首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Detailed wind tunnel tests were carried out to establish the mean downwind velocity and transport rate of different-sized loose dry sand at different free-stream wind velocities and heights, as well as to investigate the vertical variation in the concentration of blowing sand in a cloud. Particle dynamic analyzer (PDA) technology was used to measure the vertical variation in mean downwind velocity of a sand cloud in a wind tunnel. The results reveal that within the near-surface layer, the decay of blown sand flux with height can be expressed using an exponential function. In general, the mean downwind velocity increases with height and free-stream wind velocity, but decreases with grain size. The vertical variation in mean downwind velocity can be expressed by a power function. The concentration profile of sand within the saltation layer, calculated according to its flux profile and mean downwind profile, can be expressed using the exponential function: cz=ae−bz, where cz is the blown sand concentration at height z, and a and bare parameters changing regularly with wind velocity and sand size. The concentration profiles are converted to rays of straight lines by plotting logarithmic concentration values against height. The slope of the straight lines, representing the relative decay rate of concentration with height, decreases with an increase in free-stream wind velocity and grain size, implying that more blown sand is transported to greater heights as grain size and wind speed increase.  相似文献   

2.
A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.  相似文献   

3.
层状土壤中砂层层位对潜水蒸发的影响   总被引:7,自引:2,他引:7  
通过室内一维土柱实验,研究了夹砂层土体构型中砂层层位对潜水蒸发的影响,分析了其影响机理,进一步讨论了砂层位置和水分蒸发的定量关系。结果表明,砂层对于水分的蒸发既有促进也有抑制作用,在地下水埋深为50cm时,5cm厚的底砂层可使水分的蒸发强度增加10%-20%;砂层距水位的距离大于5cm时,砂层可抑制水分的蒸发,且当距离增加到35cm左右,其抑制率可达70%-80%;当砂层距水位的距离继续增大时,水分的蒸发强度基本保持不变。这主要是由砂层自身的导水率变化以及砂层与同剖面中其它土质导水率的相对大小发生变化而引起。累积蒸发量与砂层层位以及蒸发历时之间定量关系的建立为预测砂层对潜水蒸发的影响以及估算特定历时蒸发损失量最小的砂层层位提供了依据。  相似文献   

4.
5.
All conventional stress inversion methods, when applied to earthquake focal mechanism data, suffer from uncertainty as to which plane is the true fault plane. This paper deals with several problems in stress inversion brought about by this uncertainty. Our analysis shows that the direction of shear stress on the auxiliary plane does not coincide with the hypothetical slip direction unless the B -axis is parallel to one of the three principal stress directions. Based on this simple fact, we propose a new algorithm dealing with the ambiguity in fault/auxiliary plane identification. We also propose a method to handle the inhomogeneity problem of data quality, which is common and unique for focal mechanism data. Different inversion methods and algorithms are applied to two sets of 'focal mechanism' data simulated from field fault-slip measurement data. The inversion results show that, among the four stress parameters inverted, the stress ratio suffers the most from the ambiguity in fault/auxiliary plane identity, whereas the solutions for the principal stress directions are surprisingly good. The errors in inversion solutions resulting from the fault/auxiliary plane ambiguity can be significantly reduced by controlling subjectively the sample variance of the measurement errors. Our results also suggest that the fault plane cannot be distinguished correctly from the auxiliary plane with a high probability on the basis of the stress inversion alone.  相似文献   

6.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号