首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tundra snow cover is important to monitor as it influences local, regional, and global‐scale surface water balance, energy fluxes, as well as ecosystem and permafrost dynamics. Observations are already showing a decrease in spring snow cover duration at high latitudes, but the impact of changing winter season temperature and precipitation on variables such as snow water equivalent (SWE) is less clear. A multi‐year project was initiated in 2004 with the objective to quantify tundra snow cover properties over multiple years at a scale appropriate for comparison with satellite passive microwave remote sensing data and regional climate and hydrological models. Data collected over seven late winter field campaigns (2004 to 2010) show the patterns of snow depth and SWE are strongly influenced by terrain characteristics. Despite the spatial heterogeneity of snow cover, several inter‐annual consistencies were identified. A regional average density of 0.293 g/cm3 was derived and shown to have little difference with individual site densities when deriving SWE from snow depth measurements. The inter‐annual patterns of SWE show that despite variability in meteorological forcing, there were many consistent ratios between the SWE on flat tundra and the SWE on lakes, plateaus, and slopes. A summary of representative inter‐annual snow stratigraphy from different terrain categories is also presented. © 2013 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A 10‐km gridded snow water equivalent (SWE) dataset is developed over the Saint‐Maurice River basin region in southern Québec from kriging of observed snow survey data for evaluation of SWE products. The gridded SWE dataset covers 1980–2014 and is based on manual gravimetric snow surveys carried out on February 1, March 1, March 15, April 1, and April 15 of each snow season, which captures the annual maximum SWE (SWEM) with a mean interpolation error of ±19%. The dataset is used to evaluate SWEM from a range of sources including satellite retrievals, reanalyses, Canadian regional climate models, and the Canadian Meteorological Centre operational snow depth analysis. We also evaluate a number of solid precipitation datasets to determine their contribution to systematic errors in estimated SWEM. None of the evaluated datasets is able to provide estimates of SWEM that are within operational requirements of ±15% error, and insufficient solid precipitation is determined to be one of the main reasons. The Climate System Forecast Reanalysis is the only dataset where snowfall is sufficiently large to generate SWEM values comparable to observations. Inconsistencies in precipitation are also found to have a strong impact on year‐to‐year variability in SWEM dataset performance and spread. Version 3.6.1 of the Canadian Land Surface Scheme land surface scheme driven with ERA‐Interim output downscaled by Version 5.0.1 of the Canadian Regional Climate Model was the best physically based model at explaining the observed spatial and temporal variability in SWEM (root‐mean‐square error [RMSE] = 33%) and has potential for lower error with adjusted precipitation. Operational snow products relying on the real‐time snow depth observing network performed poorly due to a lack of real‐time data and the strong local scale variability of point snow depth observations. The results underscore the need for more effort to be invested in improving solid precipitation estimates for use in snow hydrology applications.  相似文献   

4.
This study aimed to quantify possible climate change impacts on runoff for the Rheraya catchment (225 km2) located in the High Atlas Mountains of Morocco, south of Marrakech city. Two monthly water balance models, including a snow module, were considered to reproduce the monthly surface runoff for the period 1989?2009. Additionally, an ensemble of five regional climate models from the Med-CORDEX initiative was considered to evaluate future changes in precipitation and temperature, according to the two emissions scenarios RCP4.5 and RCP8.5. The future projections for the period 2049?2065 under the two scenarios indicate higher temperatures (+1.4°C to +2.6°C) and a decrease in total precipitation (?22% to ?31%). The hydrological projections under these climate scenarios indicate a significant decrease in surface runoff (?19% to ?63%, depending on the scenario and hydrological model) mainly caused by a significant decline in snow amounts, related to reduced precipitation and increased temperature. Changes in potential evapotranspiration were not considered here, since its estimation over long periods remains a challenge in such data-sparse mountainous catchments. Further work is required to compare the results obtained with different downscaling methods and different hydrological model structures, to better reproduce the hydro-climatic behaviour of the catchment.
EDITOR M.C. Acreman

