高泊松比.说明第三纪青藏高原隆升过程中,由于大陆碰撞使三叠纪的东昆仑缝合带重新破裂,造成大量壳幔混合熔融物质上涌和火山喷发,进而揭示了青藏高原北部新生代火山岩的存在与青藏高原的形成和隆升密切相关;青藏高原新生代裂谷位于中下地壳S波速度扰动负异常带的两侧,裂谷带之下的中下地壳泊松比减小到0.22以下.裂谷带之下中下地壳的S波速异常分布和泊松比值可以推断青藏高原新生代裂谷深达中地壳底部,这个推论与密度扰动三维成像的相关结论一致.青藏高原S波速度和泊松比在下地壳至壳幔边界随深度产生急剧变化,说明地壳内部发生了大规模的层间拆离和水平剪切;青藏高原东构造结之下泊松比高达0.29~0.33,S波速度扰动为负异常,推断东构造结下方地壳主要由坚硬的蛇纹石化橄榄岩组成;青藏高原中下地壳S波速负异常区范围大面积扩大,地壳底部几乎被S波速低值区全部覆盖.下地壳S波异常分布特点可能反映下地壳管道流的影响.  相似文献   

4.
华北克拉通地壳结构及动力学机制分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文对布设在华北克拉通三个陆块的199个宽频带台站记录的远震数据进行了接收函数计算.利用H-κ迭代方法获得了该区域基岩地区的地壳结构,平滑处理后作为背景结构模型中的基岩地区地壳结构;利用相邻算法对沉积层地区的接收函数进行了波形拟合计算,获得了沉积层结构,平滑后作为背景结构模型中的沉积层结构;结合前人的研究成果,完善了研究区域的背景结构模型.以此模型为基础,对接收函数进行了CCP(Common Conversion Point,共转换点)叠加成像,获得了Moho面成像结果,对比沉积层的成像结果发现:西部陆块中鄂尔多斯块体东部地区地壳厚度较大,约为42 km,泊松比较低,小于0.24,为长英质含量较多的地壳层;位于中部陆块的山西地堑地壳厚度小于鄂尔多斯块体,且变化较大,西侧地壳厚度约为40 km,东侧重力梯度带附近地壳厚度迅速减薄至36 km左右,张家口-怀来-大同一带出现了地壳的局部抬升,地壳厚度等值线基本以北北东方向为主,与构造带方向基本一致,地堑内泊松比约为0.26~0.28,前人对此区域的层析成像研究结果表明太行山隆起和阴山隆起存在壳内低速层,推测为地壳部分熔融以及上地幔物质上涌造成的;东部陆块中渤海湾盆地的地壳厚度较薄,约为32 km,部分地区小于30 km,其中冀中坳陷带地壳厚度最薄,约为28 km,沉积层基底分布与Moho面分布呈镜像对称趋势,沉积层较厚地区的地壳较薄,推测东部陆块在太平洋板块俯冲作用下,存在北西-南东向的拉张作用,使其内发育了大量断陷盆地.  相似文献   

5.
根据西秦岭构造带及其周边地区117个宽频带地震台站的高质量波形数据, 利用远震P波接收函数的H-k叠加方法, 求得地壳厚度和平均波速比. 通过分析地壳厚度、 波速比及其关系和接收函数CCP叠加剖面, 研究了该区域的地壳结构特征. 结果表明, 研究区域内地壳结构差异大, 呈过渡带特征. 地壳厚度总体上呈北北西向分布, 自西南向东北逐渐减小. 羌塘块体地壳厚度为72 km, 渭河盆地附近为39 km. 西秦岭构造带的地壳厚度为42—56 km, 南北向莫霍界面平坦. 研究区域P波与S波波速比平均为1.74, 其中西秦岭构造带平均为1.72. 较低的波速比主要分布在西秦岭构造带、 祁连山块体、 松潘—甘孜地块北部以及香山—天景山断裂区域, 这可能是由于含长英质酸性岩组分的上地壳叠置增厚而导致的. 该区域缺少超高波速比, 表明这一区域发生岩浆底侵或上地壳熔融的可能性很小. 综合分析表明, 西秦岭构造带及邻区的地壳结构主要是由于青藏高原隆升并在向东北向扩张中受到周边块体的阻挡而引起的地壳构造变形所致. 西秦岭构造带的莫霍界面变化和波速比分布与该构造带经历碰撞地壳增厚后的伸展走滑运动有关.   相似文献   

