首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The eastern margin of the East European Craton (EEC) has a long lasting geological record of Precambrian age. Archaean and Proterozoic strata are exposed in the western fold-and-thrust belt of the Uralides and are known from drill cores and geophysical data below the Palaeozoic cover in the Uralides and its western foredeep. In the southern Uralides, sedimentary, metamorphic and magmatic rocks of Riphean and Vendian age occur in the Bashkirian Mega-anticlinorium (BMA) and the Beloretzk Terrane. In the eastern part of the BMA (Yamantau anticlinorium) and the Beloretzk Terrane, K-Ar ages of the <2-µm-size fraction of phyllites (potassic white mica) and slates (illite) give evidence for a complex pre-Uralian metamorphic and deformational history of the Precambrian basement at the southeastern margin of the EEC. Interpretation of the K-Ar ages considered the variation of secondary foliation and the diagenetic to metamorphic grade. In the Yamantau anticlinorium, the greenschist-facies metamorphism of the Mesoproterozoic siliciclastic rocks is of Early Neoproterozoic origin (about 970 Ma) and the S1 cleavage formation of Late Neoproterozoic (about 550 Ma). The second wide-spaced cleavage is of Uralian origin. In the central and western part of the BMA, the diagenetic to incipient metamorphic grade developed in Late Neoproterozoic time. In post-Uralian time, Proterozoic siliciclastic rocks with a cleavage of Uralian age have not been exhumed to the surface of the BMA. Late Neoproterozoic thrusts and faults within the eastern margin of the EEC are reactivated during the Uralian deformation.  相似文献   

3.
The Cadomian basement and the Cambro-Ordovician overstep sequence in Saxo-Thuringia is characterized by clastic sedimentation from the Late Neoproterozoic to the Ordovician. Magmatism in the Avalonian–Cadomian Arc preserved in Saxo-Thuringia occurred between ca. 570 and 540 Ma. Peri-Gondwanan basin remnants with Cadomian to Early Palaeozoic rocks are exposed as very low-grade metamorphosed rocks in six areas (Schwarzburg Anticline, Berga Anticline, Doberlug Syncline, North Saxon Anticline, Lausitz Anticline, and Elbe Zone). A hiatus in sedimentation between 540 and 530 Ma (Cadomian unconformity) is related to the Cadomian Orogeny. A second gap in sedimentation occurred during the Upper Cambrian (500 to 490 Ma) and is documented by a disconformity between Lower to Middle Cambrian rocks and overlying Tremadocian sediments. Major and trace-element signatures of the Cadomian sediments reflect an active margin (“continental arc”), those of the Ordovician sediments a passive margin. The Cambrian sediments have inherited the arc signature through the input of relatively unaltered Cadomian detritus. Initial Nd and Pb isotope data from the six Saxo-Thuringian areas demonstrate that there is no change in source area with time for each location, but that there are minor contrasts among the locations. (1) Cadomian sediments from the Lausitz Anticline, the Doberlug Syncline and the Elbe Zone have lower 207Pb/204Pb than all other areas. (2) The core of the Schwarzburg Anticline, which is overprinted by greenschist facies conditions and detached, is isotopically heterogeneous. One part of its metasedimentary units has less radiogenic Nd than sediments from other low-grade units of similar age in the same area. (3) Cadomian sediments from the Schwarzburg Anticline show an input of younger felsic crust. (4) The Rothstein Group shows distinct input of young volcanic material. Also, (5) Cadomian sediments from the Lausitz Anticline, the Elbe Zone and parts of the North Saxon Anticline are characterized by input from an old mafic crust. Nd isotope data of the remaining areas yield average crustal residence ages of the sediment source of 1.5–1.9 Ga, which suggests derivation from an old craton as found for other parts of the Iberian–Armorican Terrane Collage. Similarly, the Pb isotope data of all areas indicate sediment provenance from an old craton.The rapid change of lithologies from greywacke to quartzite from the Late Neoproterozoic (Cadomian basement) to the Ordovician does not reflect changes in sediment provenance, but is essentially due to increased reworking of older sediments and old weathering crusts that formed during various hiatus of sedimentation. This change in sediment maturity takes its chemical expression in lower overall trace-element contents in the quartzite (dilution effect by quartz) and relative enrichment of some trace-elements (Zr, MREE, HREE due to detrital zircon and garnet). The Rb–Sr systematics of the quartzites and one Ordovician tuffite was disturbed (most likely during the Variscan Orogeny), which suggests a lithology-controlled mobility of alkali and calc-alkali elements. By comparison with available data, it seems unlikely that only Nd TDM model ages are useful to distinguish between West African and Amazonian provenance. Nd TDM model ages of 1.5 to 1.9 Ga in combination with paleobiogeographic aspects, age data from detrital zircon, and palaeogeographic constraints, especially through tillites of the Saharan glaciation in the Hirnantian, strongly indicate a provenance of Saxo-Thuringia from the West African Craton.  相似文献   

