首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Experiments on partial melting of mantle lherzolite have been realized at 0.6 and 1.0 GPa and the chemical compositional variations of melts during different melting stages have been first discussed. The results show that the trends of variations in SiO2, CaO, Al2O3, Na2O and TiO2 are different at different melting stages. The melts produced at lower pressure are richer in SiO2 than those at higher pressure. The mantle-derived silica-rich fluids (silicate melts) are polygenetic, but the basic and intermediate-acid silicate melts in mantle peridotite xenoliths from the same host rocks, which have equivalent contents of volatile and alkali components and different contents of other components, should result from in-situ (low-degree) partial melting of mantle peridotite under different conditions (e.g. at different depths, with introduction of C-O-H fluids or in the presence of metasomatic minerals). The intermediate-acid melts may be the result of partial melting (at lower pressure) Opx + Sp + K-Na-rich f  相似文献   

2.
Fluids and Melts in the Upper Mantle   总被引:3,自引:0,他引:3  
This paper presents a direct study of the fluids and melts in the upper mantle by examining the fluid inclusions, melt inclusions and glasses trapped in the mantle lherzolite xenoliths entrained by Cenozoic alkali basalts (basanite, olivine-nephelinite and alkali-olivine basalt) from eastern China. The study indicates that the volatile components, which are dissolved in high-pressure solid mineral phases of mantle peridotite at depths, may be exsolved under decompressive conditions of mantle plume upwelling to produce the initial free fluid phases in the upper mantle. The free fluid phases migrating in the upper mantle may result in lowering of the mantle solidus (and liquidus), thereby initiating partial melting of the upper mantle, and in the meantime, producing metasomatic effects on the latter.  相似文献   

3.
Phlogopiie-and diopside-bearing dunite occurs as rounded inclusions in hornblende-diorite. Thepetrofabrics, mineral composition and abundances of the trace elements in the dunite indicate that the inclu-sions were derived from the upper mantle and are the residues of high-degree partial melting of mantlepeirdotite. The study of trace elements in the inclusions and their host rocks shows that the magma was origi-nated from the mantle which was enriched in incompatible elements by mantle metasomatism prior to the par-tial melting.  相似文献   

4.
The composition of gases trapped in olivine, orthopyroxene and clinopyroxene in Iherzolite xenoliths collected from different locations in eastern China has been measured by the vacuum stepped-heating mass spectrometry. These xenoliths are hosted in alkali basalts and considered as residues of partial melting of the upper mantle, and may contain evidence of mantle evolution. The results show that various kinds of fluid inclusions in Iherzolite xenoliths have been released at distinct times, which could be related to different stages of mantle evolution. In general, primitive fluids of the upper mantle (PFUM) beneath eastern China are dominated by H2, CO2 and CO, and are characterized by high contents of H2 and reduced gases. The compositions of PFUM are highly variable and related to tectonic settings. CO, CO2 and H2 are the main components of the PFUM beneath cratons; the PFUM in the mantle enriched in potassic metasomatism in the northern part of northeastern China has a high content of H2, while CO2 a  相似文献   

5.
Ultramafic hypoxenoliths found in the alkali-rich porphyry in the Liuhe Village, Heqing, Yunnan, China, are of great significance in understanding the origin and evolution of the porphyry. This paper discusses the mineralogical features of the hypoxenoliths. It shows that the xenoliths are characterized by the upper mantle rocks modified to certain extent by the enriched mantle fluid metasomatism in the mantle environment, with the enriched mantle property of low-degree partial melting. This constitutes the important mineralogical evidence for the petrogenesis and mineralization of alkali-rich porphyry. Keywords: alkali-rich porphyry; deep-source xenoliths; enriched mantle; low-degree partial melting; mineralogical characteristics  相似文献   

6.
Rare earth element (REE) contents, and Sr and Nd isotopic compositions were measured for three suites of mantle xenoliths from the Kuandian, Hannuoba and Huinan volcanoes in the north of the Sino-Korean Platform. From the correlations of Yb contents with Al/Si and Ca/Si ratios, the peridotites are considered to be the residues of partial melting of the primitive mantle. The chondrite-normalized REE compositions are diverse, varying from strongly LREE-depleted to LREE-enriched, with various types of REE patterns. Metasomatic alteration by small-volume silicate melts, of mantle peridotites previously variably depleted due to fractional melting in the spinel peridotite field, can account for the diversity of REE patterns. The Sr/ Ba versus La/Ba correlation indicates that the metasomatic agent was enriched in Ba over Sr and La, suggestive of its volatile-rich signature and an origin by fluid-triggered melting in an ancient subduction zone. The Sr and Nd isotopic compositions of these xenoliths, even from  相似文献   