6.
A portable broadband seismic array was deployed from the northeast Tibetan Plateau to the southwest Ordos block, China. The seismic structure of the crust and uppermost mantle of the Liupanshan area is obtained using receiver function analysis of teleseismic body waves. The crustal thickness and Poisson's ratios are estimated by stacking the weighted amplitudes of receiver functions. Our results reveal complex seismic phases in the Liupanshan area, implying intense deformation at the boundary between the Tibetan Plateau and the Ordos block. The average crustal thickness is 51.5 km in the northeast Tibetan Plateau, 53.5 km in the Liupan Mountain and 50 km in the southwest Ordos block, resulting in a concave Moho beneath the Liupan Mountain. The Poisson's ratio of the Liupanshan area varies between 0.27-0.29, higher than the value of 0.25-0.26 to the east and west of the Liupan Mountain, suggesting partial melting in the lower crust. The variance in Poisson's ratio across the Liupan Mountain indicates notable changes in the crustal composition and mechanical properties, which may be formed by the northeastward flow of the Tibetan lower crust during the India-Eurasia collision.  相似文献   

7.
从2013年3月至2014年11月,我们布设了一条延川—涪陵的流动宽频带地震台阵,剖面由70个流动台站组成,全长约900km,穿越华北克拉通、秦岭—大巴造山带和扬子克拉通东北缘陆内三大构造单元.利用记录到的远震波形资料,提取得到5638个远震P波接收函数,使用H-κ叠加扫描和CCP偏移叠加方法刻划了秦岭造山带与南北相邻地带的地壳厚度、泊松比以及构造界带.研究结果显示,(1)关于地壳厚度:地壳最厚的区域出现在大巴山,地壳厚度集中在47~51km之间,秦岭的地壳厚度相对大巴山较薄,且呈向北减薄趋势,集中在37~46km之间,渭河盆地地壳厚度为本区域最薄地带,在34°N左右处达到最薄为35km,剖面北侧的南鄂尔多斯盆地的地壳厚度变化缓慢,多为44km左右,南侧的四川盆地东北缘的地壳厚度向南缓慢减薄,集中在42~48km之间;(2)关于泊松比:使用接收函数H-κ叠加扫描法得到了沿剖面各台站下方地壳的平均纵、横波速度比VP/VS(κ),进一步计算得到泊松比σ,泊松比具有明显的横向分块特征,秦岭造山带的泊松比明显低于南北两侧区域,其小于0.26的泊松比表征着该区域地壳物质组分主要为酸性岩石,亦即其酸性长英质组分上地壳相对于基性铁镁质组分下地壳较厚,该区域没有高泊松比分布则表明不存在广泛的部分熔融.(3)关于构造界带:秦岭—大巴造山带与扬子克拉通的边界并非在勉略构造带,应向南移至四川盆地的东北缘,华北克拉通和扬子克拉通分踞秦岭—大巴造山带南、北两侧,且分别以较陡倾角向南和相对较缓的倾角向北俯冲于秦岭—大巴造山带之下,使得秦岭—大巴造山带呈不对称状扇形向外扩展与向上抬升的空间几何模型.秦岭和大巴山之间33°N附近存在分界面,两区域地壳厚度与泊松比特征各异.  相似文献   