4.
The Cerro Durazno Pluton belongs to a suite of Paleozoic granitoid intrusions in NW-Argentina, that are central for understanding the tectonic setting of the western margin of Gondwana in Ordovician and Silurian times. The pluton and its host rocks were tectonically overprinted by metamorphic mineral shape fabrics formed under middle greenschist-facies metamorphic conditions and associated with the nearby Agua Rosada Shear Zone. Kinematic analysis of the shear zone based on the geometric relationship between individual segments of the shear plane and principal axes of mineral fabric ellipsoids indicates reverse-sense of shear with a minor component of left-lateral displacement. This is compatible with the kinematics of other ductile deformation zones in this area, collectively forming a network, which accomplished orogen-parallel extension in addition to vertical thickening. Using the Rb–Sr isotopic system, an undeformed pegmatite dike of the Cerro Durazno Pluton was dated at 455.8 ± 3.6 Ma and mineral fabrics of the Agua Rosada Shear Zone formed at middle greenschist-facies metamorphism gave deformation ages of 437.0 ± 3.8 Ma and 428.4 ± 4.5 Ma. Thus, tectonic overprint at low metamorphic grade occurred about 20–30 Ma after terminal magmatism in the Cerro Durazno area. Our data from the Cerro Durazno area and regional considerations suggest that the western margin of Gondwana was characterized by orogen-parallel extension in addition to crustal thickening as well as episodes of magmatism and ductile deformation that varied greatly in time and space.  相似文献   

5.
The Enganepe ophiolite, Polar Urals was formed at 670 Ma and records a diverse geochemical association of tholeiite, arc-tholeiite, adakite, and OIB-like lithologies. This constrains the tectonic setting of the protolith of the ophiolite to an oceanic island-arc, with ridge-trench interaction most readily explaining the diverse compositions. The initiation of intra-ocean subduction and the development of the Enganepe island arc off the eastern margin of Baltica probably pre-dated the formation of the Enganepe ophiolite, i.e. prior to 670 Ma. The timing of island-arc magmatism is similar in age to that recorded off Avalon in the Cadomian arc. We propose that the active margin of Baltica in the Vendian is an extension of the Cadomian arc. This requires the northeast margin of Baltica (present-day coordinates) to have been in a southerly position in the Vendian, in agreement with proposed tectonic reconstructions. Consequently, the post-Rodinia continental amalgamation, Pannotia, had active ocean-continent convergence along its entire southerly (west Avalonia and Amazonian cratons) margin at the time of its break-up.  相似文献   

