首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
Changchengite occurs in chromite orebodies in dunite and in platinum placer deposits in chromite orebodies nearby. The mineral occurs as massive aggregates or veinlets on margins of iridisite (IrS2) and replaces it. Opaque. Lustre metallic. Colour steel-black. Streak black. Hm = 3.7. VHN20= 165 kg/ mm2. Isotropic. Cleavage none. Density 11.96 g/ cm3. Seven electron microprobe analyses give the following mean chemical results (wt. %): S 7.2, Cu 0.3, Te 0.4, Ir 41.2, Pt 2.8 and Bi 47.3 with total 99.1. The simplified formula is IrBiS. The strongest X-ray powder diffraction lines (hkl, d, I) are 210, 2.75 (70); 211, 2.51 (60); 311, 1.860 (100); 440. 1.090 (50) and 600, 1.027 (50). The X-ray powder diffraction pattern is similar to that of mayingite. After the diffraction data are indexed the mineral is determined to be cubic. The space group is P213 with a = 0.6164(4) nm, V = 0.2342 nm3 and Z = 4.  相似文献   

2.
Yixunite and damiaoite Were found in a cobalt- and copper-bearing platinum ore vein of a contact metasomatic deposit. The chief ore minerals are bornite, chalcopyrite, magnetite and carrollite. The platinum minerals include moncheite, sperrylite, daomanite, cobalt malanite and cooperite. Yixunite and damiaoite occur as immiscible globules, 1.0 to 2.0 mm in diameter. Yixunite is always in the central part of a globule. It is opaque with metallic lustre, bright white colour and black streak. HM = 5.8; VHN50 = 634 kg/mm2 (573-681 kg/ mm2); insoluble in HCl, HNO3, HF or H3PO4; no cleavage; no magnetism. Density is hard to measure because of small grain size. Calculated density = 18.21 g/cm3. Reflective colour is bright white with a yellowish tint. Isotropic. The mean analytical results (ranges) (%) are: Pt 82.8 (81.8-83.6), In 16.4(15.6-17.1) and total 99.2. The empirical formula (based on 4 atoms) is Pt2.993 In1.007 . The five strongest lines of X-ray diffraction (hkl, d,I) are 111, 2.30 (100); 200, 1.99 (  相似文献   

3.
4.
<正>The IGCP 649 project entitled "Diamonds and Recycled Mantle"was approved by UNESCO and IUGS in March 2015.This project is led by an international team of researchers,including Prof.Yang Jingsui of Institute of Geology of CAGS(China),Prof.Yildirim Dilek of Miami  相似文献   

5.
Bismuthoan galena is a variety of galena, resulting from the replacement of Bi for some Pb in galena.This mineral occurs in the No.11 orebody of the Lamo skarn-type Zn-Cu deposit in the Dachang ore field ,but only the No,11 orebody of the Lamo deposit is developed such bismuthoan galena.This is closely related to such a geochemical background that the No.11 orebody contains high Bi and Bi-sulfosalt minerals are well developed there.Eight electron microprobe analyses of five samples give 60.17-70.20%Pb(66.94% on average),10.00-16.06%Bi (12.47%),4.83-8.97%Ag(6.39%)and 13.25-13.98% S(13.65%).Its molecular formula is Pb0.76,Bi0.14,Ag0.13,1.03S.No galena so high in Bi has been reported in the literature and this is the first report in China.  相似文献   

6.
Doklady Earth Sciences - The results of studying the aggregates of native iridium from chromitites of the Svetloborskii and Sosnovskii clinopyroxenite–dunite massifs of the platinum-bearing...  相似文献   

