首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LAURENCE C. SMITH 《水文研究》1997,11(10):1427-1439
The growing availability of multi-temporal satellite data has increased opportunities for monitoring large rivers from space. A variety of passive and active sensors operating in the visible and microwave range are currently operating, or planned, which can estimate inundation area and delineate flood boundaries. Radar altimeters show great promise for directly measuring stage variation in large rivers. It also appears to be possible to obtain estimates of river discharge from space, using ground measurements and satellite data to construct empirical curves that relate water surface area to discharge. Extrapolation of these curves to ungauged sites may be possible for the special case of braided rivers. Where clouds, trees and floating vegetation do not obscure the water surface, high-resolution visible/infrared sensors provide good delineation of inundated areas. Synthetic aperture radar (SAR) sensors can penetrate clouds and can also detect standing water through emergent aquatic plants and forest canopies. However, multiple frequencies and polarizations are required for optimal discrimination of various inundated vegetation cover types. Existing single-polarization, fixed-frequency SARs are not sufficient for mapping inundation area in all riverine environments. In the absence of a space-borne multi-parameter SAR, a synergistic approach using single-frequency, fixed-polarization SAR and visible/infrared data will provide the best results over densely vegetated river floodplains. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
The study investigates the capability of coarse resolution synthetic aperture radar (SAR) imagery to support flood inundation models. A hydraulic model of a 98‐km reach of the River Po (Northern Italy) was calibrated on the October 2000 high‐magnitude flood event with extensive and high‐quality field data. During the June 2008, low‐magnitude flood event a SAR image was acquired and processed in near real time (NRT) in order to provide adequate data for quick verification and recalibration of the hydraulic model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This work proposes a method for detecting inundation between semi‐diurnal low and high water conditions in the northern Gulf of Mexico using high‐resolution satellite imagery. Radarsat 1, Landsat imagery and aerial photography from the Apalachicola region in Florida were used to demonstrate and validate the algorithm. A change detection approach was implemented through the analysis of red, green and blue (RGB) false colour composites image to emphasise differences in high and low tide inundation patterns. To alleviate the effect of inherent speckle in the SAR images, we also applied ancillary optical data. The flood‐prone area for the site was delineated a priori through the determination of lower and higher water contour lines with Landsat images combined with a high‐resolution digital elevation model. This masking technique improved the performance of the proposed algorithm with respect to detection techniques using the entire Radarsat scene. The resulting inundation maps agreed well with historical aerial photography as the probability of detection reached 83%. The combination of SAR data and optical images, when coupled with a high‐resolution digital elevation model, was shown to be useful for inundation mapping and have a great potential for evaluating wetting/drying algorithms of inland and coastal hydrodynamic models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
D-InSAR技术在矿山沉陷和地面沉降监测中的应用   总被引:1,自引:0,他引:1  
差分雷达干涉(D-InSAR)测量技术,是合成孔径雷达(SAR)卫星应用的一个拓展。雷达图像的差分干涉图可用于监测厘米级或更微小的地面形变,具有全天候、大面积监测地面沉降和矿山沉陷的优势,本文以武安矿山沉陷和沧州市地面沉降监测为例,介绍了这一新技术在灾害监测领域中的实际应用。  相似文献   

5.
Recent years have been marked by a continuous availability of spatial SAR data since the launch of the European remote sensing satellite (ERS-1) in 1991. Consequently, remote sensing techniques now offer an opportunity to map flood inundation fields caused by river overflow or waterlogging in environments characterized by frequent cloud cover. Indeed, inundation fields can clearly be seen on ERS-1 SAR images taken during flooding periods. However, such an identification can be constrained by the similarity in behaviour between water surfaces and other features of the landscape such as extended asphalt areas, permanent water bodies and less illuminated slopes. For consistent flood inundation extent mapping a more robust approach is required. This is provided by a conceptual flood inundation index that is physically sound in relation to radar imaging. Moreover, this index has proved to be useful for highlighting soils located within inundation fields and having significantly different internal drainage. The results achieved in the framework of the research must be seen in the context of intensive use of remote sensing data to support decision methods for sustainable management of land and water resources. Such decision support methods could be provided by river hydraulic models aimed at assessing environmental effects of inundation floods and at early flood warning systems. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