8.
本文使用位于喜马拉雅东构造结地区布置的24个宽频带地震台站记录的远震波形数据,利用P波接收函数的方法研究了台站下方的Moho面深度、泊松比和地壳速度结构.结果表明,东构造结内Moho面深度呈现出自南西向北东方向逐渐变深的趋势,地壳厚度在54~60 km范围内,其中东久一米林走滑断裂带附近Moho面最浅,东构造结周围拉萨地块的Moho面深度在60 km以上.东构造结西部东久一米林走滑断裂带附近地壳泊松比较高.嘉黎断裂带南北两侧的泊松比差别较大,说明该断裂带两侧地壳结构存在显著差异.东构造结周边拉萨地块地壳内普遍存在低速层,分布在20~40 km深度范围内,厚度约为5~15 km.  相似文献   

9.
Lithosphere thinning and destruction in the middle-eastern North China Craton (NCC), a region susceptible to strong earthquakes, is one of the research hotspots in solid earth science. All 42 seismic wide-angle reflection/refraction profiles have been completed in the middle-eastern NCC. We collect all the 2-D profiling results and perform gridding of the velocity and interface depth data, building a 3-D crustal velocity structure model for the middle-eastern NCC, named HBCrust1.0, by using the Kriging interpolation method. Our result shows that the first-arrival times calculated by HBCust1.0 fit well with the observations. The result demonstrates that the upper crust is the main seismogenic layer, and the brittle-ductile transition occurs at depths near interface C (the interface between upper and lower crust). The depth of interface Moho varies beneath the source area of the Tangshan earthquake, and a low-velocity structure is found to extend from the source area to the lower crust. Based on these observations, it can be inferred that stress accumulation responsible for the Tangshan earthquake may have been closely related to the migration and deformation of the mantle materials. Comparisons of the average velocities of the whole crust, the upper and the lower crust show that the average velocity of the lower crust under the central part of the North China Basin (NCB) in the east of the craton is obviously higher than the regional average. This high-velocity probably results from long-term underplating of the mantle magma.  相似文献   

10.
The North China Craton (NCC) is an important part of eastern China. Recent studies have shown that the eastern NCC (ENCC) has undergone significant lithospheric thinning and destruction since the late Mesozoic. Destruction of the cratonic lithosphere is necessarily accompanied by crustal deformation. Therefore, a detailed crustal deformation model can provide basic observational constraints for understanding the process and mechanisms of the destruction of the NCC. In this study, we estimated the crustal azimuthal anisotropy beneath 198 broadband stations in the NCC with a joint analysis of Ps waves converted at the Moho from radial and transverse receiver function data. We also performed a harmonic analysis to test the reliability of the measured anisotropy. We obtained robust crustal azimuthal anisotropy beneath 23 stations that are mostly located on the western margin of the Bohai Bay Basin, Yin-Yan orogenic belt, and Taihang Mountains, which reflects the crustal deformation characteristics in those regions. The crustal shear wave splitting time was found to range from 0.05 s to 0.68 s, with an average value of 0.23 s, which reveals a distinct crustal anisotropy in the Trans-North China Orogen (TNCO) and its adjacent areas. Our analysis of the results suggests that the strong NW-SE tectonic extension in the late Mesozoic and Cenozoic played an important role in crustal anisotropy in this region. In addition, the E-W trending crustal anisotropy on the margin of the Bohai Bay Basin indicates an effect of the ENE-WSW trending horizontal principal compressive stress. The crustal anisotropy in the Yin-Yan orogenic belt may be an imprint of the multiple-phase shortening of a dominant N-S direction from the early-to-middle Jurassic to the Early Cretaceous. Stations in the Taihang Mountains show large splitting times and well-aligned NW-SE fast directions that correlate with those measured from SKS splitting and that are possibly related to the lithospheric modification and magmatic underplating from the Late Mesozoic to Cenozoic in this area.  相似文献   