7.
Argentian mercurian gold,golden-yellow in colour,is a variety of native gold containing Ag and Hg,coccurring as hexagonal and tetragonal crystals in hairy,milk-droplet or irregular forms.Its microhardness Hv=91kg/mm^2,equivalent to 3.04on Mons‘scale,and the reflectance is 70.35%(589nm).Chemical analysis gave:Au 56.05-67.33,Ag18.29-31.06 and Hg 10-14.82%,as well as minor Cu.In a few samples Bi or Fe was also detected.The simplified formula is (Au0.52Ag0.36Hg0.09Cu0.02)0.99.X-ray analysis suggests the mineral is of isometric system,with space group=Oh^5-Fm3m,a0=0.40803nm,V=0.06739nm^3,and Z=4.Argentian mercurian gold occurs in a Ag-multimetal deposit at Xiacun,Baiyu County,Sichuan Province,As observed in the mining district,the mineral is distributed along the fissures of the main metallic minerals pyrite,tetrahedrite,chalcopyrite,arsenopyrite,galena,sphalerite,etc.,or in the sulfide veinlets developed in the.fissures of these minerals.Also found in the mineral deposit are native gold,argentite,sulvanite,bournonite,boulangrite,etc.  相似文献   

8.
Today,traditional methods for locating of metal re-sources at the depth of hundreds m eters are facing many diffi-culties.However,the majority of the reserves in the world islarge or super- large mineral deposits in the deep region belowthe surface. Therefore,the development of mineral resourcesin the future will depend on the nontraditional m ethod wherethe traditional ones are less successful in searching deep re-serves.Ane method based on the nuclear analysis and accumula-tion sam pling has…  相似文献   

9.
Earthworm calcite granules (ECG), generally produced in Morren's glands of the earthworm Lumbricus terrestris and Lumbricus rubellus, are commonly preserved in Quaternary soils and sediments well. These granules can not only provide radio-carbon dating (Carbon-14) with the efficacious materials, but accurately record a wealth of climatic and environmental information on temperature and precipitation. For instance, researchers from France reconstructed the paleotemperature and paleoprecipitation during the last glacial in west part of Europe by taking advantage of δ18O and δ13C signal contained in ECG. Additionally, scientists from Germany and France carried out radiocarbon dating of ECG from two different loess-paleosol sequences, and the results showed consistency with the dating results of other materials (such as charcoal, bone, plant calcified root cells, etc.). Therefore, this new bio-indicator has been confirmed as a proxy for paleoenvironmental and paleoclimatic reconstruction, hopefully becoming the golden key to understanding the paleoclimate change. This paper, based on the previous literatures, reviewed the present research status of ECG in paleoclimatology, mainly consisting of five aspects: (i) ECGs' production mechanism and their characteristics; (ii) The theoretical foundation of stable carbon and oxygen isotopes in terrestrial fossil earthworm calcite granules for paleoclimatic reconstruction; (iii) The pre-treatment of ECG samples; (iv) Current applications in chronology and paleoclimatology of earthworm calcite granules;(v) Major problems at present regarding paleoclimatic explanation and radiocarbon-14 dating of ECG. Finally, we proposed the future research and development direction in this field, which is expected to make a reference to the future researches.  相似文献   

10.
E.M.Levin,R,Kohlmuller et al.^[1]have reported the phase diagrams of the Bi2O3-TeO2 and Bi2O3-MoO3 binary oxide systems.This paper is intended to describe a new phase named chilunited-Bi6Te2Mo2O21 in the Chilu molybdenium ore deposit at Anxian County,Fujian Province.Because of small-sized mineral grans(-10μm),it is difficult to determine the crystal structure and physical properties of the mineral.According to its composition,we have successfully synthesized this new mineral using the fusion method.The synthesized single crystal,up to 700×300×300μm^3(0.063mm^3)in size,has been studied in great detail on its compositional and structural characteristics as well as physical properties.  相似文献   