ASSOCIATE EDITOR R. Hirsch  相似文献   

5.
The Climate impact studies in hydrology often rely on climate change information at fine spatial resolution. However, general circulation models (GCMs), which are among the most advanced tools for estimating future climate change scenarios, operate on a coarse scale. Therefore the output from a GCM has to be downscaled to obtain the information relevant to hydrologic studies. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling of precipitation at monthly time scale. The effectiveness of this approach is illustrated through its application to meteorological sub-divisions (MSDs) in India. First, climate variables affecting spatio-temporal variation of precipitation at each MSD in India are identified. Following this, the data pertaining to the identified climate variables (predictors) at each MSD are classified using cluster analysis to form two groups, representing wet and dry seasons. For each MSD, SVM- based downscaling model (DM) is developed for season(s) with significant rainfall using principal components extracted from the predictors as input and the contemporaneous precipitation observed at the MSD as an output. The proposed DM is shown to be superior to conventional downscaling using multi-layer back-propagation artificial neural networks. Subsequently, the SVM-based DM is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to obtain future projections of precipitation for the MSDs. The results are then analyzed to assess the impact of climate change on precipitation over India. It is shown that SVMs provide a promising alternative to conventional artificial neural networks for statistical downscaling, and are suitable for conducting climate impact studies.  相似文献   

6.
Mountain water resources management often requires hydrological models that need to handle both snow and ice melt. In this study, we compared two different model types for a partly glacierized watershed in central Switzerland: (1) an energy‐balance model primarily designed for snow simulations; and (2) a temperature‐index model developed for glacier simulations. The models were forced with data extrapolated from long‐term measurement records to mimic the typical input data situation for climate change assessments. By using different methods to distribute precipitation, we also assessed how various snow cover patterns influenced the modelled runoff. The energy‐balance model provided accurate discharge estimations during periods dominated by snow melt, but dropped in performance during the glacier ablation season. The glacier melt rates were sensitive to the modelled snow cover patterns and to the parameterization of turbulent heat fluxes. In contrast, the temperature‐index model poorly reproduced snow melt runoff, but provided accurate discharge estimations during the periods dominated by glacier ablation, almost independently of the method used to distribute precipitation. Apparently, the calibration of this model compensated for the inaccurate precipitation input with biased parameters. Our results show that accurate estimates of snow cover patterns are needed either to correctly constrain the melt parameters of the temperature‐index model or to ensure appropriate glacier surface albedos required by the energy‐balance model. Thus, particularly when only distant meteorological stations are available, carefully selected input data and efficient extrapolation methods of meteorological variables improve the reliability of runoff simulations in high alpine watersheds. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this study, we investigate the impact of the spatial variability of daily precipitation on hydrological projections based on a comparative assessment of streamflow simulations driven by a global climate model (GCM) and two regional climate models (RCMs). A total of 12 different climate input datasets, that is, the raw and bias‐corrected GCM and raw and bias‐corrected two RCMs for the reference and future periods, are fed to a semidistributed hydrological model to assess whether the bias correction using quantile mapping and dynamical downscaling using RCMs can improve streamflow simulation in the Han River basin, Korea. A statistical analysis of the daily precipitation demonstrates that the precipitation simulated by the GCM fails to capture the large variability of the observed daily precipitation, in which the spatial autocorrelation decreases sharply within a relatively short distance. However, the spatial variability of precipitation simulated by the two RCMs shows better agreement with the observations. After applying bias correction to the raw GCM and raw RCMs outputs, only a slight change is observed in the spatial variability, whereas an improvement is observed in the precipitation intensity. Intensified precipitation but with the same spatial variability of the raw output from the bias‐corrected GCM does not improve the heterogeneous runoff distributions, which in turn regulate unrealistically high peak downstream streamflow. GCM‐simulated precipitation with a large bias correction that is necessary to compensate for the poor performance in present climate simulation appears to distort streamflow patterns in the future projection, which leads to misleading projections of climate change impacts on hydrological extremes.  相似文献   