6.
The end of the Proterozoic–beginning of the Cambrian is marked by some of the most dramatic events in the history of Earth. The fall of the Ediacaran biota, followed by the Cambrian Explosion of skeletonised bilaterians, a pronounced shift in oceanic and atmospheric chemistry and rapid climatic change from ‘snowball earth’ to ‘greenhouse’ conditions all happened within a rather geologically short period of time. These events took place against a background of the rearrangement of the prevailing supercontinent; some authors view this as a sequence of individual supercontinents such as Mesoproterozoic Midgardia, Neoproterozoic Rodinia and Early Cambrian Pannotia. Assembled in the Mesoproterozoic, this supercontinent appears to have existed through the Neoproterozoic into the Early Cambrian with periodic changes in configuration. The final rearrangement took place during the Precambrian–Cambrian transition with the Cadomian and related phases of the Pan-African orogeny. The distribution of Early Cambrian molluscs and other small shelly fossils (SSF) across all continents indicates a close geographic proximity of all major cratonic basins that is consistent with the continued existence of the supercontinent at that time. Subsequently, Rodinia experienced breakup that led to the amalgamation of Gondwana, separation of Laurentia, Baltica, Siberia and some small terranes and the emergence of oceanic basins between them. Spreading oceanic basins caused a gradual geographic isolation of the faunal assemblages that were united during the Vendian–Early Cambrian.  相似文献   

7.
The east margin of the Siberian craton is a typical passive margin with a thick succession of sedimentary rocks ranging in age from Mesoproterozoic to Tertiary. Several zones with distinct structural styles are recognized and reflect an eastward-migrating depocenter. Mesozoic orogeny was preceded by several Mesoproterozoic to Paleozoic tectonic events. In the South Verkhoyansk, the most intense pre-Mesozoic event, 1000–950 Ma rifting, affected the margin of the Siberian craton and formed half-graben basins, bounded by listric normal faults. Neoproterozoic compressional structures occurred locally, whereas extensional structures, related to latest Neoproterozoic–early Paleozoic rifting events, have yet to be identified. Devonian rifting is recognized throughout the eastern margin of the Siberian craton and is represented by numerous normal faults and local half-graben basins.Estimated shortening associated with Mesozoic compression shows that the inner parts of ancient rifts are now hidden beneath late Paleozoic–Mesozoic siliciclastics of the Verkhoyansk Complex and that only the outer parts are exposed in frontal ranges of the Verkhoyansk thrust-and-fold belt. Mesoproterozoic to Paleozoic structures had various impacts on the Mesozoic compressional structures. Rifting at 1000–950 Ma formed extensional detachment and normal faults that were reactivated as thrusts characteristic of the Verkhoyansk foreland. Younger Neoproterozoic compressional structures do not display any evidence for Mesozoic reactivation. Several initially east-dipping Late Devonian normal faults were passively rotated during Mesozoic orogenesis and are now recognized as west-dipping thrusts, but without significant reactivation displacement along fault surfaces.  相似文献   

8.
The structural evolution of a part of the late Precambrian Baltoscandian passive margin just before the inception of seafloor spreading is described, recording the change from deformation by faulting to dominantly magmatic extension of the crust. The allochthon of the Scandinavian Caledonides contains the imbricated passive margin of continental Baltica overlain by various exotic terranes. The Sarektjåkkå Nappe in the Seve Nappe Complex, which contains the outer parts of Baltica's passive margin, consists of sedimentary rocks, occurring as screens between Vendian (573±74 Ma) diabase dykes. These dykes constitute 70–80% of the nappe and locally form sheeted dyke complexes. The Sarektjåkkå Nappe largely escaped penetrative Caledonian deformation and preserves igneous, metamorphic and structural elements that are linked to the evolution of a pre-Caledonian rift to a passive continental margin. Extensional deformation before dyke emplacement is recorded by normal faults, pull-apart structures and folds. Unconformities, dykes affected by brittle deformation, and fluidization of sediments during dyke emplacement indicate close relations between the deposition of sediments, extensional deformation and dyke emplacement. The Sarektjåkkå Nappe is compared with other parts of the Baltica's passive margin and its tectonic evolution is discussed.  相似文献   