This study assessed the utility of EUDEM, a recently released digital elevation model, to support flood inundation modelling. To this end, a comparison with other topographic data sources was performed (i.e. LIDAR, light detection and ranging; SRTM, Shuttle Radar Topographic Mission) on a 98-km reach of the River Po, between Cremona and Borgoforte (Italy). This comparison was implemented using different model structures while explicitly accounting for uncertainty in model parameters and upstream boundary conditions. This approach facilitated a comprehensive assessment of the uncertainty associated with hydraulic modelling of floods. For this test site, our results showed that the flood inundation models built on coarse resolutions data (EUDEM and SRTM) and simple one-dimensional model structure performed well during model evaluation.
Editor Z.W. Kundzewicz; Associate editor S. Weijs  相似文献   

7.
Space-borne Synthetic Aperture Radar interferometry (INSAR) is a well known widely used remote sensing technique to get precise (sub-centimetric) surface deformation measurements on large areas (thousands of km2) and high spatial density of measurement points (hundreds per km2). In this work the recent technological advances of this technique are presented. First, a short review of the INSAR basics is dedicated to readers who are not INSAR specialists. Then, an analysis of the improvement of ground motion measurement offered by multiple repeated space-borne SAR observations gathered by the new generation of high resolution SAR systems is given. An example obtained with the recent German TERRASAR-X system is shown and compared with the measurements obtained with the elder C-band RADARSAT-1 system. Finally, a possible processing of multi-temporal analysis of SAR images that allow extracting ground motion information also from partially coherent targets is given. In this case the core idea is to relax the restrictive conditions imposed by the Permanent Scatterers technique. The results obtained in different test-sites show an increased spatial density of areal deformation trend measurements, especially in extra-urban areas at the cost of missing motions with strong velocity variation.  相似文献   

8.
The resolution and accuracy of digital elevation models (DEMs) can affect the hydraulic simulation results for predicting the effects of glacial lake outburst floods (GLOFs). However, for the Tibetan Plateau, high‐quality DEM data are often not available, leaving researchers with near‐global, freely available DEMs, such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) and the Shuttle Radar Topography Mission data (SRTM) for hydraulic modelling. This study explores the suitability of these two freely available DEMs for hydraulic modelling of GLOFs. Our study focused on the flood plain of a potentially dangerous glacial lake in southeastern Tibet, to evaluate the elevation accuracy of ASTER GDEM and SRTM, and their suitability for hydraulic modelling of GLOFs. The elevation accuracies of ASTER GDEM and SRTM were first validated against field global position system (GPS) survey points, and then evaluated with reference to the relatively high precision of 1:50 000 scale DEM (DEM5) constructed from aerial photography. Moreover, the DEM5, ASTER GDEM and SRTM were used as basic topographic data to simulate peak discharge propagation, as well as flood inundation extent and depth in the Hydrologic Engineering Center's River Analysis System one‐dimensional hydraulic model. Results of the three DEM predictions were compared to evaluate the suitability of ASTER GDEM and SRTM for GLOF hydraulic modelling. Comparisons of ASTER GDEM and SRTM each with DEM5 in the flood plain area show root‐mean‐square errors between the former two as ± 15·4 m and between the latter two as ± 13·5 m. Although SRTM overestimates and ASTER GDEM underestimates valley floor elevations, both DEMs can be used to extract the elevations of required geometric data, i.e. stream centre lines, bank lines and cross sections, for flood modelling. However, small errors still exist in the cross sections that may influence the propagation of peak discharge. The flood inundation extent and mean water depths derived from ASTER GDEM predictions are only 2·2% larger and 2·3‐m deeper than that of the DEM5 predictions, whereas the SRTM yields a flood zone extent 6·8% larger than the DEM5 prediction and a mean water depth 2·4‐m shallower than the DEM5 prediction. The modelling shows that, in the absence of high‐precision DEM data, ASTER GDEM or SRTM DEM can be relied on for simulating extreme GLOFs in southeast Tibet. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
固体地球潮汐(Solid earth tide,SET)在地表产生的径向位移可达40~50 cm,形变梯度可达2 cm/100 km,是各种精密大地测量和地球物理观测必须考虑的因素之一.随着星载合成孔径雷达干涉测量(Interferometric synthetic aperture radar,InSAR)地表形变监测范围的不断增大以及对精度要求不断提高,固体潮位移对InSAR观测的影响不容忽视.本文利用固体潮位移理论模型,根据InSAR测量基本原理和Sentinel-1卫星成像参数,模拟了固体潮位移InSAR相位,定量分析了其时空分布特征,并以我国江汉平原和北美大平原的Sentinel-1数据为例,探讨了固体潮位移InSAR相位对广域地表形变监测的影响.结果表明:(1)固体潮位移对InSAR广域地表形变监测存在较大影响,在250 km×250 km范围中,以C波段为例,其相位变化可达12 rad(对应52 mm视线向形变);(2)固体潮位移相位在中低纬度(60°S—60°N)地区变化较大,两极地区较小,且在时间上具有明显的周期性;(3)在Sentinel-1 InSAR观测中,通过固体潮位移相位改正去除了干涉图中的部分低频相位偏差,相比原始干涉图,改正后的解缠相位标准差减小了约29%.本研究对于认识固体潮位移InSAR相位的时空分布特征以及提高星载InSAR广域地表形变监测的准确度与可靠性均具有重要意义.  相似文献   