11.
四川盆地东西陆块中下地壳结构存在差异   总被引:4,自引:2,他引:2       下载免费PDF全文
四川盆地是中上扬子克拉通的主要组成部分.作为我国三大稳定克拉通之一,扬子克拉通经历了自太古代以来的长期演化,直到新元古代晚期与华夏板块发生碰撞拼合前,一直被认为是一个稳定的统一陆块.基底包括了新太古宙-新元古代岩层,其上广泛被新元古代晚期至显生宙地层覆盖,仅有~2.9—2.95Ga基底岩石零星出露于四川盆地的西缘、西南缘和三峡地区,使得对于沉积盖层之下的中下地壳的性质和分布规模的认识十分有限.重力异常则能够宏观揭示区域结构特征.本文通过刨除沉积盖层和莫霍面起伏引起的重力异常而获得了中下地壳的重力异常,反映了四川盆地东西陆块中下地壳存在结构差异,结合深地震反射资料、航磁异常和地球化学资料,证实了该分界线位于重庆—华蓥一线,故而推测中上扬子克拉通在太古宙-古元古代可能存在东西两个陆核.  相似文献   

12.
The receiver function which carries the information of crustal materials is often used to study the shear-wave velocity of the crust as well as the crustal anisotropy. However, because of the low signal-to-noise ratio in Pms(P-to-S converted phase from the Moho), the crustal anisotropy obtained by shear-wave splitting technique for a single receiver function usually has large errors in general. Recent advance in the analysis method based on Pms arrival time varying with the back-azimuth change can effectively overcome the above defects. Thus in this paper, we utilize the azimuth variations of the Pms to study the crustal anisotropy in Chongqing region for the first time. According to the earthquake catalogue provided by USGS, seismic waveform of earthquakes with magnitude larger than 5.5 and epicenter distance range of 30°~90° between January 2015 and December 2016 are collected from 14 broadband seismic stations of Chongqing seismic network. We carry out the bootstrap resampling to test the reliability of the radial maximum energy method for the observation data. In addition, we also applied the receiver function H-Kappa analysis in this paper to study the crustal thickness and Poisson's ratio. Our results show the crustal thickness ranges from 40~50km, and there is a thin and thick crust in the southern and northern Chongqing, respectively. The crustal average Poisson's ratio ranges from 0.23~0.31, the Poisson's ratio reaches the maximum value in the central part of Chongqing, while the Poisson's ratio in the northern and southern parts of Chongqing is obviously low. We obtain the crustal anisotropy from 9 stations in total. The delay time of crustal anisotropy distributes between 0.08s and 0.48s, with the average value of 0.22s. Among them, the CHS, QIJ and WAZ stations in central Chongqing have relatively large crustal delay time(>0.3s), followed by ROC station in the western Chongqing(0.25s), while the delay time in CHK station in northern Chongqing and WAS station in southern Chongqing are 0.08s, showing relatively weak crustal anisotropy. The fast polarization directions(FPDs)also change obviously from south to north. In southern Chongqing, FPDs are dominant in NNE-SSW and NEE-SWW, while the FPDs in WAZ station change to NWW-SEE, and the FPDs appear to be NW-SE in CHK in the northern Chongqing. In general, the FPDs are sub-parallel to the strikes of faults in most areas of Chongqing areas. Combined with other results from GPS observations, tectonic stress field and XKS splitting measurements, the main conclusions can be suggested as following:The cracks preferred orientation in the upper crust is not the main source of crustal anisotropy in Chongqing area. The crust and lithospheric upper mantle in the eastern Sichuan fold belt(ESFB)and Sichuan-Guizhou fault fold belt(SGFFB)are decoupled, and the deformation characteristics in the north and south parts of ESFB and SGFFB is different. The complex tectonic deformation may exist beneath the mountain-basin boundary, causing the fast directions of crustal anisotropy different from that in other areas of ESFB and SGFFB. The faults with different strikes may weaken the strength of average crustal anisotropy in some areas. The crustal deformation in southern Dabashan nappe belt(DNB)may be mainly controlled by the fault structure.  相似文献   