8.
One of the main purposes of a water balance study is to evaluate the net available water resources, both on the surface and in the subsurface. Water balance models that simulate hydrographs of river flow on the basis of available meteorological data would be a valuable tool in the hands of the planners and designers of water resources systems. In this paper, a set of simple monthly snow and water balance models has been developed and applied to regional water balance studies in the NOPEX area. The models require as input monthly areal precipitation, monthly long-term average potential evapotranspiration and monthly mean air temperature. The model outputs are monthly river flow and other water balance components, such as actual evapotranspiration, slow and fast components of river flow, snow accumulation and melting. The results suggest that the proposed model structure is suitable for water balance study purposes in seasonally snow-covered catchments located in the region.  相似文献   

9.
Glaciers are commonly located in mountainous terrain subject to highly variable meteorological conditions. High resolution meteorological (HRM) data simulated by atmospheric models can complement meteorological station observations in order to assess changes in glacier energy fluxes and mass balance. We examine the performance of two snow models, SnowModel and Alpine3D, forced by different meteorological data for winter mass balance simulations at four glaciers in the Canadian portion of the Columbia Basin. The Weather Research and Forecasting model (WRF) with resolution of 1 km and the North American Land Data Assimilation System with ~12 km resolution, provide HRM data for the two snow models. Evaluation is based on the ability of the snow models to simulate snow depth at both point locations (automated snow weather stations) and over the entire glacier surface (airborne LiDAR [Light Detection and Ranging] surveys) during the 2015/2016 winter accumulation. When forced with HRM data, both models can reproduce snow depth to within ±15% of observed values. Both models underestimate winter mass balance when forced by HRM data. When driven with WRF data, SnowModel underestimates winter mass balance integrated over the glacier area by 1 and 10%, whilst Alpine3D underestimates winter mass balance by 12 and 22% compared with LiDAR and stake measurements, respectively. The overall results show that SnowModel forced by WRF simulated winter mass balance the best.  相似文献   

10.
In the context of climate change and variability, there is considerable interest in how large scale climate indicators influence regional precipitation occurrence and its seasonality. Seasonal and longer climate projections from coupled ocean–atmosphere models need to be downscaled to regional levels for hydrologic applications, and the identification of appropriate state variables from such models that can best inform this process is also of direct interest. Here, a Non‐Homogeneous Hidden Markov Model (NHMM) for downscaling daily rainfall is developed for the Agro‐Pontino Plain, a coastal reclamation region very vulnerable to changes of hydrological cycle. The NHMM, through a set of atmospheric predictors, provides the link between large scale meteorological features and local rainfall patterns. Atmospheric data from the NCEP/NCAR archive and 56‐years record (1951–2004) of daily rainfall measurements from 7 stations in Agro‐Pontino Plain are analyzed. A number of validation tests are carried out, in order to: 1) identify the best set of atmospheric predictors to model local rainfall; 2) evaluate the model performance to capture realistically relevant rainfall attributes as the inter‐annual and seasonal variability, as well as average and extreme rainfall patterns. Validation tests show that the best set of atmospheric predictors are the following: mean sea level pressure, temperature at 1000 hPa, meridional and zonal wind at 850 hPa and precipitable water, from 20°N to 80°N of latitude and from 80°W to 60°E of longitude. Furthermore, the validation tests show that the rainfall attributes are simulated realistically and accurately. The capability of the NHMM to be used as a forecasting tool to quantify changes of rainfall patterns forced by alteration of atmospheric circulation under climate change and variability scenarios is discussed.  相似文献   