9.
The igneous complex of Neukirchen–Kdyn is located in the southwestern part of the Teplá–Barrandian unit (TBU) in the Bohemian Massif. The TBU forms the most extensive surface exposure of Cadomian basement in central Europe. Cambrian plutons show significant changes in composition, emplacement depth, isotopic cooling ages, and tectonometamorphic overprint from NE to SW. In the NE, the V epadly granodiorite and the Smr ovice diorite intruded at shallow crustal levels (<ca. 7 km depth) as was indicated by geobarometric data. K–Ar age data yield 547±7 and 549±7 for hornblende and 495±6 Ma for biotite of the Smr ovice diorite, suggesting that this pluton has remained at shallow crustal levels (T<ca. 350 °C) since its Cambrian emplacement. A similar history is indicated for the V epadly granodiorite and the Stod granite. In the SW, intermediate to mafic plutons of the Neukirchen–Kdyn massif (V eruby and Neukirchen gabbro, Hoher–Bogen metagabbro), which yield Cambrian ages, either intruded or were metamorphosed at considerably deeper structural levels (>20 km). The Teufelsberg ( ert v kámen) diorite, on the other hand, forms an unusual intrusion dated at 359±2 Ma (concordant U–Pb zircon age). K–Ar dating of biotite of the Teufelsberg diorite yields 342±4 Ma. These ages, together with published cooling ages of hornblende and mica in adjacent plutons, are compatible with widespread medium to high-grade metamorphism and strong deformation fabrics, suggesting a strong Variscan impact under elevated temperatures at deeper structural levels. The plutons of the Neukirchen area are cut by the steeply NE dipping Hoher–Bogen shear zone (HBSZ), which forms the boundary with the adjacent Moldanubian unit. The HBSZ is characterized by top-to-the-NE normal movements, which were particularly active during the Lower Carboniferous. A geodynamic model is presented that explains the lateral gradients in Cambrian pluton composition and emplacement depth by differential uplift and exhumation, the latter being probably related to long-lasting movements along the HBSZ as a consequence of Lower Carboniferous orogenic collapse.  相似文献   

10.
The Corumbá Group of SW Brazil and the Arroyo del Soldado Group (ASG) of Uruguay are correlated on the basis of litho-, bio- and chemostratigraphy. Both units represent marine sedimentation with alternating siliciclastics and carbonates developed on a stable continental shelf. In the Corumbá basin, sedimentation began in the Varangerian, represented by the glaciomarine Puga Formation. A series of sea-level fluctuations coupled with climatic changes are recorded up section. While uppermost deposits of the ASG are of lowermost Cambrian age, sedimentation ceased in the latest Vendian in the Corumbá basin. An assemblage of six species of organic-walled microfossils dominated by Bavlinella faveolata and Soldadophycus bossii, three species of vendotaenids and two species of skeletal fossils (Cloudina and Titanotheca) is described from the Corumbá Group. The vendotaenid Eoholynia corumbensis sp. nov is described from siltstones of the Guaicurus Formation. An important diversity of skeletal fossils in the Corumbá, Arroyo del Soldado and Nama groups points to favourable Vendian palaeoclimatic conditions in SW-Gondwana. Preliminary carbon isotopic data show a series of alternating positive and negative excursions, corroborating the upper Vendian age indicated by fossils for both units. Previously reported strontium isotopic data are also consistent with this age. It is postulated that the Corumbá and ASGs were deposited onto the same shelf, which opened to the east. The Rio de la Plata Superterrane (Craton) extends farther to the north than previously expected, or it was already amalgamated with the Amazonian Craton by Vendian times. Collision of the platform with the Paraná Block caused closure of the basin during the Cambrian-Early Ordovician. Finally, models of Neoproterozoic glaciations based on enhanced bioproductivity driven by high nutrient availability are discussed.  相似文献   