13.
南岭-武夷交汇区的深部背景及地壳泊松比   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究南岭-武夷交汇区深部动力学过程提供深部背景资料和科学依据,本文利用远震P波接收函数H-κ叠加和共转换点(CCP)叠加两种方法获取了研究区66个宽频带流动台站及24个固定台站下方的地壳厚度、泊松比和Moho面起伏形态,揭示了扬子地块与华夏地块地壳结构及泊松比变化特征,给出了南岭和武夷之间一条莫霍凸起带的高分辨图像.
结果显示:(1)研究区内地壳厚度平均值为31.2 km,泊松比平均值为0.23,总体呈现薄地壳、低泊松比的特点.地壳厚度从西北往东南由厚变薄,与区域地壳伸展特征相一致.(2)在韶关-赣州-吉安-南昌一线存在条带状薄地壳结构,平均值为28 km,呈南西-北东向展布,对应的泊松比值略微升高.推测地壳减薄带的形成可能与来自南海方向的地幔热流上涌有关.(3)江南造山带的泊松比整体偏低,存在两处平均值小于0.21的区域.华夏地块内地壳厚度与泊松比之间存在弱的负相关,表示随着地壳厚度的增大,铁镁质的下地壳厚度在整个地壳厚度中所占的比例减小.  相似文献   

14.
The crust and upper mantle structure beneath southeastern China   总被引:1,自引:0,他引:1  
We analyzed teleseismic waveforms recorded by 44 stations in the Fujian and Taiwan provinces of China and obtained 5344 high quality receiver functions. The crustal thickness (H) and average crustal VP/VS ratio (k) beneath every station were estimated using the Hk stacking method. Crustal thicknesses near the Fujian Province range from 28.3 to 32.8 km with an average of 31.1 km, and the corresponding VP/VS ratios vary from 1.70 to 1.84 with a mean of 1.76. From inland to offshore of the Fujian Province, the crustal thicknesses decrease and Poisson's ratios increase. These may indicate decreasing SiO2 and increasing calc-alkaline contents in the crust. The discontinuity structures such as the Moho, subducting slab, the 410- and 660-km discontinuities (hereafter we call them the 410 and the 660) are also studied using common converted point (CCP) stacking of receiver functions. Along two NW–SE lines of central and northern Taiwan, the CCP stacking results show a western dipping structure at depths above 50 km, suggesting that the Philippine Sea plate is probably subducting beneath the Eurasian continent plate near the central and northern Taiwan. The CCP stacking results show sharp and flat 410- and 660-km discontinuities, and the transition zone thickness (TZT) is the same as that of ambient mantle beneath Fujian and Taiwan Strait, but thickens in the east of Taiwan. These results suggest that (1) the subducting Eurasian continent plate is confined to the depths above 410 km beneath Fujian and Taiwan Strait; and (2) the South China Sea slab may reach the transition zone beneath the east of Taiwan.  相似文献   

15.
Tanlu fault zone(TLFZ)is the largest active fault zone in eastern China.It is characterized by complex tectonic evolution and multiple faults and marks the boundary between the North and South China blocks.An in-depth understanding of the distinct crustal structures of both parts of the TLFZ will provide valuable insights into the lithospheric and crustal thinning in eastern China,extensive magmatism since the Mesozoic,and formation mechanisms of metallogenic belts along the Yangtze River.In this study,a two-layer H-κ stacking approach was adopted to estimate the thicknesses of the sediment and crystalline crust as well as the corresponding vp/vs ratios based on high-quality teleseismic P-wave receiver functions recorded by permanent and temporary stations in and around the TLFZ.The geological units in the study region were delineated,especially the crustal structures beneath extensive sedimentary basins on both sides of the TLFZ.The following conclusions can be drawn:(1)The crustal thickness in and around the TLFZ greatly varies depending on the segment.In the northern segment,the crust is relatively thin beneath the eastern part of the Songliao Basin,a broad uplift of the Moho can be observed,and the Moho descends from south to north.The crust below the central and southern segments becomes thinner from west to east.The thickness of the crust is less than 30 km toward the eastern side of the boundary between the Jiangsu and Anhui provinces,that is,significantly thinner than in other areas.In terms of the vp/vs ratios,high anomalies were detected in the central-southern segments of the TLFZ,indicating the upwelling of deep mantle magma via deep faults.(2)Positive isostatic gravity anomalies were observed in the eastern part of the northern segment of the TLFZ and in the eastern part of the Suwan segment.The crustal thickness is smaller than that obtained from the Airy model of isostasy.This suggests that the lower crust in this area may have experienced intensive transformation processes,which may be related to crustal thinning(caused by crustal extension)and the strong uplift of the mantle in eastern China.The isostatic gravity anomalies between the eastern and western parts of the TLFZ indicate that the fault zone plays a dominant role in controlling the development of the deep crustal structure.(3)Significant crustal thinning was observed beneath the eastern part of the boundary between the Jiangsu and Anhui provinces in the southern segment of the TLFZ,suggesting that this area is prone to lithospheric thinning of the North China Craton.Due to the subduction,compression,and retreat of the Paleo-Pacific Plate during the Yanshanian Period as well as the dehydration of subducting oceanic crust(within subduction zones),the asthenosphere and oceanic crust in eastern China partially melted,resulting in mantle enrichment.The basic magma from the mantle is accumulated at the base of the crust,leading to magmatic underplating.In areas with weak topography toward the east of the TLFZ,magma rises to the upper crust and surface,resulting in the enrichment of multiple'metal deposits in this area.  相似文献   

