首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtained the 2-D P-wave velocity structure of the lithosphere in the eastern North China Craton, Shanxi fault subsidence zone, and Yinchuan-Hetao fault subsidence zone by ray tracking technology based on six groups of clearly identified crustal phases and one group of lithospheric interface reflection phases from seismic recording sections of 21 shots along the 1300-km-long Yancheng-Baotou deep seismic wide-angle reflection/refraction profile. The results indicate significant differences between the lithospheric structure east and west of the Taihang Mountains, which is a gravity-gradient zone as well as a zone of abrupt change in lithospheric thickness and a separation zone of different rock components. East of the Taihang Mountains, the Mesozoic and Cenozoic lithospheric structure of the North China Craton has undergone strong reformation and destruction, resulting in the lithosphere thickness decreasing to 70–80 km. The North China Basin has a very thick Cenozoic sedimentary cover and the deepest point of crystalline basement is about 7.0 km, with the crustal thickness decreasing to about 31.0 km. The crystalline basement of the Luxi uplift zone is relatively shallow with a depth of 1.0–2.0 km and crustal thickness of 33.0–35.0 km. The Subei Basin has a thicker Cenozoic sedimentary cover and the bottom of its crystalline basement is at about 5.0–6.0 km with a crustal thickness of 31.0–32.0 km. The Tanlu fault is a deep fracture which cuts the lithosphere with a significant velocity structure difference on either side of the fault. The Tanlu fault plays an important role in the lithospheric destruction in the eastern part of the North China Craton. West of the Taihang Mountains, the crustal thickness increases significantly. The crust thickness beneath the Shanxi fault depression zone is about 46 km, and there is a low-velocity structure with a velocity of less than 6.1 km s?? in the upper part of the middle crust. Combined with other geophysical study results, our data shows that the lithospheric destruction at the Shaanxi-Shanxi fault depression zone and the Yinchuan-Hetao rift surrounding the Ordos block is non-uniform. The lithosphere thickness is about 80–90 km in the Datong-Baotou area, 75–137 km at the Dingxiang-Shenmu region, and about 80–120 km in the Anyang-Yichuan area. The non-uniform lithospheric destruction may be related to the ancient tectonic zone surrounding the Ordos block. This zone experienced multi-period tectonic events in the long-term process of its tectonic evolution and was repeatedly transformed and weakened. The weakening level is related to the interactions with the Ordos block. The continental collision between the Cenozoic India and Eurasia plates and N-E thrusting by the Qinghai Tibet Plateau block is causing further reformation and reduction of the lithosphere.  相似文献   

2.
Crustal structure beneath the Songpan—Garze orogenic belt   总被引:2,自引:0,他引:2  
The Benzilan-Tangke deepseismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE.Based on the travel times and the related amplitudes of phases in the record sections,the 2-D P-wave crustal structure was ascertained in this paper.The velocity structure has quite strong lateral variation along the profile.The crust is divided into 5layers,where the first,second and third layer belong to the upper crust,the forth and fifth layer belong to the lower crust.The low velocity anomaly zone gener-ally exists in the central part of the upper crust on the profile,and it integrates into the overlying low velocity basement in the area to the north of Ma‘erkang.The crustal structure in the section can be divided into 4parts:in the south of Garze-litang fault,between Garze-Litang fault and Xianshuihe fault,between Xianshuihe fault and Longriba fault and in the north of Longriba fault,which are basically coincided with the regional tectonics division.The crustal thickness decreases from southwest to northeast along the profile,that is ,from62km in the region of the Jinshajiang River to 52km in the region of the Yellow River.The Moho discontinuity does not obviously change across the Xianshuihe fault basesd on the PmP phase analysis.The crustal average velocity along the profile is lower,about 6.30 km/s.The Benzilan-Tangke profile reveals that the crust in the study area is orogenic.The Xianshuihe fault belt is located in the central part of the profile,and the velocity is positive anomaly on the upper crust,and negative anomaly on the lower crust and upper mantle.It is considered as a deep tectonhic setting in favor of strong earthquake‘s accumulation and occurrence.  相似文献   