11.
Chengdeite occurs in chromite orebodies in dunite as well as in placers in their neighbourhood. The mineral occurs as granular aggregates in association with inaglyite and in some cases occurs as graphic intergrowths with native iridium. It is opaque with a metallic lustre, colour steel-black, streak black,HM = 5.2, VHN50=452 kg/mm2, cleavage not observed, fracture not observed, strongly magnetic. Its reflection colour is bright white with a yellowish tint. It has no internal reflection, bireflectance or pleochrism, and shows isotropism.Thirteen chemical analyses were carried out by means of the electron microprobe. The mean percentages of the data obtained in the 13 analyses ares S 0.001, Fe 7.9, Ni 0.03, Co 0.03, Cu 0.83, As 0.02, Rh 0.19, Pd 0.00, Os 0.06, Ir 88.5, Ft 2.2 and Pb 0.00. The simplified formula is Ir3Fe, which requires Ir 91.17 and Fe 8.83, the total being 100.00 (% ).Five strongest lines of X-ray powder diffraction (hkl, d, I)are: 111, 2.18 (80);200, 1.89 (60); 220, 1.34 (70);311, 1.142  相似文献   

12.
对2014年度全球发现并经国际矿物学协会(IMA)新矿物与矿物分类命名专业委员会(CNMNC)批准的112种新矿物资料进行了系统梳理,特别是从矿物名称、晶体化学式、晶系和空间群、晶胞参数、主要粉晶数据、物理性质、光学性质、产地与产状、与其他矿物种的关系、矿物名称来源、化学反应和光谱学特征等方面归纳总结了这些新矿物的重要...  相似文献   

13.
以"创新驱动、持续发展"为主题的2014中国国际矿业大会于10月底召开.大会期间,国内外专家学者和业内人士围绕当前全球经济和矿业形势进行了深入交流,其中包罗了各项重点和热点议题,而2014年国际矿产勘查形势与技术的革新与发展则是矿业领域的焦点问题之一.随着经济社会对矿产资源的旺盛需求,全球矿产勘查形势不断变化,勘查投入继续增长,高新技术广泛应用并成为矿产勘查的先导.矿产勘查重新受到国家和社会的广泛关注,矿产勘查进入了多元化合作、技术推动、繁荣发展的新时期.  相似文献   

14.
新矿物:罗布莎矿   总被引:4,自引:0,他引:4  
最近在西藏罗布莎村豆荚状铬铁矿石中发现一个由70~80种矿物组成的地幔矿物群,其中包括新矿物罗布莎矿,还有金刚石、柯石英、碳硅石、方铁矿、以及Fe-Si相矿物。所有这些矿物都是从豆荚铬铁矿石的人工大样中经选矿后得到的。罗布莎矿作为主矿物而含有自然硅和fersilicite[FeSi]的包裹体或呈交生体与自然硅共生。罗布莎矿呈不规则粒状,粒径0.1~0.2mm,由细粒聚合体组成,呈钢灰色,金属光泽,不透明。以Si为基础实验分子式为Fe0.83Si2。X-射线分析资料斜方晶系,空间群Cmca,a=9.874(14)A。,b=7.784(5)A。,c=7.829(7)A。,V=601.7(9)A。3,Z=16。罗布莎矿已为国际新矿物和矿物命名委员会批准,样品保存在中国地质博物馆。  相似文献   