7.
正Objective Sulfide inclusions within natural mineral phases play important roles in exploring the origin of magmatic sulfides ores,tracing the distribution of sulfur in mantle or crust and understanding continental mantle evolution(partial melting and metasomatism in upper mantle).Until now,varieties of sulfide inclusions have been extensively discovered in the ultramafic or mafic phenocrysts.However,previous studies  相似文献   

8.
徐九华  谢玉玲 《岩石学报》2007,23(1):117-124
Mantle xenoliths are common in the Cenozoic basalts of the Changbaishan District,Jilin Province,China.Sulfide assemblages in mantle minerals can be divided into three types:isolated sulfide grains,sulfide-meh inclusions and filling sulfides in fractures.Sulfide-meh inclusions occur as single-phase sulfides,sulfide-silicate melt,and CO_2-sulfide-silicate melt inclusions. Isolated sulfide grains are mainly composed of pyrrhotite,but cubanite was found occasionally.Sulfide-meh inclusions are mainly composed of pontlandite and MSS,with small amounts of chalcopyrite and talnakhite.The calculated distribution coefficient K_(D3)for lherzolite are similar to that of mean experimental value.The bulk sulfides in lherzolite were in equilibrium with the enclosing minerals, indicating immiscible sulfide melts captured in partial melting of upper mantle.Sulfide in fractures has higher Ni/Fe and(Fe Ni)/S than those of sulfide melt inclusions.They might represent later metasomatizing fluids in the mantle.Ni/Fe and(Fe Ni)/S increase from isolated grains,sulfide inclusions to sulfides in fractures.These changes were not only affected by temperature and pressure,hut by geochemistry of Ni,Fe and Cu,and sulfur fugacity as well.  相似文献   

9.
This paper reviews the origin and evolution of fluid inclusions in ultramafic xenoliths,providing a framework for interpreting the chemistry of mantle fluids in the different geodynamic settings.Fluid inclusion data show that in the shallow mantle,at depths below about 100 km,the dominant fluid phase is CO_2±brines,changing to alkali-,carbonate-rich(silicate) melts at higher pressures.Major solutes in aqueous fluids are chlorides,silica and alkalis(saline brines;5-50 wt.%NaCl eq.).Fluid inclusions in peridotites record CO_2 fluxing from reacting metasomatic carbonate-rich melts at high pressures,and suggest significant upper-mantle carbon outgassing over time.Mantle-derived CO_2(±brines) may eventually reach upper-crustal levels,including the atmosphere,independently from,and additionally to magma degassing in active volcanoes.  相似文献   

10.
Reported in this paper are the chemical compositions and trace element (REE,Ba,Rb,Sr,Nb,Zr,Ni,Cr,V,Ga,Y,Sc,Zn,Cu,etc)abundances of Tertiary continental alkali basalts from the Liube-yizheng area,Jiangsu Province,China.The olivine basalt,alkali olivine basalt and basanite are all derived from evolved melts which were once af-fected by different degrees of fractional crystallization of olivine and clinopyroxene(1:2)under high pres-sures.The initial melts were derived from the garnet lherzolite-type mantle source through low-degree par-tial melting.The mantle source has been affected by recent mantle-enrichment events(e.g.mantle metasomatism),resulting in incompatible trace element enrichment and long-term depletion of radiogenic isotopic compositions of Sr and Nd.  相似文献   

11.
女山中更新世碧玄岩岩浆的起源和演化   总被引:9,自引:0,他引:9  
夏林圻  夏祖春 《岩石学报》1994,10(3):223-235
产于大陆板内环境的女山中更新世碧玄质火山岩及其所含幔源二辉橄榄岩捕虏体的研究结果揭示,在裂谷作用初始阶段,由于软流圈地幔柱上隆减压,造成深部溶解于地幔橄榄岩高压固体矿物相中的挥发组分出溶,这些出溶的初始地幔流体相在一定部位聚集,于30Ma前,大约37km之下,在地幔橄榄岩中诱发同步的部分熔融和交代作用,并相应产生原生碧玄质岩浆。后者上升速度较快,既未经历壳内高位岩浆房贮集,也没有遭受大陆地壳混染,只是在输送往地表的途中伴随结晶分离作用,发生一定程度演化。  相似文献   

