首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Groundwater flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units. Received, October 1996 Revised, August 1997 Accepted, September 1997  相似文献   

2.
Validity of a sharp-interface model in a confined coastal aquifer   总被引:1,自引:1,他引:0  
 The problem of seawater intrusion is considered for the case of a confined coastal aquifer in which there is steady seaward flow of fresh water. Using the GWCH2O model, the problem is solved first for the case of no dispersion where a distinct interface exists separating the fresh water from the salt water. The problem is solved next by taking into account dispersion and diffusion of the salt-water component, along with the density effect. In this respect, a two-dimensional finite-element model, 2D-VDTRAN, is developed to simulate density-dependent solute transport. To investigate the limitation of the sharp-interface approach in coastal aquifers for conditions of both steady state and unsteady state, the problem is solved twice using the two models with different parameter values. These parameters are combined in dimensionless form, resulting in four named parameters: seepage factor (A); dispersion-to-advection ratio (B); geometry ratio (C); and time-scale factor (T). Using the density-dependent model, the dimensionless width of the transition zone (W/L) is determined for different values of A, B, C, and T. Steady-state simulations show that the sharp-interface approach is valid only when the system is dominated by advection, i.e., when 0<B≤5% for all values of A and C, or when A≥65% for all values of B and C. However, the unsteady-state analysis shows that the applicability of the sharp-interface approach is sufficiently accurate at early times. Received, October 1997 Revised, June 1998, October 1998 Accepted, November 1998  相似文献   

3.
 The Valley of Hermosillo coastal aquifer, state of Sonora, northwestern Mexico, has been over-exploited for the last four decades, in order to maintain agricultural activity in one of the most important irrigation districts of the Mexican Republic. The over-exploitation has resulted in the development of several drawdown cones and in the lowering of the water table to as much as 50 m below mean sea level. Contamination of the aquifer in the form of salt-water intrusion from the Gulf of California and high nitrate concentrations is the consequence of human activities. A hydrogeochemical zonation of the aquifer, based on the presence of different water families, led to the identification of a coastal band approximately 30 km wide that is affected by salt-water intrusion. Conductivity of the sampled water and the interpretation of the ratio Na/Cl×1000 was used to identify the location of three major intrusion plumes in this coastal band. The background nitrate contamination of the aquifer is about 4 ppm, but contents as great as about 17 ppm occur in some wells. Irrigation with raw sewage and movement of contaminants in areas of high hydraulic gradients within the drawdown cones probably are responsible for localized peaks of the nitrate concentration. Received, October 1996 Revised, September 1997, May 1998 Accepted, July 1998  相似文献   

4.
 This paper describes the origins and distribution of saline groundwaters in the coastal area of Rhodope, Greece. The aquifer system includes two aquifers within coarse-grained alluvial sediments in the coastal part of the study area. Two major water-quality groups occur in the study area, namely Ca2+-rich saline groundwater and Ca2+-poor, almost fresh groundwater. The main process controlling the groundwater chemistry is the exchange of calcium and sodium between the aquifer matrix and intruding seawater. The natural salt water in the study area is probably residual water that infiltrated the aquifer system during repeated marine transgressions in late Pleistocene time. Seawater intrusion into the coastal aquifer system occurs as a result of overpumping in two seawater wedges separated vertically by a low-permeability layer. The rate of intrusion averages 0.8 m/d and is less than expected due to a decline of the aquifer's permeability at the interface with the seawater. The application of several hydrochemical techniques (Piper and Durov diagrams; Na+/Cl, Ca2+/Cl, Mg2+/Cl, and Br/Cl molar ratios; Ca2+/Mg2+ weight ratio; and chloride concentrations), combined with field observations, may lead to a better explanation of the origin of the saline groundwater. Received, May 1997 / Revised, May 1998, December 1998 / Accepted, February 1999  相似文献   

5.
 An accurate estimate of the depth to the theoretical interface between fresh, water and salt water is critical to estimates of well yields in coastal and island aquifers. The Ghyben–Herzberg relation, which is commonly used to estimate interface depth, can greatly underestimate or overestimate the fresh-water thickness, because it assumes no vertical head gradients and no vertical flow. Estimation of the interface depth needs to consider the vertical head gradients and aquifer anisotropy that may be present. This paper presents a method to calculate vertical head gradients using water-level measurements made during drilling of a partially penetrating well; the gradient is then used to estimate interface depth. Application of the method to a numerically simulated fresh-water/salt-water system shows that the method is most accurate when the gradient is measured in a deeply penetrating well. Even using a shallow well, the method more accurately estimates the interface position than does the Ghyben–Herzberg relation where substantial vertical head gradients exist. Application of the method to field data shows that drilling, collection methods of water-level data, and aquifer inhomogeneities can cause difficulties, but the effects of these difficulties can be minimized. Received, April 1997 · Revised, January 1998 · Accepted, January 1998  相似文献   