11.
In the Sandıklı-Afyon area, the very low-grade metamorphic Sandıklı Basement Complex with clastic sediments and Late Neoproterozoic felsic igneous rocks are unconformably overlain by a cover succession with red continental clastic rocks, tholeiitic basalts and siliciclastic rocks with Early Cambrian trace fossils. Illite crystallinity studies reveal that both the basement and cover units were metamorphosed at high anchizonal to epizonal conditions ( 300 °C). Textural data together with the detailed evaluation of the PTb0 grid, however, indicate that this thermal event has multiple phases. The first tectonothermal event was realized at pressures of  4.2 kb on the basis of b0-data and resulted in development of blastomylonites. This is supported by the presence of dynamo-metamorphosed pebbles within the basal conglomerates of the Lower Paleozoic cover series. The second event is post-Ordovician–pre-Jurassic in age, occurred at lower pressures  3.2 kb and produced a weakly developed cleavage in the siliciclastic rocks of the cover. The mineralogical/textural data across the basement-cover boundary therefore indicate the removal of an entire metamorphic zone and thus a metamorphic hiatus.

These data suggest that the Taurides were affected by a Late Neoproterozoic event as part of the peri-Gondwana during the Cadomian orogeny.  相似文献   


12.
闫慧慧  朱光有  陈志勇  张纯  侯政  孙琦森 《岩石学报》2020,36(11):3414-3426
塔里木板块广泛发育新元古代岩浆岩,它们对研究塔里木新元古代构造演化及塔里木对Rodinia超大陆汇聚和裂解的响应具有重要意义。本文报道了塔里木板块东北缘I型花岗岩的U-Pb年代学、原位Hf同位素以及全岩地球化学研究结果。该花岗岩具有较高的SiO2含量(平均值为71.61%),低的镁铁质含量(FeOT和MgO平均值为1.52%和0.72%);Na2O/K2O比值介于0.51~3.76,平均值为1.12;铝饱和度(A/CNK)介于0.69~1.16,属于碱性-钙碱性过渡型花岗岩。花岗岩表现为高场强元素(HFSE,如:Nb、Ta、Ti、Th等)的亏损以及大离子亲石元素(LILE,如:Rb、Sr、Ba、U等)的相对富集。样品Nb/Ta、Zr/Hf平均值分别为10.93、36.86,说明该花岗岩形成时有流体的参与。受斜长石的影响,花岗岩表现出明显的Eu正异常,Eu/Eu*平均值1.39。该花岗岩206Pb/238U加权平均年龄为748.8±6.1Ma,其原位Hf同位素εHft)值范围在-16.5~-9.7之间,对应两阶段模式年龄tDM2介于2.30~2.74Ga,指示该期花岗岩可能为古元古代地壳的部分熔融,可能形成于古洋壳向南俯冲塔里木板块产生的大陆弧后环境。结合之前在塔北缘的研究工作,提出了塔里木板块北缘新元古代弧后伸展体系,并且认为该体系主要受控于Rodinia超大陆的裂解。  相似文献   

13.
孙洋  马昌前  张超 《地学前缘》2011,18(2):85-99
对大别山造山带的鲁家寨花岗岩进行了锆石U-Pb年代学、锆石Hf同位素和岩石地球化学研究.锆石LA-ICP-MS U-Pb定年结果表明鲁家寨花岗岩形成于新元古代((816±17)Ma).鲁家寨花岗岩总体具有高硅(SiO2 69.13%~75.47%)、准铝-弱过铝(A/CNK=0.98~1.01)的化学组成特征.稀土元素...  相似文献   