11.
Nowadays Regional Climate Models (RCMs) are increasingly used for downscaling of information from the coarse resolution of global climate models (GCMs) and they represent a more and more popular tool for assessment of future climate changes and their impacts at regional scales. In spite of continual progress of RCMs, their outputs still suffer from many uncertainties and biases. Therefore, it is necessary to assess their ability to simulate observed climate characteristics and uncertainties in their outputs before they are applied in subsequent studies. In the present study, the assessment of RCM performance in simulating climate in the reference period of 1961–1990 over the area of Czech Republic is presented. Furthermore, we focused on the intercomparison of the models’ results, mainly on the comparison of the Czech model ALADIN-Climate/CZ with outputs of other RCMs. Simulation of ALADIN-Climate/CZ in 25-km horizontal resolution, and thirteen RCM simulations from the ENSEMBLES project were assessed. Attention was paid especially to comparison of simulated and observed spatial and temporal variability of several climatic variables. The monthly and seasonal values of surface air temperature, precipitation totals and relative humidity were examined for evaluation of temporal variability and 30-year seasonal and monthly values with respect to spatial variability. Climate model performance was evaluated in several ways, namely by boxplots, maps of variability characteristics, skill scores based on mean square error and Taylor diagrams. Model errors detected by model evaluation depend on many factors (e.g. considered variables and their characteristics, area of analysis, time scale of interest and the method of assessment). On the basis of incorporated performance criteria model ALADIN-Climate/CZ belonged to a better group of RCMs in most cases. However, it was definitely the worst in simulating spring monthly means of air temperature and relative humidity in all seasons.  相似文献   

12.
W. T. Sloan  C. G. Kilsby  R. Lunn 《水文研究》2004,18(17):3371-3390
General circulation models (GCMs), or stand‐alone models that are forced by the output from GCMs, are increasingly being used to simulate the interactions between snow cover, snowmelt, climate and water resources. The variation in snowpack extent, and hence albedo, through time in a cell is likely to be substantial, especially in mid‐latitude mountainous regions. As a consequence, the energy budget simulation by a GCM relies on a realistic representation of snowpack extent. Similarly, from a water resource perspective, the spatial extent of the pack is key in predicting meltwater discharges into rivers. In this paper a simple computationally efficient regional snow model has been developed, which is based on a degree‐day approach and simulates the fraction of the model domain covered by snow, the spatially averaged melt rate and the mean snowpack depth. Computational efficiency is achieved through a novel spatial averaging procedure, which relies on the assumptions that precipitation and temperature scale linearly with elevation and that the distribution of elevations in the domain can be modelled by a continuous function. The resulting spatially averaged model is compared with both observations of the duration of snow cover throughout Austria and with results from a distributed model based on the same underlying assumptions but applied at a fine spatial resolution. The new spatially averaged model successfully simulated the seasonal snow duration observations and reproduced the daily dynamics of snow cover extent, the spatially averaged melt rate and mean pack depth simulated by the distributed model. It, therefore, offers a computationally efficient and easily applied alternative to the current crop of regional snow models. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
It is well known that snow plays an important role in land surface energy balance; however, modelling the subgrid variability of snow is still a challenge in large‐scale hydrological and land surface models. High‐resolution snow depth data and statistical methods can reveal some characteristics of the subgrid variability of snow depth, which can be useful in developing models for representing such subgrid variability. In this study, snow depth was measured by airborne Lidar at 0.5‐m resolution over two mountainous areas in south‐western Wyoming, Snowy Range and Laramie Range. To characterize subgrid snow depth spatial distribution, measured snow depth data of these two areas were meshed into 284 grids of 1‐km × 1‐km. Also, nine representative grids of 1‐km × 1‐km were selected for detailed analyses on the geostatistical structure and probability density function of snow depth. It was verified that land cover is one of the important factors controlling spatial variability of snow depth at the 1‐km scale. Probability density functions of snow depth tend to be Gaussian distributions in the forest areas. However, they are eventually skewed as non‐Gaussian distribution, largely due to the no‐snow areas effect, mainly caused by snow redistribution and snow melt. Our findings show the characteristics of subgrid variability of snow depth and clarify the potential factors that need to be considered in modelling subgrid variability of snow depth.  相似文献   

14.
利用降尺度方法对CMIP5全球气候模式进行空间降尺度并以此研究鄱阳湖流域未来气候时空变化趋势,能够为流域生态环境保护提供数据、技术和理论上的支持.通过简化原始网络结构,在网络首部添加插值层,采用反卷积算法作为上采样算法对传统U-Net网络进行改进,建立基于深度学习的气候模式空间降尺度模型(DLDM).以1965-200...  相似文献   