3.
The Shaowu-Nanping-Pingtan deep seismic sounding profile is located in northern Fujian Province. High-quality seismic sounding data were acquired by five large explosive blasts received by 133 digital seismic instruments along the profile. Based on seismic facies analysis and travel-time picking on shot record sections, a model of the velocity structure of upper crust was developed by finite-difference tomography of the first breaks; the 2-D P-wave velocity structure and tectonic characteristics of the crust were interpreted further by fitting of waveforms and seismic travel times. The results show that the top of the crystalline basement is buried at depths of 2.0–4.0 km, with the deepest buried up to 4.0 km within the Fuzhou Basin. The Moho interface was found to be deeper in the west and shallower in the east(i.e., 30.0 km near the coast, increasing to 33.0 km northwestward). The lower crust on the east side of the Zhenghe-Haifeng Fault Zone has a smoothly varying gradient structure, whereas on the west side it has two distinct layers with a boundary between those layers at a depth of 23 km. Seismic velocities on the west side are generally lower than on the east side; a low velocity layer is observed with a lowest speed of 6.25 km/s at a depth of 22 km on the west side, which may consist of partially molten material. The Zhenghe-Haifeng Fault is a deep crustal fault, and should be a channel for deep material upwelling; it has a direct relationship with multiple stages of continental tectonic movements in Southern China and with multiple magmatic events that started in the Proterozoic and ended in the of late Tertiary in Fujian.  相似文献   

4.
For the first time on the Chinese mainland, long-range wide-angle seismic reflection/refraction profiling technology has been applied to seismic wave phases from different depths and with different attributes within the various blocks of the North China Craton to characterize the structure of the crust and upper mantle lithosphere. By comparative analysis of the seismic wave phase characteristics in each block across a 1500-km-long east-west profile, we have identified conventional Pg, Pci, PmP and Pn phases in the crust, made a clear contrast between PL1 and PL2 waves belonging to two groups of lithospheric-scale phases, and produced a model of crust-mantle velocity structures and tectonic characteristics after one- and two-dimensional calculations and processing. The results show that the thickness of the crust and lithosphere gradually deepens from east to west along the profile. However, at the reflection/refraction interface, seismic waves in each group show obvious localized changes in each block. Also, the depth to the crystalline basement changes greatly, from as much as 7.8 km in the North China fault basin to only about 2 km beneath the Jiaodong Peninsula and Taihang-Lüliang area. The Moho morphology as a whole ranges from shallow in the east to deep in the west, with the deepest point in the Ordos Block at 47 km; in contrast, the North China Plain Block is uplifting. The L1 interface of the lithosphere is observed only to the west of Taihang Mountains, at a relatively slowly changing depth of about 80 km. The L2 interface varies from 75 to 160 km and shows a sharp deepening to the west of Taihang Mountains, forming a mutation belt.  相似文献   

5.
The authors processed the seismic refraction Pg-wave travel time data with finite difference tomography method and revealed velocity structure of the upper crust on active block boundaries and deep features of the active faults in western Sichuan Province. The following are the results of our investigation. The upper crust of Yanyuan basin and the Houlong Mountains consists of the superficial low-velocity layer and the deep uniform high-velocity layer, and between the two layers, there is a distinct, and gently west-dipping structural plane. Between model coordinates 180-240 km, P-wave velocity distribution features steeply inclined strip-like structure with strongly non-uniform high and low velocities alternately. Xichang Mesozoic basin between 240 and 300 km consists of a thick low-velocity upper layer and a high-velocity lower layer, where lateral and vertical velocity variations are very strong and the interface between the two layers fluctuates a lot. The Daliang Mountains to the east of the 300 km coordinate is a non-uniform high-velocity zone, with a superficial velocity of approximately 5 km/s. From 130 to 150 km and from 280 to 310 km, there are extremely distinct deep anomalous high-velocity bodies, which are supposed to be related with Permian magmatic activity. The Yanyuan nappe structure is composed of the superficial low-velocity nappe, the gently west-dipping detachment surface and the deep high-velocity basement, with Jinhe-Qinghe fault zone as the nappe front. Mopanshan fault is a west-dipping low-velocity zone, which extends to the top surface of the basement. Anninghe fault and Zemuhe fault are east-dipping, tabular-like, and low-velocity zones, which extend deep into the base-ment. At a great depth, Daliangshan fault separates into two segments, which are represented by drastic variation of velocity structures in a narrow strip: the west segment dips westward and the east segment dips eastward, both stretching into the basement. The east margin fault of Xichang Mesozoic basin features a strong velocity gradient zone, dipping southwestward and stretching to the top surface of the basement. The west-dipping, tabular-like, and low-velocity zone at the easternmost segment of the profile is a branch of Mabian fault, but the reliability of the supposition still needs to be confirmed by further study. Anninghe, Zemuhe and Daliangshan faults are large active faults stretching deep into the basement, which dominate strong seismic activities of the area.  相似文献   