12.
Spinel lherzolite and pyroxenite inclusions from the Geronimovolcanic field, Arizona (and Dish Hill, California) record,in their constituent minerals, a chronology of diverse mantledepletion and enrichment events. Certain portions of the lithosphericmantle have remained relatively isolated for considerable periodsof time(1–4 b.y.) while wall rock adjacent to conduitsof basanite has been recently (< 0-2 b.y.) modified. Evidenceexists for a widespread ancient (1–4 b.y.) partial meltingresidue, now recognizable as MORB-like mantle below the southwesternU.S.A. Trace element enrichment (0?9 b.y.) has increased thelight rare earth element (LREE) and Sr content of many refractoryperidotites without any mineralogical changes to the host rock.The fluids/melt responsible for this enrichment have a complexhistory involving heterogeneous mantle sources. In contrast,modal metasomatism of the mantle (< 0.2 b.y.) in aureolesaround evolved derivatives of basanite has petrographicallyand chemically transformed this ancient partial melting residue.The metasomatic fluids responsible for such metasomatism havean asthenospheric mantle source identical to the host magma.It is proposed that modal metasomatism occurs in contact metamorphicaureoles that surround apophyses of basanitic silicate meltin the lithospheric mantle. The gradient in CO2/(CO2 ? H2O)ratio that must surround such veins in the upper mantle (<20 kb) may encourage the development of enrichment fronts. Immediatelyadjacent to the vein, a wet zone with a relatively low CO2/(CO2? H2O) ratio would allow a precipitation of mica ? amphibole.Beyond this a dry zone with a higher CO2/(CO2 ? H2O) ratio wouldhasten chemical but not petrographic transformation of the wallrock.  相似文献   

13.
Quaternary volcanism in the Mt. Shasta region has produced primitive magmas [Mg/(Mg+Fe*)>0.7, MgO>8 wt% and Ni>150 ppm] ranging in composition from high-alumina basalt to andesite and these record variable extents ofmelting in their mantle source. Trace and major element chemical variations, petrologic evidence and the results of phase equilibrium studies are consistent with variations in H2O content in the mantle source as the primary control on the differences in extent of melting. High-SiO2, high-MgO (SiO2=52% and MgO=11 wt%) basaltic andesites resemble hydrous melts (H2O=3 to 5 wt%) in equilibrium with a depleted harzburgite residue. These magmas represent depletion of the mantle source by 20 to 30 wt% melting. High-SiO2, high-MgO (SiO2=58% and MgO=9 wt%) andesites are produced by higher degrees of melting and contain evidence for higher H2O contents (H2O=6 wt%). High-alumina basalts (SiO2=48.5% and Al2O3=17 wt%) represent nearly anhydrous low degree partial melts (from 6 to 10% depletion) of a mantle source that has been only slightly enriched by a fluid component derived from the subducted slab. The temperatures and pressures of last equilibration with upper mantle are 1200°C and 1300°C for the basaltic andesite and basaltic magmas, respectively. A model is developed that satisfies the petrologic temperature constraints and involves magma generation whereby a heterogeneous distribution of H2O in the mantle results in the production of a spectrum of mantle melts ranging from wet (calc-alkaline) to dry (tholeiitic).  相似文献   

14.
Petrographic, fluid inclusion, geochemical and isotopic evidence from xenoliths in alkali basalts suggests that low-viscosity fluids rich in O-H-C, dissolved silicates and especially the incompatible elements may ascend, decompress and precipitate crystalline phases and/or induce partial fusion in the upper mantle. Such mantle metasomatic fluids (MMF) may be important in generating isotopic heterogeneity and in transporting and focusing mantle heat. In order to model the movement of MMF, the ordinary differential equations governing the variation ofP, T, ascent velocity and fluid density of a compressible, viscous, single-phase (H2O or CO2) non-reacting fluid ascending through a vertical crack of constant width have been solved. A large number of numerical simulations were carried out in which the significant factors affecting flow behavior (thermodynamic and transport fluid properties, roughness and width of cracks, geothermal gradient, initial conditions, etc.) were systematically varied. The calculations show that: (1) MMF tends to move at uniform rates following a short period of rapid initial acceleration, (2) MMF ascends nearly isothermally, (3) MMF acts as an efficient heat transfer agent; numerical experiments show that transport of heat into regions undergoing metasomatism can lead to partial fusion. The heat transported by movement of MMF averaged over the age of the Earth is sufficient to generate about 0.1 km3 of basaltic magma per year, which is approximately equal to the production rate of alkaline magma. If an intense period of mantle degassing occured early in the history of the Earth, the transport of heat and mass (K, U, Rb, LREE) by migrating fluids might have been important.  相似文献   