14.
The evolution of the Palaeo-Tethys Ocean played an important role in the Palaeozoic tectono-metallogenesis in Southeast Asia, in which diverse blocks amalgamated due to its closure. Previous researches focused mostly on endogenic metallogenesis related to the evolution of the Palaeo-Tethys Ocean. However, the tectonic control on the numerous Mn ore deposits in the southwestern South China Block (SCB) developed during Palaeo-Tethys evolution is largely unknown. In this article, we review Palaeo-Tethys evolution and define its four evolutionary stages from initial opening, maturity, incipient subduction, to post-closure. This study further investigated the geology and palaeogeography of Mn ore deposits in Upper Devonian, lower Carboniferous, middle Permian, and Lower-Middle Triassic formations in the southwestern SCB. We show that each of the four Mn metallogenic episodes was a response to each of the four evolutionary stages of the Palaeo-Tethys Ocean. Wall rocks of orebodies transitioned from chert-mudstone-carbonate in the Devonian, Carboniferous, and Permian to siltstone-mudstone in Lower-Middle Triassic. The ores of the four episodes of Mn mineralization are composed primarily of rhodochrosite, manganocalcite, and rhodonite. The carbonate C–O isotope and ore trace element composition data suggest that ore-forming fluids were dominated by seafloor water with involvement of magmatic hydrothermal fluids and organic matter as well. Palaeogeography reconstructions indicate the Mn-ore deposits formed along the margins or in the centre of the abyssal basins. Despite the diverse tectonic settings of the four Mn mineralization episodes, it is proposed that the crustal sagging, restricted seafloor environment, and hydrothermal activities that occurred in the southwestern margin of SCB contributed to Mn mineralization.  相似文献   

15.
The NNW-trending tectonic grain of the eastern Yilgarn Craton (EYC) was established as a result of predominantly ENE–WSW directed extension (D1 and D3) and E(ENE)–W(WSW) (D2, D4) to NE–SW directed (D5) contraction. The result has been a succession of NNW-striking temporally discrete fabric elements, which can be difficult to interpret reliably at any single location. Despite this, many past workers interpreted the NNW-striking fabric as the result of only one regional contractional event, and used it as a marker for correlating structural events across the region. In order to unravel the complexity, this paper presents a new sixfold (D1–D6) deformation nomenclature based on >10,000 new mesoscale structural observations, including their kinematic analysis and cross-cutting relationships. These mesoscale data were referenced with regional 3D map patterns, stratigraphic-magmatic-metallogenic considerations, and deep seismic reflection images. This integrated geodynamic-architectural approach is applicable to solving structural-event histories in other polydeformed terrains. Gold mineralisation occurred during the first five events, but was particularly concentrated from D3 onwards. The D3 event marked the most profound change in the tectonic evolution of the EYC, with changes in greenstones, granites and tectonic mode (lithospheric extension and core complexes), with the first significant gold deposited within extensional shear zones that dissect the crust. Later contraction (D4) was imposed at a high angle to the previously established anisotropic architecture. The outcome was the creation of a new dynamic permeability framework, which resulted in gold mineralisation during NNW-striking sinistral strike-slip faulting and associated thrusting. A further stress switch (D5) further modified the architecture resulting in N- to NNE-striking dextral strike-slip faulting, and the final period of gold mineralisation, before late-stage extension (D6).  相似文献   

16.
The Teplá–Barrandian unit (TBU) of the Bohemian Massif shared a common geological history throughout the Neoproterozoic and Cambrian with the Avalonian–Cadomian terranes. The Neoproterozoic evolution of an active plate margin in the Teplá–Barrandian is similar to Avalonian rocks in Newfoundland, whereas the Cambrian transtension and related calc-alkaline plutons are reminiscent of the Cadomian Ossa–Morena Zone and the Armorican Massif in western Europe. The Neoproterozoic evolution of the Teplá–Barrandian unit fits well with that of the Lausitz area (Saxothuringian unit), but is significantly distinct from the history of the Moravo–Silesian unit.The oldest volcanic activity in the Bohemian Massif is dated at 609+17/−19 Ma (U–Pb upper intercept). Subduction-related volcanic rocks have been dated from 585±7 to 568±3 Ma (lower intercept, rhyolite boulders), which pre-dates the age of sedimentation of the Cadomian flysch ( t chovice Group). Accretion, uplift and erosion of the volcanic arc is documented by the Neoproterozoic Dob í conglomerate of the upper part of the flysch. The intrusion age of 541+7/−8 Ma from the Zgorzelec granodiorite is interpreted as a minimum age of the Neoproterozoic sequence. The Neoproterozoic crust was tilted and subsequently early Cambrian intrusions dated at 522±2 Ma (T ovice granite), 524±3 Ma (V epadly granodiorite), 523±3 Ma (Smr ovice tonalite), 523±1 Ma (Smr ovice gabbro) and 524±0.8 Ma (Orlovice gabbro) were emplaced into transtensive shear zones.  相似文献   