6.
In this paper the authors have discussed the results of investigation of fine velocity structure in the basement layer of the Simao-Zhongdian DSS profile in western Yunnan region.The depth of upper Pz interface of the basement layer is about 0-3.5 km,and the depth of the lower P1 interface is 11.0-17.0 km.The velocity of the basement layer on the southern side of the Jinhe-Erhai deep fault is 5.70-6.30 km/s,and has increased to 6.30-6.50 km/s on the northern side.Their transitional zone is situated near Jianchuan County.Along the profile some localities,where the faults cut across the lateral variation of Pz interface velocity,are quite obvious in addition to the variation in depth.The velocity isopleths are relatively sparse in the southern region of JYQ S.P.(shot - point),near the DC S.P.,and in the south ZT S.P.The magma has apparently risen up along the deep faults to the upper crust in these localities,forming a large intrusive rock zone in the basement layer.In Jinggu region the basaltic magma has  相似文献   

7.
Twenty broadband seismographs were deployed along Hongyuan, Sichuan to Wuwei, Gansu. 81 teleseismic events were recorded in one year. We computed receiver functions from teleseismic waveform data and obtained S wave velocity structure beneath each station along the profile by using receiver function inversion method. The results revealed that the crustal structure is very complex and crustal average S wave velocity is to be on the low side. Low velocity structure generally exists in the depth range of 10~40 km in the crust between Aba arc fault and northern edge fault of Qinling earth's axis and it is a tectonic feature of complex geological process such as ancient A'nyemaqen Tethys ocean from closing and side colliding to subducted plate exhumed or thrust rock slice lifted. The Moho is about 50 km depth along the profile and is slightly deeper in the south than in the north.  相似文献   

8.
Twenty broadband seismographs were deployed along Hongyuan, Sichuan to Wuwei, Gansu. 81 teleseismic events were recorded in one year. We computed receiver functions from teleseismic waveform data and obtained S wave velocity structure beneath each station along the profile by using receiver function inversion method. The results revealed that the crustal structure is very complex and crustal average S wave velocity is to be on the low side. Low velocity structure generally exists in the depth range of 10~40 km in the crust between Aba arc fault and northern edge fault of Qinling earth’s axis and it is a tectonic feature of complex geological process such as ancient A’nyêmaqên Tethys ocean from closing and side colliding to subducted plate exhumed or thrust rock slice lifted. The Moho is about 50 km depth along the profile and is slightly deeper in the south than in the north.  相似文献   

9.
A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (~72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57―64 km in the Bayan Har block, and to 40―45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30―60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau.  相似文献   