15.
This paper presents the results of an investigation into the problems associated with using downscaled meteorological data for hydrological simulations of climate scenarios. The influence of both the hydrological models and the meteorological inputs driving these models on climate scenario simulation studies are investigated. A regression‐based statistical tool (SDSM) is used to downscale the daily precipitation and temperature data based on climate predictors derived from the Canadian global climate model (CGCM1), and two types of hydrological model, namely the physically based watershed model WatFlood and the lumped‐conceptual modelling system HBV‐96, are used to simulate the flow regimes in the major rivers of the Saguenay watershed in Quebec. The models are validated with meteorological inputs from both the historical records and the statistically downscaled outputs. Although the two hydrological models demonstrated satisfactory performances in simulating stream flows in most of the rivers when provided with historic precipitation and temperature records, both performed less well and responded differently when provided with downscaled precipitation and temperature data. By demonstrating the problems in accurately simulating river flows based on downscaled data for the current climate, we discuss the difficulties associated with downscaling and hydrological models used in estimating the possible hydrological impact of climate change scenarios. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Simulation of future climate scenarios with a weather generator   总被引:4,自引:0,他引:4  
Numerous studies across multiple disciplines search for insights on the effects of climate change at local spatial scales and at fine time resolutions. This study presents an overall methodology of using a weather generator for downscaling an ensemble of climate model outputs. The downscaled predictions can explicitly include climate model uncertainty, which offers valuable information for making probabilistic inferences about climate impacts. The hourly weather generator that serves as the downscaling tool is briefly presented. The generator is designed to reproduce a set of meteorological variables that can serve as input to hydrological, ecological, geomorphological, and agricultural models. The generator is capable of reproducing a wide set of climate statistics over a range of temporal scales, from extremes, to low-frequency interannual variability; its performance for many climate variables and their statistics over different aggregation periods is highly satisfactory. The use of the weather generator in simulations of future climate scenarios, as inferred from climate models, is described in detail. Using a previously developed methodology based on a Bayesian approach, the stochastic downscaling procedure derives the frequency distribution functions of factors of change for several climate statistics from a multi-model ensemble of outputs of General Circulation Models. The factors of change are subsequently applied to the statistics derived from observations to re-evaluate the parameters of the weather generator. Using embedded causal and statistical relationships, the generator simulates future realizations of climate for a specific point location at the hourly scale. Uncertainties present in the climate model realizations and the multi-model ensemble predictions are discussed. An application of the weather generator in reproducing present (1961-2000) and forecasting future (2081-2100) climate conditions is illustrated for the location of Tucson (AZ). The stochastic downscaling is carried out using simulations of eight General Circulation Models adopted in the IPCC 4AR, A1B emission scenario.  相似文献   

17.
Downscaling techniques are the required tools to link the global climate model outputs provided at a coarse grid resolution to finer scale surface variables appropriate for climate change impact studies. Besides the at-site temporal persistence, the downscaled variables have to satisfy the spatial dependence naturally observed between the climate variables at different locations. Furthermore, the precipitation spatial intermittency should be fulfilled. Because of the complexity in describing these properties, they are often ignored, which can affect the effectiveness of the hydrologic process modeling. This study is a continuation of the work by Khalili and Nguyen (Clim Dyn 49(7–8):2261–2278.  https://doi.org/10.1007/s00382-016-3443-6, 2017) regarding the multi-site statistical downscaling of daily precipitation series. Different approach of multi-site statistical downscaling based on the concept of the spatial autocorrelation is presented in this paper. This approach has proven to give effective results for multi-site multivariate statistical downscaling of daily extreme temperature time series (Khalili et al. in Int J Climatol 33:15–32.  https://doi.org/10.1002/joc.3402, 2013). However, more challenges are presented by the precipitation variable because of the high spatio-temporal variability and intermittency. The proposed approach consists of logistic and multiple regression models, linking the global climate predictors to the precipitation occurrences and amounts respectively, and using the spatial autocorrelation concept to reproduce the spatial dependence observed between the precipitation series at different sites. An empirical technique has also been involved in this approach in order to fulfill the precipitation intermittency property. The proposed approach was performed using observed daily precipitation data from ten weather stations located in the southwest region of Quebec and southeast region of Ontario in Canada, and climate predictors from the NCEP/NCAR (National Centers for Environmental Prediction/National Centre for Atmospheric Research) reanalysis dataset. The results have proven the ability of the proposed approach to adequately reproduce the observed precipitation occurrence and amount characteristics, temporal and spatial dependence, spatial intermittency and temporal variability.  相似文献   