10.
Conceptual study of lunar-based SAR for global change monitoring   总被引:1,自引:0,他引:1  
As an active microwave remote sensing imaging sensor, Synthetic Aperture Radar (SAR) plays an important role in earth observation. Here we establish a SAR system based on the platform of the moon. This will aid large-scale, constant, and long-term dynamic Earth observations to better meet the needs of global change research and to complement the space borne and airborne earth observations. Lunar-based SAR systems have the characteristics of high resolution and wide swath width. The swath width could be thousands of kilometers in the stripe mode and it could cover 40% of earth’s surface with 10 meters or even higher spatial resolution in the scanning mode. Using the simplified observation model, here we quantitatively analyze the spatial resolution and coverage area of lunar-based SAR and simulate the observation on the Qinghai-Tibet plateau and the Amazon plain. The results show that this system could provide near 100% daily coverage of the Qinghai-Tibet plateau, whereas 40% to 70% daily coverage of the Amazon plain. Lunar-based SAR could provide large-scale, long-term and stable time series data in order to support future research of global change.  相似文献   

11.
Synthetic Aperture Radar (SAR) is an active microwave imaging method.It operates independently of Sun illumination and cloud coverage. Currentspaceborne systems use wavelengths of 3 to 25 cm and achieve resolutionsof 10 to 50 m. The paper attempts to explain the basic SAR imaging principlesusing a minimum of mathematics. Emphasis is put on the particular propertiesof SAR images that should be understood before interpreting these data.  相似文献   

12.
Conventional Interferometric Synthetic Aperture Radar(InSAR) technology can only measure one-dimensional surface displacement(along the radar line-of-sight(LOS) direction).Here we presents a method to infer three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits.The method is realized in three steps:(1) measuring surface displacements along the LOS directions of both ascending and descending orbits based on interferomet...  相似文献   

13.
As flood inundation risk maps have become a central piece of information for both urban and risk management planning, also a need to assess the accuracies and uncertainties of these maps has emerged. Most maps show the inundation boundaries as crisp lines on visually appealing maps, whereby many planners and decision makers, among others, automatically believe the boundaries are both accurate and reliable. However, as this study shows, probably all such maps, even those that are based on high-resolution digital elevation models (DEMs), have immanent uncertainties which can be directly related to both DEM resolution and the steepness of terrain slopes perpendicular to the river flow direction. Based on a number of degenerated DEMs, covering areas along the Eskilstuna River, Sweden, these uncertainties have been quantified into an empirically-derived disparity distance equation, yielding values of distance between true and modeled inundation boundary location. Using the inundation polygon, the DEM, a value representing the DEM resolution, and the desired level of confidence as inputs in a new-developed algorithm that utilizes the disparity distance equation, the slope and DEM dependent uncertainties can be directly visualized on a map. The implications of this strategy should benefit planning and help reduce high costs of floods where infrastructure, etc., have been placed in flood-prone areas without enough consideration of map uncertainties.  相似文献   