15.
Mantle xenoliths from Tenerife show evidence of metasomatismand recrystallization overprinting the effects of extensivepartial melting. The evidence includes: recrystallization ofexsolved orthopyroxene porphyroclasts highly depleted in incompatibletrace elements into incompatible-trace-element-enriched, poikiliticorthopyroxene with no visible exsolution lamellae; formationof olivine and REE–Cr-rich, strongly Zr–Hf–Ti-depletedclinopyroxene at the expense of orthopyroxene; the presenceof phlogopite; whole-rock CaO/Al2O3 >> 1 (Ca metasomatism) inrecrystallized rocks; and enrichment in incompatible elementsin recrystallized rocks, relative to rocks showing little evidenceof recrystallization. The ‘higher-than-normal’ degreeof partial melting that preceded the metasomatism probably resultsfrom plume activity during the opening of the Central AtlanticOcean. Sr–Nd isotopic compositions are closely similarto those of Tenerife basalts, indicating resetting from theexpected original mid-ocean ridge basalt composition by themetasomatizing fluids. Metasomatism was caused by silicic carbonatitemelts, and involved open-system processes, such as trappingof elements compatible with newly formed acceptor minerals,leaving residual fluids moving to shallower levels. The compositionsof the metasomatizing fluids changed with time, probably asa result of changing compositions of the melts produced in theCanary Islands plume. Spinel dunites and wehrlites representrocks where all, or most, orthopyroxene has been consumed throughthe metasomatic reactions. KEY WORDS: Canary Islands; Tenerife; mantle xenoliths; geochemistry; Ca metasomatism; open-system processes; lithosphere; ocean islands  相似文献   

16.
The paper discusses petrological effects related to interaction between rocks and concentrated aqueous salt fluids (brines) at lower crustal metamorphism. These effects arise mainly from the low H2O activity typical of brines, while preserving and even increasing transport properties relative to pure H2O or H2O–nonpolar gas fluids. The paper presents thermodynamic properties of the halogen-bearing end members of the biotite solid solution based on experimental data, and examples illustrating how they can be employed to calculate the activities (concentrations) of alkali halides in the fluid. Action of brines significantly changes conventional views on the solubility of several minerals and on the distribution of elements (including trace elements) between minerals, melts, and fluids. The specific role of brines is also in bringing to interaction zones not only water but also alkali metals and Ca, which results in numerous metasomatic net-transfer reactions involving mafic minerals and/or exchange reactions with feldspars that produce new mineral assemblages with lower melting temperature, i.e., cause granitization of rocks as defined by D.S. Korzhinskii. Brines also exert fine “tuning” of metasomatic and melting processes: even at equal pressure, temperature, and water activity values metasomatism may or may not trigger melting depending on the Na/K/Ca ratio in the fluid phase.  相似文献   

17.
Lherzolite xenoliths with calcite-rich microgranular secondary aggregates (0.1–1 mm) have been sampled in a Messinian breccia pipe from the northeastern part of the Languedoc volcanic province (South France). Their study shows that the carbonate crystallized at low pressure from a silico-carbonated melt resulting from partial melting of diopside and spinel at depth. This melting has been induced by injection, shortly before the eruption, of CO2 and H2O-rich fluids, stored probably within the upper lithospheric mantle and reset in motion by the magma ascension. These fluids would derive from decarbonation of levels of deeper lithospheric mantle previously metasomatized by carbonatitic melts. To cite this article: J.-M. Dautria et al., C. R. Geoscience 338 (2006).  相似文献   

18.
Mineralogy,geochemistry and petrogenesis of Kurile island-arc basalts   总被引:1,自引:0,他引:1  
Whole-rock (major- and trace-element) and mineral chemical data are presented for basaltic rocks from the main evolutionary stages of the Kurile island arc, NW Pacific. An outer, inactive arc contains a Cretaceous-Lower Tertiary sequence of tholeiitic, calcalkaline and shoshonitic basalts. The main arc (Miocene-Quaternary) is dominated by weakly tholeiitic, with lesser, alkalic basalts. The mineralogy of Kuriles basalts is characterised by An-rich plagioclases, a continuous transition from chromites to titanomagnetites, pyroxenes with low Fe3+ contents and without strong Fe-enrichment, abundance of groundmass pigeonites and the absence of amphiboles. There is an increase in K2O contents both along-arc (northwards) and towards the reararc side. The basalts show an exceptionally wide but continuous range of K2O contents (0.1–4.7%) which correlate with other LIL element contents. Tholeiitic basalts with low LIL element contents, La/Yb and Th/U, but high K/ Rb, P2O5/La and Zr/Nb were derived from depleted, lherzolitic mantle which had suffered fluid metasomatism by K, Rb, Cs, Sr, Ba, Pb and H2O only. Alkali basalts are also thought to be derived from depleted mantle but melt metasomatism involved addition of all LIL elements to a garnet lherzolite mantle. The Kuriles basalts and their mantle sources range continuously between these two end-member compositions. The metasomatic fluids/melts were probably released by early dehydration and later melting within subducted oceanic lithosphere though the process is not adequately constrained.  相似文献   