10.
From the 1960 s to 1970 s, North China has been hit by a series of large earthquakes. During the past half century,geophysicists have carried out numerous surveys of the crustal and upper mantle structure, and associated studies in North China.They have made significant progress on several key issues in the geosciences, such as the crustal and upper mantle structure and the seismogenic environment of strong earthquakes. Deep seismic profiling results indicate a complex tectonic setting in the strong earthquake areas of North China, where a listric normal fault and a low-angle detachment in the upper crust coexist with a high-angle deep fault passing through the lower crust to the Moho beneath the hypocenter. Seismic tomography images reveal that most of the large earthquakes occurred in the transition between the high-and low-velocity zones, and the Tangshan earthquake area is characterized by a low-velocity anomaly in the middle-lower crust. Comprehensive analysis of geophysical data identified that the deep seismogenic environment in the North China extensional tectonic region is generally characterized by a low-velocity anomalous belt beneath the hypocenter, inconsistency of the deep and shallow structures in the crust, a steep crustalal-scale fault,relative lower velocities in the uppermost mantle, and local Moho uplift, etc. This indicates that the lithospheric structure of North China has strong heterogeneities. Geologically, the North China region had been a stable craton named the North China Craton or in brief the NCC, containing crustal rocks as old as ~3.8 Ga. The present-day strong seismic activity and the lower velocity of the lower crust in the NCC are much different from typical stable cratons around the world. These findings provide significant evidence for the destruction of the NCC. Although deep seismic profiling and seismic tomography have greatly enhanced knowledge about the deep-seated structure and seismogenic environment, some fundamental issues still remain and require further work.  相似文献   

11.
AbstractThe Benzilan-Tangke deep seismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE.Based on the travel times and the related amplitudes of phases in therecord sections,the 2-D P-wave crustal structure was ascertained in this paper. The velocity structure has quitestrong lateral variation along the profile.The crust is divided into 5 layers,where the first,second and third layerbelong to the upper crust,the forth and fifth layer belong to the lower crust.The low velocity anomaly zone gener-ally exists in the central part of the upper crust on the profile,and it integrates into the overlying low velocitybasement in the area to the north of Ma’erkang.The crustal structure in the section can be divided into 4 parts:inthe south of Garze-Litang fault,between Garze-Litang fault and Xiashuihe fault,between Xianshuihe fault andLongriba fault and in the north of Longriba fault,which are basically coincided with the regional tectonics division  相似文献   

12.
Although Tanlu fault is one of the most important tectonic fault zones and active earthquake belts in eastern China, little is known about its deep structure. In this study, we use the existing Bouguer gravity data to study the middle section of the Tanlu fault zone, which is also known as the Yishu fault zone. Our gravity inversion results indicate that the Moho has an abrupt offset in depth at the Tanlu fault zone and it has a relatively smooth variation away from the fault zone. The crustal structures on both sides are different from each other. Sediment is thin on the west side with an average thickness of less than 5 km, while it is as thick as 6 km on the east side. The thinnest sediment (3-4 km) is at the fault zone. Moho depth increases from 33 to 34 km on east side and from 36 to 38 km on west side. Tanlu fault zone is shown as a wide zone of linear gradient in the Bouguer gravity anomaly.  相似文献   

13.
The interaction zone between southern Tianshan and northern Tarim is located at the northeast side of Pamir. It is a region with high seismicity. We constructed a seismotectonic model for the west part of this zone from geological profiles, deep crust seismic detection and earthquake focal mechanisms data. Based on the synthesized geological features, deep crust structure, and earthquake focal mechanisms, we think that the main regional tectonic feature is that the Tianshan tecto-lithostratigraphic unit overthrusts on the Tarim block. The Tianshan tectonic system includes the Maidan fault and thrust sheets in front of the fault; The Tarim tectonic system includes the underground northern Tarim margin fault, conjugate faults in basement and overthrust fault in shallow. The northern Tarim margin fault is a high angle fault deep in the Tarim crust, adjusting different trending deformation between Tianshan and Tarim. It is a major active fault that can generate large earthquakes. The other faults, such as the Tianshan overthrust system and the Tarim basement faults in this area may generate moderately strong earthquakes with different styles.  相似文献   