16.
利用中国东北布设的流动地震台阵(116个)以及国家和区域台网(121个)的宽频带台站记录的824个远震事件,采用P波接收函数CCP叠加和H-K叠加两种方法获得了研究区详尽的地壳厚度图像.研究结果显示,两种方法获得的地壳厚度分布特征具有很好的一致性,中国东北下方地壳厚度存在明显的东西横向差异.重力梯度带西侧和佳木斯地块的台站下方地壳较厚,介于36~41 km之间,而在兴蒙槽地褶带中重力梯度带往东从36 km减薄至34 km左右.松辽盆地北侧、东侧和南侧地壳厚度较薄,为29~34 km,反映了该区复杂的地壳变形过程.CCP剖面显示郯庐断裂深切地壳,敦化—密山断裂下方莫霍面出现错断.H-K叠加得到的地壳平均泊松比显示,东北地区绝大部分台站下方的泊松比值较大,0.24~0.29.长白山、松辽盆地东部、燕山台隆东部和大兴安岭北部,泊松比值达到0.27~0.30,可能有幔源物质上涌,下地壳铁镁组分含量增加.  相似文献   

17.
本文利用内蒙阿巴嘎地区布设的38个宽频带地震台站记录到的远震数据,采用P波接收函数共转换点叠加方法(CCP)揭示台站下方Moho面起伏形态,并利用H-κ方法进一步得到地壳厚度和壳内平均波速比值.结果显示,研究区地壳厚度为35~44 km,均值约为40 km,西南部的鄂尔多斯盆地边缘地壳较厚,东北部的阿巴嘎火山群地区地壳显著变薄.研究区地壳平均波速比值在1.70~1.87之间,均值为1.76,其中阿巴嘎火山地区波速比值明显偏高.CCP叠加结果显示研究区Moho界面较平缓,但在缝合带附近存在明显的变化.我们推测,新生代阿巴嘎火山地区薄的地壳和高波速比值可能是由于火山活动底侵作用引起上地幔铁镁质物质侵入下地壳所致.  相似文献   