18.
An understanding of temporal evolution of snow on sea ice at different spatial scales is essential for improvement of snow parameterization in sea ice models. One of the problems we face, however, is that long‐term climate data are routinely available for land and not for sea ice. In this paper, we examine the temporal evolution of snow over smooth land‐fast first‐year sea ice using observational and modelled data. Changes in probability density functions indicate that depositional and drifting events control the evolution of snow distribution. Geostatistical analysis suggests that snowdrifts increased over the study period, and the orientation was related to the meteorological conditions. At the microscale, the temporal evolution of the snowdrifts was a product of infilling in the valleys between drifts. Results using two shore‐based climate reporting stations (Paulatuk and Tuktoyuktuk, NWT) suggest that on‐ice air temperature and relative humidity can be estimated using air temperature recorded at either station. Wind speed, direction and precipitation on ice cannot be accurately estimated using meteorological data from either station. The temporal evolution of snow distribution over smooth land‐fast sea ice was modelled using SnowModel and four different forcing regimes. The results from these model runs indicate a lack of agreement between observed distribution and model outputs. The reasons for these results are lack of meteorological measurements prior to the end of January, lack of spatially adequate surface topography and discrepancies between meteorological variables on land and ice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A statistical test on climate and hydrological series from different spatial resolution could obtain different regional trend due to spatial heterogeneity and its temporal variability. In this study, annual series of the precipitation heterogeneity indices of concentration index (CI) and the number of wet days (NW) along with annual total amount of precipitation were calculated based on at‐site daily precipitation series during 1962–2011 in the headwater basin of the Huaihe River, China. The regional trends of the indices were first detected based on at‐site series by using the aligned and intrablock methods, and field significance tests that consider spatial heterogeneity over sites. The detected trends were then compared with the trends of the regional index series derived from daily areal average precipitation (DAAP), which averages at‐site differences and thus neglects spatial heterogeneity. It was found that the at‐site‐based regional test shows increasing trends of CI and NW in the basin, which follows the test on individual sites that most of sites were characterized by increasing CI and NW. However, the DAAP‐derived regional series of CI and NW were tested to show a decreasing trend. The disparity of the regional trend test on at‐site‐based regional series and the DAAP‐derived regional series arises from a temporal change of the spatial heterogeneity, which was quantified by the generalized additive models for location, scale, and shape. This study highlights that compared with averaging indices, averaging at‐site daily precipitation could lead to an error in the regional trend inference on annual precipitation heterogeneity indices. More attention should be paid to temporal variability in spatial heterogeneity when data at large scales are used for regional trend detection on hydro‐meteorological events associated with intra‐annual heterogeneity.  相似文献   

20.
Abstract

Most Latin American glaciers are located in the tropical Andes. The melting processes of Glacier “15” on Antisana volcano were studied to understand the relationship between glacier retreat and natural climate variability and global climate change. Glaciers on the Antisana volcano are crucial sources of water as they feed the headwater rivers that supply Quito with potable water. The aim of this study was to build empirical models based on multiple correlations to reconstruct the mass loss of glaciers over a period of 10 years at three scales: local (data recorded by meteorological stations located around the volcano), regional (data from stations located around the country) and global (re-analysis data). Data quality was checked using graphical and statistical methods. Several empirical models based on multiple correlations were created to generate longer time series (42 and 115 years) of the mass balance for the glacier ablation zone. The long mass balance series were compared with the temperature variation series of the Earth’s surface in the Southern Hemisphere to estimate the relation between the mass balance and global warming. Our results suggest that the meteorological factors that best correlate with mass balance are temperature and wind.
Editor D. Koutsoyiannis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号