14.
Previously we have detailed an application of the generalized likelihood uncertainty estimation (GLUE) procedure to estimate spatially distributed uncertainty in models conditioned against binary pattern data contained in flood inundation maps. This method was applied to two sites where a single consistent synoptic image of inundation extent was available to test the simulation performance of the method. In this paper, we extend this to examine the predictive performance of the method for a reach of the River Severn, west‐central England. Uniquely for this reach, consistent inundation images of two major floods have been acquired from spaceborne synthetic aperture radars, as well as a high‐resolution digital elevation model derived using laser altimetry. These data thus allow rigorous split sample testing of the previous GLUE application. To achieve this, Monte Carlo analyses of parameter uncertainty within the GLUE framework are conducted for a typical hydraulic model applied to each flood event. The best 10% of parameter sets identified in each analysis are then used to map uncertainty in flood extent predictions using the method previously proposed for both an independent validation data set and a design flood. Finally, methods for combining the likelihood information derived from each Monte Carlo ensemble are examined to determine whether this has the potential to reduce uncertainty in spatially distributed measures of flood risk for a design flood. The results show that for this reach and these events, the method previously established is able to produce sharply defined flood risk maps that compare well with observed inundation extent. More generally, we show that even single, poor‐quality inundation extent images are useful in constraining hydraulic model calibrations and that values of effective friction parameters are broadly stationary between the two events simulated, most probably reflecting their similar hydraulics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
基于拉格朗日分解算法的SAR图像混合像元分解   总被引:1,自引:0,他引:1       下载免费PDF全文
为解决与光学遥感图像不同的合成孔径雷达(SAR)图像中存在大量混合像元的问题,本文提出了一种基于拉格朗日分解算法的SAR图像混合像元分解的方法,结合相关内容中具体定理的证明,文中给出拉格朗日分解算法用于SAR图像混合像元分解的系统的求解方法.用人工模拟SAR图像和ENVISAT SAR图像进行实验,结果表明拉格朗日分解算法的混合像元分解结果明显优于非约束类神经网络(文中实验以BP神经网络为例)的分解结果.  相似文献   

16.
The use of spatial patterns of flood inundation (often obtained from remotely sensed imagery) to calibrate flood inundation models has been widespread over the last 15 years. Model calibration is most often achieved by employing one or even several performance measures derived from the well‐known confusion matrix based on a binary classification of flooding. However, relatively early on, it has been recognized that the use of commonly reported performance measures for calibrating flood inundation models (such as the F measure) is hampered because the calibration procedure commonly utilizes only one possible solution of a wet/dry classification of a remote sensing image [most often acquired by a synthetic aperture radar (SAR)] to calibrate or validate models and are biased towards either over‐prediction or under‐prediction of flooding. Despite the call in several studies for an alternative statistic, to this date, very few, if any, unbiased performance measure based on the confusion matrix has been proposed for flood model calibration/validation studies. In this paper, we employ a robust statistical measure that operates in the receiver operating characteristics (ROC) space and allows automated model calibration with high identifiability of the best model parameter set but without the need of a classification of the SAR image. The ROC‐based method for flood model calibration is demonstrated using two different flood event test cases with flood models of varying degree of complexity and boundary conditions with varying degree of accuracy. Verification of the calibration results and optional SAR classification is successfully performed with independent observations of the events. We believe that this proposed alternative approach to flood model calibration using spatial patterns of flood inundation should be employed instead of performance measures commonly used in conjunction with a binary flood map. © 2013 California Institute of Technology. Hydrological Processes © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
D. Yu  S. N. Lane 《水文研究》2011,25(1):36-53
Numerical modelling of flood inundation over large and complex floodplains often requires mesh resolutions coarser than the structural features (e.g. buildings) that are known to influence the inundation process. Recent research has shown that this mismatch is not well represented by conventional roughness treatments, but that finer‐scale features can be represented through porosity‐based subgrid‐scale treatments. This paper develops this work by testing the interactions between feature representation, subgrid‐scale resolution and mesh resolution. It uses as the basis for this testing a 2D diffusion‐based flood inundation model which is applied to a 2004 flood event in a topologically complex upland floodplain in northern England. This study formulated simulations with different grid mesh resolution and subgrid mesh ratio. The sensitivity of the model to mesh resolution and roughness specification was investigated. Model validation and verification suggest that the subgrid treatment with higher subgrid mesh ratio can give much improved predictions of flood propagation, in particular, in terms of the predicted water depth. This study also highlighted the limitation of using at‐a‐point in time inundation extent for validation of flood models of this type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
SAR浅海水下地形遥感探测技术综述   总被引:2,自引:0,他引:2       下载免费PDF全文
SAR已成为浅海水下地形探测的重要技术手段之一.与传统浅海水下地形探测技术相比,SAR浅海水下地形遥感探测技术具有明显的经济效益.该水深探测技术通过对浅海水下地形SAR图像仿真模型的反演求解,从SAR图像中提取水下地形信息.本文回顾了SAR浅海水下地形遥感探测技术的不同数值模型和应用实例,并针对目前SAR浅海水下地形遥感探测技术存在的问题和今后研究方向进行了探讨和总结.  相似文献   