17.
薛怀民  马芳  宋永勤 《岩石学报》2012,28(9):3015-3030
梵净山地区位于江南造山带的西南缘,这里新元古代的镁铁质-超镁铁质岩浆岩广泛发育,岩性包括枕状熔岩、超镁铁质-镁铁质岩床群以及浅成侵入的辉长岩,成分属拉斑玄武岩系列。其中枕状熔岩以富集轻稀土元素和Rb、Ba、Th、U等强不相容元素,亏损高场强元素Nb和Ta,低的εNd(t)值为特征,明显不同于洋脊玄武岩,推测其成因可能与富集型地幔的部分熔融有关,形成于与俯冲有关的弧后小洋盆环境。超镁铁质-镁铁质岩床群主要由辉绿岩和碳酸辉橄岩组成,其中超镁铁质岩床群中出现大量的原生碳酸盐矿物,指示它们形成于拉张(甚至裂谷)的构造环境。辉长岩可能是区内最晚形成的岩浆岩,其SHRIMP锆石U-Pb年龄为821±4Ma。由枕状熔岩经超镁铁质-镁铁质岩床群到辉长岩,高场强元素Nb和Ta的亏损程度减弱、轻稀土元素的富集程度降低、εNd(t)值由负值变为正值,指示随时间的由早到晚,来自亏损地幔的物质不断增加。推测梵净山地区新元古代岩浆作用的顺序大致为:枕状熔岩(~840Ma)→白云母花岗岩(~838Ma)→碳酸超镁铁质岩床群→镁铁质岩床群→辉长岩(~821Ma),构造环境由俯冲-碰撞到拉张-裂谷。  相似文献   

18.
Single zircons from two orthogneiss complexes, the Grey Gneiss and Red Gneiss, the lowermost tectonic units in the Erzgebirge, were dated. The grey Freiberg Gneiss is of igneous origin and has a 207Pb/206Pb emplacement age of 550±7 Ma. A quartz monzonite from Lauenstein contains idiomorphic zircons with a mean 207Pb/206Pb age of 555±7 Ma as well as xenocrysts ranging in age between 850 and 1910 Ma. Red gneisses from the central Erzgebirge contain complex zircon populations, including numerous xenocrysts up to 2464 Ma in age. The youngest, idiomorphic, zircons in all samples yielded uniform 207Pb/206Pb ages between 550±9 and 554±10 Ma. Nd isotopic data support the interpretation of crustal anatexis for the origin of both units. Nd(t) values for the grey gneisses are –7.5 and –6.0 respectively, (mean crustal residence ages of 1.7–1.8 Ga). The red gneisses have a wider range in Nd(t) values from –7.7 to –2.8 (T DM ages of 1.4–1.8 Ga). The zircon ages document a distinct late Proterozoic phase of granitoid magmatism, similar in age to granitoids in the Lusatian block farther north-east. However, Palaeozoic deformation as well as medium pressure metamorphism ( 8 kbar/600–650° C) are identical in both gneiss units and distinguish these rocks from the Lusatian granitoids. The grey and red gneisses were overthrust by units with abundant high-pressure relicts and a contrasting P-T evolution. Zircon xenocryst and Nd model ages in the range 1000–1700 Ma are similar to those in granitoid rocks of Lusatia and the West-Sudetes, and document a pre-Cadomian basement in parts of east-central Europe that, chronologically, has similarities with the Sveconorwegian domain in the Baltic Shield.  相似文献   