14.
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.  相似文献   

15.
Songpan-Garze massif is located at the turning position of tectonics from the nearly west-east direction to the nearly north-south direction in the northeastern margin of Tibetan Plateau,with Zoigê basin in the centre of the massif.In this paper,we build a crustal structure model of Zoigê basin and its surrounding folded orogenic belts using the deep seismic sounding data in this region.We also discuss structures and properties of the basement in Zoigê basin,tectonic relations between Zoigê upland basin and its surrounding folded orogenic belts,crustal deformation and thickening in the northeastern margin of Tibetan Plateau,and decoupling and relaxing processes in the crust.The results indicate that a special "Mesozoic basement" is formed of Triassic rocks with high density (2.65-2.75 g/cm3) and high velocity (5.6 km/s) in Zoigê basin.Songpan-Garze tectonic massif was transformed into two types of tectonic units with different crustal structures,i.e.,relatively stable Zoigê upland basin and active folded orogenic belts around the basin,in the course of the crustal material of Tibetan Plateau flowing eastward and obstructed by surrounding stable blocks.The thickening of the crust in the northeastern margin of Tibetan Plateau mainly occurred in the mid and lower crust,and the structure characterized by low velocities and multiple reflectors obviously appears in the folded orogenic belts around Zoigê basin.It implies that the mid and lower crust underwent a strong tectonic deformation in the folded orogenic areas.The thickness of the crust is about 50 km in Zoigê basin and the folded orogenic belts at the both southern and northern sides of Zoigê basin.The "Mountain root" cannot be identified.It is inferred that during the later orogenic period the eastwards flowing deep materials moved clockwise along the relatively relaxing southern side around the eastern tectonic knot under the obstructing of surrounding rigid massifs,and it resulted in the strong stretching action of the folded orogenic belts around Zoigê basin.  相似文献   

16.
The data from two deep seismic sounding profiles was processed and studied comprehensively. The results show that crnst-mantle structures in the investigated region obviously display layered characteristics and velocity structures and tectonic features have larger distinction in different geological structure blocks. The boundary interface C between the upper and lower crust and Moho fluctuate greatly. The shallowest depths of C (30.0km) and Moho (45.5km) under Jiashi deepen sharply from Jiashi to the western Kunlun mountain areas, where the depths of C and Moho are 44.0km and 70.0km, respectively. The higher velocity structures in the Tarim massif determine its relatively “stable“ characteristics in crust tectonics. The phenomenon in the Jiashi region, where the distribution of earthquake foci mostly range from 20kin to 40kin in depth, may infer that the local uplift of C and Moho interface, anomalonsly lower velocity bodies and deep large faults control earthquake occurrence and seismogenic processes in the Jiashi strong earthquake swarm.  相似文献   

17.
The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block,also being the northern segment of the North-South Seismic Belt, is characterized by considerably high seismicity level and high risk of strong earthquakes. In view of the special tectonic environment and deep tectonic setting in this area, this study used two seismic wide-angle reflection/refraction cross profiles for double constraining, so as to more reliably obtain the fine-scale velocity structure characteristics in both the shallow and deep crust of individual blocks and their boundaries in the study area,and further discuss the seismogenic environment in seismic zones with strong historical earthquakes. In this paper, the P-wave data from the two profiles are processed and interpreted, and two-dimensional crustal velocity structure models along the two profiles are constructed by travel time forward modeling. The results show that there are great differences in velocity structure,shape of intra-crustal interfaces and crustal thickness among different blocks sampled by the two seismic profiles. The crustal thickness along the Lanzhou-Huianbu-Yulin seismic sounding profile(L1) increases from ~43 km in the western margin of Ordos Block to ~56 km in the Qilian Block to the west. In the Ordos Block, the velocity contours vary gently, and the average velocity of the crust is about 6.30 km s-1; On the other hand, the velocity structures in the crust of the Qilian Block and the arclike tectonic zone vary dramatically, and the average crustal velocities in these areas are about 0.10 km s-1 lower than that of the Ordos Block. In addition, discontinuous low-velocity bodies(LVZ1 and LVZ2) are identified in the crust of the Qilian Block and the arc-like tectonic zone, the velocity of which is 0.10–0.20 km s-1 lower than that of the surroundings. The average crustal thickness of the Ordos Block is consistently estimated to be around 43 km along both Profile L2(Tongchuan-Huianbu-Alashan left banner seismic sounding profile) and Profile L1. In contrast to the gently varying intra-crustal interfaces and velocity contours in the Ordos Block along Profile L1, which is a typical structure characteristic of stable cratons, the crustal structure in the Ordos Block along Profile L2 exhibits rather complex variations. This indicates the presence of significant structural differences in the crust within the Ordos Block. The crustal structure of the Helan Mountain Qilian Block and the Yinchuan Basin is featured by "uplift and depression" undulations, showing the characteristics of localized compressional deformation.Moreover, there are low-velocity zones with alternative high and low velocities in the middle and lower crust beneath the Helan Mountain, where the velocity is about 0.15–0.25 km s-1 lower than that of the surrounding areas. The crustal thickness of the Alxa Block is about 49 km, and the velocity contours in the upper and middle-lower crust of the block vary significantly. The complex crustal velocity structure images along the two seismic sounding profiles L1 and L2 reveal considerable structural differences among different tectonic blocks, their coupling relationships and velocity structural features in the seismic zones where strong historical earthquakes occurred. The imaging result of this study provides fine-scale crustal structure information for further understanding the seismogenic environment and mechanism in the study area.  相似文献   