19.
A need for more accurate flood inundation maps has recently arisen because of the increasing frequency and extremity of flood events. The accuracy of flood inundation maps is determined by the uncertainty propagated from all of the variables involved in the overall process of flood inundation modelling. Despite our advanced understanding of flood progression, it is impossible to eliminate the uncertainty because of the constraints involving cost, time, knowledge, and technology. Nevertheless, uncertainty analysis in flood inundation mapping can provide useful information for flood risk management. The twin objectives of this study were firstly to estimate the propagated uncertainty rates of key variables in flood inundation mapping by using the first‐order approximation method and secondly to evaluate the relative sensitivities of the model variables by using the Hornberger–Spear–Young (HSY) method. Monte Carlo simulations using the Hydrologic Engineering Center's River Analysis System and triangle‐based interpolation were performed to investigate the uncertainty arising from discharge, topography, and Manning's n in the East Fork of the White River near Seymour, Indiana, and in Strouds Creek in Orange County, North Carolina. We found that the uncertainty of a single variable is propagated differently to the flood inundation area depending on the effects of other variables in the overall process. The uncertainty was linearly/nonlinearly propagated corresponding to valley shapes of the reaches. In addition, the HSY sensitivity analysis revealed the topography of Seymour reach and the discharge of Strouds Creek to be major contributors to the change of flood inundation area. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The Mekong Delta is one of the largest and most intensively used estuaries in the world. Each year it witnesses widespread flooding which is both the basis of the livelihood for more than 17 million people but also the major hazard. Therefore, a thorough understanding of the hydrologic and hydraulic features is urgently required for various planning purposes. While the general causes and characteristics of the annual floods are understood, the inundation dynamics in the floodplains in Vietnam which are highly controlled by dikes and other control structures have not been investigated in depth. Especially, quantitative analyses are lacking, mainly due to scarce data about the inundation processes in the floodplains. Therefore, a comprehensive monitoring scheme for channel and floodplain inundation was established in a study area in the Plain of Reeds in the northeastern part of the Vietnamese Delta. This in situ data collection was complemented by a series of high‐resolution inundation maps derived from the TerraSAR‐X satellite for the flood seasons 2008 and 2009. Hence, the inundation dynamics in the channels and floodplains, and the interaction between channels and floodplains, could be quantified for the first time. The study identifies the strong human interference which is governed by flood protection levels, cropping patterns and communal water management. In addition, we examine the tidal influence on the inundation in various parts of the Delta, since it is expected that climate change‐induced sea level rise will increase the tidal contribution to floodplain inundation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号