19.
By compiling wide-angle seismic velocity profiles along the 400-km-long Lofoten–Vesterålen continental margin off Norway, and integrating them with an extensive seismic reflection data set and crustal-scale two-dimensional gravity modelling, we outline the crustal margin structure. The structure is illustrated by across-margin regional transects and by contour maps of depth to Moho, thickness of the crystalline crust, and thickness of the 7+ km/s lower crustal body. The data reveal a normal thickness oceanic crust seaward of anomaly 23 and an increase in thickness towards the continent–ocean boundary associated with breakup magmatism. The southern boundary of the Lofoten–Vesterålen margin, the Bivrost Fracture Zone and its landward prolongation, appears as a major across-margin magmatic and structural crustal feature that governed the evolution of the margin. In particular, a steeply dipping and relatively narrow, 10–40-km-wide, Moho-gradient zone exists within a continent–ocean transition, which decreases in width northward along the Lofoten–Vesterålen margin. To the south, the zone continues along the Vøring margin, however it is offset 70–80 km to the northwest along the Bivrost Fracture Zone/Lineament. Here, the Moho-gradient zone corresponds to a distinct, 25-km-wide, zone of rapid landward increase in crustal thickness that defines the transition between the Lofoten platform and the Vøring Basin. The continental crust on the Lofoten–Vesterålen margin reaches a thickness of 26 km and appears to have experienced only moderate extension, contrasting with the greatly extended crust in the Vøring Basin farther south. There are also distinct differences between the Lofoten and Vesterålen margin segments as revealed by changes in structural style and crustal thickness as well as in the extent of elongate potential-field anomalies. These changes may be related to transfer zones. Gravity modelling shows that the prominent belt of shelf-edge gravity anomalies results from a shallow basement structural relief, while the elongate Lofoten Islands belt requires increased lower crustal densities along the entire area of crustal thinning beneath the islands. Furthermore, gravity modelling offers a robust diagnostic tool for the existence of the lower crustal body. From modelling results and previous studies on- and off-shore mid-Norway, we postulate that the development of a core complex in the middle to lower crust in the Lofoten Islands region, which has been exhumed along detachments during large-scale extension, brought high-grade, lower crustal rocks, possibly including accreted decompressional melts, to shallower levels.  相似文献   

20.
青藏高原东北缘临夏盆地晚新生代构造变形及过程   总被引:11,自引:1,他引:11  
位于青藏高原东北缘的临夏盆地是一个挤压挠曲型的前陆盆地,褶皱和逆冲断裂带自7.8Ma开始由西向东向盆地内部扩展,形成生长地层和生长不整合,代表高原东北部持续的构造变形过程。这种同沉积的构造变形一直持续到大约1.8Ma左右东山组沉积结束,临夏盆地内部强烈褶皱变形,致使东山组及其以下的新生代地层均被卷入褶皱之中(与其上的最老黄河阶地——井沟砾石层为角度不整合接触),拉脊山断裂继续向北东方向扩展,银川背斜最终形成。随后黄河、大夏河出现,开始了发育河流阶地和堆积风成黄土的新阶段。由平衡地质剖面法得到临夏盆地西缘7.8Ma以来总的地壳缩短量为3.2~3.6km,缩短率为0.41~0.46mm/a。如果取从7.8到1.8Ma之间的大约6.0Ma作为临夏盆地的构造变形时段,其缩短速率则为0.5~0.6mm/a。从临夏盆地形成和演化过程来看,青藏高原东北缘的构造变形以沿北西西向断裂的逆冲和地壳缩短为主要特征,导致挤压挠曲型前陆盆地的逐渐隆升和消亡,最终使新生代前陆盆地的大部分并入青藏高原东北缘,成为青藏高原的最新组成部分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号