18.
At GMT time 13:19, August 8, 2017, an Ms7.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China,causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following:(1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault.(2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault.(3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5–20 km.(4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152°, 74° and 8°, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 km. The co-seismic rupture mainly concentrates at depths of 3–13 km, with a moment magnitude(M_w) of 6.5.(5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 66°–89° from northwest to southeast and the average dip angle measures ~84°. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.  相似文献   

19.
Through the analysis and 2-D inversion for the 5 profiles in Haiyuan arcuate tectonic region (105°~107°E,36°~37.5°N) in the northeastern margin of Qinghai-Xizang Plateau, we have obtained the electric structure within a range of 160 km in width (east-west) and 60 km in depth in the studied area. The results show that the crustal electric structure can be divided into 6 sections, corresponding respectively to Xiji basin (Ⅰ), Xihuashan-Nanhuashan uplift (Ⅱ), Xingrenbu-Haiyuan basin (Ⅲ), Zhongwei-Qingshuihe basin (Ⅳ), Zhongning-Hongsibu basin (Ⅴ) and west-margin zone of Ordos (Ⅵ) from the southwest to the northeast. The crustal electric structure is characterized by a broom-shaped pattern, which scatters to the northwest and shrinks to the southeast. The structures in the top part of Haiyuan arcuate tectonic region are complete and large, however, they diminish from the arc top to the northwest and southeast ends. In the depth from 0 km to 10 km, the resistivity is high in the sections Ⅱ and Ⅵ, but relatively low in the other four sections, showing a similar pattern of basin depression. The electrical basement in the section Ⅲ is the deepest, displaying a "dustpan" shape that is deep in the southwest and shallow in the northeast. A series of discontinuous zones with high conductivity exist in the middle-lower crust in Haiyuan arcuate tectonic region, which is possibly related to the moderate and strong earthquakes in the region. The resistivity distribution in the focal area of the 1920 Haiyuan earthquake is significantly heterogeneous with an obviously high conductivity zone near the hypocenter regime.  相似文献   

20.
Barkam-Luqu-Gulang deep seismic sounding profile runs from north of Sichuan Province to south of Gansu Prov- ince. It is located at the northeastern edge of Tibetan Plateau and crosses eastern A’nyemaqên suture zone. The upper crust structures around eastern A’nyemaqên suture zone and its adjacent area are reconstructed based on the arrival times of refracted Pg and Sg waves by using finite difference method, ray tracing inversion, time-term method and travel-time curve analysis. The results show that the depth variation of basement along profile is very strong as indicated by Pg and Sg waves. The basement rose in Zoigê basin and depressed in eastern A’nyemaqên suture zone, and it gradually rose again northward and then depressed. The results also indicate that eastern A’nyemaqên suture zone behaves as inhomogeneous low velocity structures in the upper crust and is inclined to- ward the south. Hoh Sai Hu-Maqên fault, Wudu-Diebu fault and Zhouqu-Liangdang fault are characterized by low velocity distributions with various scales. The distinct variation in basement depth occurred near Hoh Sai Hu-Maqên fault and Zhouqu-Liangdang fault, which are main tectonic boundaries of A’nyemaqên suture zone. Wudu-Diebu fault, located at the depth variation zone of the basement, possibly has the same deep tectonic back- ground with Zhouqu-Liangdang fault. The strongly depressed basement characterized by low velocity distribution and lateral inhomogeneity in A’nyemaqên suture zone implies crushed zone features under pinching action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号