19.
High pressure experimental studies of the melting of lherzolitic upper mantle in the absence of carbon and hydrogen have shown that the lherzolite solidus has a positive dP/dT and that the percentage melting increases quite rapidly above the solidus. In contrast, the presence of carbon and hydrogen in the mantle results in a region of ‘incipient’ melting at temperatures below the C,H-free solidus. In this region the presence or absence of melt and the composition of the melt are dependent on the amount and nature of volatiles, particularly the CO2, H2O, and CH4 contents of the potential C-H-O fluid. Under conditions of low (IW to IW + 1 log unit atP ∼ 20–35kb), fluids such as CH4+H2O and CH4+H2 inhibit melting, having a low solubility in silicate melts. Under these conditions, carbon and hydrogen are mobile elements in the upper mantle. At slightly higher oxygen fugacity (IW+2 log units,P∼20–35 kb) fluids in equilibrium with graphite or diamond in peridotite C-H-O are extremely water-rich. Carbon is thus not mobile in the mantle in this range and the melting and phase relations for the upper mantle lherzolite approximate closely to the peridotite-H2O system. Pargasitic amphibole is stable to solidus temperatures in fertile lherzolite compositions and causes a distinctive peridotite solidus, the ‘dehydration solidus’, with a marked change in slope (a ‘back bend’) at 29–30kb due to instability of pargasite at high pressure. Intersections of geothermal gradients with the peridotite-H2O solidi define the boundary between lithosphere (subsolidus) and asthenosphere (incipient melt region). This boundary is thus sensitive to changes in [affecting CH4:H2O:CO2 ratios] and to the amount of H2O and carbon (CO2, CH4) present. At higher conditions (IW + 3 log units), CO2-rich fluids occur at low pressures but there is a marked depression of the solidus at 20–21 kb due to intersection with the carbonation reaction, producing the low temperature solidus for dolomite amphibole lherzolite (T∼925°C, 21 to >31kb). Melting of dolomite (or magnesite) amphibole lherzolite yields primary sodic dolomitic carbonatite melt with low H2O content, in equilibrium with amphibole garnet lherzolite. The complexity of melting in peridotite-C-H-O provides possible explanations for a wide range of observations on lithosphere/asthenosphere relations, on mantle melt and fluid compositions, and on processes of mantle metasomatism and magma genesis in the upper mantle.  相似文献   

20.
Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism   总被引:1,自引:1,他引:1  
The oxidation state, reflected in the oxygen fugacity (fO2), of the subcratonic lithospheric mantle is laterally and vertically heterogeneous. In the garnet stability field, the Kaapvaal lithospheric mantle becomes progressively more reducing with increasing depth from Δlog fO2 FMQ-2 at 110 km to FMQ-4 at 210 km. Oxidation accompanying metasomatism has obscured this crystal-chemical controlled depth-fO2 trend in the mantle beneath Kimberley, South Africa. Chondrite normalized REE patterns for garnets, preserve evidence of a range in metasomatic enrichment from mild metasomatism in harzburgites to extensive metasomatism by LREE-enriched fluids and melts with fairly unfractionated LREE/HREE ratios in phlogopite-bearing lherzolites. The metasomatized xenoliths record redox conditions extending up to Δlog fO2 = FMQ, sufficiently oxidized that magnesite would be the stable host of carbon in the most metasomatized samples. The most oxidized lherzolites, those in or near the carbonate stability field, have the greatest modal abundance of phlogopite and clinopyroxene. Clinopyroxene is modally less abundant or absent in the most reduced peridotite samples. The infiltration of metasomatic fluids/melts into diamondiferous lithospheric mantle beneath the Kaapvaal craton converted reduced, anhydrous harzburgite into variably oxidized phlogopite-bearing lherzolite. Locally, portions of the lithospheric mantle were metasomatized and oxidized to an extent that conversion of diamond into carbonate should have occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号