15.
Lisiguangite, CuPtBiS3, is a new mineral species discovered in a PEG-bearing, Co-Cu sulfide vein in garnet pyroxenite of the Yanshan Mountains, Chengde Prefecture, Hebei Province, China. It is associated with chalcopyrite and bornite, galena, minor pyrite, carrolite, molybdenite and the platinum-group minerals daomanite (CuPtAsS2), Co-bearing malanite (Cu(Pt, Co)2S4) sperrylite, moncheite, cooperite and malyshevite (CuPdBiS3), rare damiaoite (Pt2In3) and yixunite (Pt3In). Lisiguangite occurs as idiomorphic crystals, tabular or lamellae (010) and elongated [100] or as aggregates, up to 2 mm long and 0.5 mm wide. The mineral is opaque, has lead-gray color, black streak and metallic luster. The mineral is non-fluorescent. The observed morphology displays the following forms: pinacoids {100}, {010}, {001}, and prism {110}. No twining is observed. The a:b:c ratio, calculated from unit-cell parameters, is 0.6010:1:0.3836. Cleavage: {010} perfect, {001} distinct, {100} may be visible. H Mohs: 21/2; VHN25=46.7-49.8 (mean 48.3) kg/mm2. Tenacity: brittle. Lisiguangite is bright white with a yellowish tint. In reflected light it shows neither internal reflections nor bireflectance or pleochroism. It has weak to moderate anisotropy (blue-greenish to brownish) and parallel-axial extinction. The reflectance values in air (and in oil) for R3, R4 and (imR3, imR4), at the standard Commission on Ore Mineralogy wavelengths are: 37.5, 35.7 (23.4, 22.3) at 470 nm; 38.6, 36.5 (23.6, 22.6) at 546 nm; 39.4, 37.5 (23.6, 22.7) at 589 nm and 40.3, 38.2 (23.7, 22.9) at 650 nm. The average of eight electron-microprobe analyses: Cu 12.98, Pt 30.04, Pd 2.69, Bi 37.65 and S 17.55, totaling 100.91%, corresponding to Cu1.10(Pt 0.83, Pd0.14)Σ0.97Bi0.97S2.96 based on six atoms apfu. The ideal formula is CuPtBiS3. The mineral is orthorhombic. Space group: P212121, a=7.7152(15)?,b=12.838(3)?, c=4.9248(10)?, V=487.80(17)?3, Z=4. The six strongest lines in the X-ray powder-diffraction pattern [d in ? (I) (h k l) are 6.40(30)(020), 3.24(80)(031), 3.03(100)(201), 2.27(40)(051), 2.14(50)(250), 1.865(60)(232).  相似文献   

16.
新矿物氟铈硅磷灰石产自加拿大魁北京省的MontSt.Hilaire地区,赋存于霞石正长岩、大理岩捕虏体,方钠石正长岩捕虏体和伟晶岩岩墙中。  相似文献   

17.
Yarlongite occurs in ophiolitic chromitite at the Luobusha mine (29°5′N 92°5′E,about 200 km ESE of Lhasa),Qusum County,Shannan Prefecture,Tibet Autonomous Region,People's Republic of China.Associated minerals are:diamond,moissanite,wiistite,iridium ("osmiridium"), osmium ("iridosmine"),periclase,chromite,native iron,native nickel,native chromium,forsterite, Cr-rich diopside,intermetallic compounds Ni-Fe-Cr,Ni-Cr,Cr-C,etc.Yarlongite and its associated minerals were handpicked from a large heavy mineral sa...  相似文献   

18.
Yarlongite: A New Metallic Carbide Mineral   总被引:1,自引:0,他引:1  
Yarlongite occurs in ophiolitic chromitite at the Luobusha mine (29°5′N 92°5′E, about 200 km ESE of Lhasa), Qusum County, Shannan Prefecture, Tibet Autonomous Region, People’s Republic of China. Associated minerals are: diamond, moissanite, wüstite, iridium (“osmiridium”), osmium (“iridosmine”), periclase, chromite, native iron, native nickel, native chromium, forsterite, Cr-rich diopside, intermetallic compounds Ni-Fe-Cr, Ni-Cr, Cr-C, etc. Yarlongite and its associated minerals were handpicked from a large heavy mineral sample of chromitite. The metallic carbides associated with yarlongite are cohenite, tongbaite, khamrabaevite and qusongite (IMA2007-034). Yarlongite occurs as irregular grains, with a size between 0.02 and 0.06 mm, steel-grey colour, H Mohs: 5?-6. Tenacity: brittle. Cleavage: {0 0 1} perfect. Fracture: conchoidal. Chemical formula: (Cr4Fe4Ni)Σ9C4, or (Cr,Fe,Ni)Σ9C4, Crystal system: Hexagonal, Space Group: P63/mc, a = 18.839(2) ?, c = 4.4960 (9) ?, V = 745.7(2) ?3, Z = 6, Density (calc.) = 7.19 g/cm3 (with simplified formula). Yarlongite has been approved as a new mineral by the CNMNC (IMA2007-035). Holotype material is deposited at the Geological Museum of China (No. M11650).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号