18.
芦山与汶川地震之间存在约40 km的地震空区.震源区和地震空区的深部构造背景的研究对深入了解中强地震的深部孕育环境及地震空区的地震活动性具有重要科学意义.利用本小组布设的15个临时观测地震台以及21个芦山科考台站和21个四川省地震局固定台站记录的远震数据,用H-K叠加方法得到各个台站的地壳厚度和平均泊松比,并构建了接收函数共转换点(CCP)偏移叠加图像以及反演得到台站下方的S波速度模型.我们的结果揭示了震源区和地震空区地壳结构特征差异:(1)汶川震源区的地壳平均泊松比为~0.28;芦山震源区为~0.29;而地震空区处于泊松比变化剧烈的区域;(2)汶川地震与芦山地震的震源区以西下方的Moho面呈现深度上的突变(这与前人的研究成果基本一致),分别从~44 km突变到~59 km,~40 km突变到~50 km,而地震空区地壳平均厚度呈现渐变性变化;(3)地震空区Moho面下凹且具有低速的上地壳.综合一维S波速度结构和H-k以及CCP的初步结果,这可能显示汶川地震的发震断裂在深部方向上向西倾斜并形成切割整个地壳的大型断裂;芦山地震则可能是由于上、下地壳解耦引起的;而地震空区处于两种地震形成机制控制区域的过渡带中.  相似文献   

19.
The Helan Mountains and Yinchuan Basin(HM-YB) are located at the northern end of the North-South tectonic belt,and form an intraplate tectonic deformation zone in the western margin of the North China Craton(NCC).The HM-YB has a complicated history of formation and evolution,and is tectonically active at the present day.It has played a dominant role in the complex geological structure and modern earthquake activities of the region.A 135-km-long deep seismic reflection profile across the HM-YB was acquired in early 2014,which provides detailed information of the lithospheric structure and faulting characteristics from near-surface to various depths in the region.The results show that the Moho gradually deepens from east to west in the depth range of 40-48 km along the profile.Significant differences are present in the crustal structure of different tectonic units,including in the distribution of seismic velocities,depths of intra-crustal discontinuities and undulation pattern of the Moho.The deep seismic reflection profile further reveals distinct structural characteristics on the opposite sides of the Helan Mountains.To the east,The Yellow River fault,the eastern piedmont fault of the Helan Mountains,as well as multiple buried faults within the Yinchuan Basin are all normal faults and still active since the Quaternary.These faults have controlled the Cenozoic sedimentation of the basin,and display a "negative-flower" structure in the profile.To the west,the Bayanhaote fault and the western piedmont fault of the Helan Mountains are east-dipping thrust faults,which caused folding,thrusting,and structural deformation in the Mesozoic stratum of the Helan Mountains uplift zone.A deep-penetrating fault is identified in the western side of the Yinchuan Basin.It has a steep inclination cutting through the middle-lower crust and the Moho,and may be connected to the two groups of faults in the upper crust.This set of deep and shallow fault system consists of both strike-slip,thrust,and normal faults formed over different eras,and provides the key tectonic conditions for the basin-mountains coupling,crustal deformation and crust-mantle interactions in the region.The other important phenomenon revealed from the results of deep seismic reflection profiling is the presence of a strong upper mantle reflection(UMR) at a depth of 82-92 km beneath the HM-YB,indicating the existence of a rapid velocity variation or a velocity discontinuity in that depth range.This is possibly a sign of vertical structural inhomogeneity in the upper mantle of the region.The seismic results presented here provide new clues and observational bases for further study of the deep structure,structural differences among various blocks and the tectonic relationship between deep and shallow processes in the western NCC.  相似文献   

20.
We use 15 seismic stations,crossing the Qinling orogen(QO),Weihe graben(WG)and Ordos block(OB),to study the crustal structures by receiver functions(RFs)methods.The results show quite a difference in crustal structures and materials of three tectonic units(orogenic belt,extentional basin and stable craton).The average crustal thickness in the northern QO is 37.8 km,and Poisson ratio is 0.247,which indicates the increase of felsic materials in QO.In the southern OB,the average crustal thickness is 39.2 km and Poisson ratio is 0.265.Comparatively high value of Poisson ratio is related with old crystallized base in the lower crust and shallow sediments.The artificial RFs reveal that low-velocity and thick sediments have a significant effect on phases of the Mohorovi i discontinuity(Moho).As a result,the Moho phases in WG are tangled.S-wave velocity(VS)inversion shows that there are shallow sediment layers with 4–8 km’s thickness and high velocity zones in the middle-lower crust in WG.Complex Moho structure and high velocity zone may have been induced by the activities of the Weihe faults series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号