6.
 Only minor attention has been given in the past to the study of closed-basin hydrogeology in evaporitic environments, because these basins usually contain poor-quality groundwater. The motivation for hydrogeological research in the Los Monegros area in northeastern Spain was the approval in 1986 of a large irrigation project in the Ebre River basin. The irrigation of 60,000 ha is planned, partly in an evaporitic closed basin containing playa lakes. The project has given rise to environmental concerns. The evaluation of the hydrologic impacts of irrigation requires quantifying properly the hydrogeology of the area. With the available information, a conceptual hydrogeological model was formulated that identifies two main aquifers connected through a leaky aquitard. On the basis of the conceptual model, a numerical model was calibrated under steady-state conditions using the method of maximum-likelihood automatic parameter estimation (Carrera and Neuman, 1986a). The calibrated model reproduces the measured hydraulic heads fairly well and is consistent with independent information on groundwater discharge. By the solution of the inverse problem, reliable parameter estimates were obtained. It is concluded that anisotropy plays a major role in some parts of the lower aquifer. The geometric average of model conductivity is almost two orders of magnitude larger than the average conductivity derived from small-scale field tests. This scale effect in hydraulic conductivity is consistent with the findings of Neuman (1994) and Sánchez-Vila et al. (1996). Received, December 1997 · Revised, December 1997 · Accepted, January 1998  相似文献   

7.
Sulfate transport in a Coastal Plain confining unit, New Jersey, USA   总被引:1,自引:0,他引:1  
 A transient 1-D, two-pathway non-equilibrium deterministic advective dispersion model was used to examine the distribution of chloride (43–100 mg/L) and sulfate (57–894 mg/L) concentrations in the 35-m-thick section of the Lower confining unit, Atlantic Coastal Plain, New Jersey, USA. The model was used to constrain hypotheses about how pore-water chemistry changed over time. Explanations of the solute concentrations were explored by inverse and direct methods given a few known constraints, including concentrations of pore-water constituents from 12 core samples, reported simulated flow rates, and estimated hydrogeologic properties. The hypothesis that is best supported by the model results is that the distribution of chloride and sulfate concentrations in the confining unit reflect the history of the aquifer system since it was filled with seawater at the last eustatic high, about 84×103yr BP. The model simulates fresh-water flushing of the seawater-permeated silts at a steady upward pore-water flow velocity of 8.8×10–6 m/d, with a dispersion coefficient of 9.2×10–7 m2/d, a dimensionless partition expression for chloride, βCl=0.981, and a dimensionless exchange coefficient, ωCl=0.31×10–2. Sulfate concentrations were simulated over the flow path using flow and dispersion values calculated for chloride transport plus a retardation term. Parameters for sulfate transport include retardation coefficient=4.51, βSO4=0.994, and ωSO4=0.31×10–2. Sensitivity analysis indicates that the model is most sensitive to flow velocity, and that fresh-water flushing of the confining unit is best simulated by having seawater concentration levels at the inflow boundary of the confining unit exponentially decrease with a concentration half-life rate of 825 yr. Received, January 1997 / Revised, April 1998, October 1998, January 1999 / Accepted, January 1999  相似文献   

8.
Patterns in groundwater chemistry resulting from groundwater flow   总被引:11,自引:7,他引:11  
 Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic–methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15 m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500 m in the flow direction is shown to correspond with about 5000 yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Received, May 1998 · Revised, August 1998 · Accepted, October 1998  相似文献   

9.
The aquifer of Mar del Plata is unconfined and composed of silt and fine sand. The sand fraction is mainly quartz, potassium feldspars, chalcedony, and gypsum. Volcanic-glass shards (40–60%) dominate the silt fraction, and the clays are of the smectite and illite groups. Calcium carbonate, in caliche form, constitutes about 10–20% of the sediment. Groundwater flow is from west to east, and discharge is in the Atlantic Ocean. Because of overexploitation, the flow direction was reversed in a coastal belt about 3.5 km wide, and this has resulted in seawater intrusion. The groundwater is the CaHCO3 type in the recharge zone, and becomes NaHCO3 type towards the discharge area. Salinization by marine intrusion and seawater/fresh-water mixing produces an increase in the major-ion concentrations of the groundwater. The calcium content of the groundwater is higher and the sodium content is lower than those that would be expected if the mixing is considered as just the addition of seawater and fresh water in determined proportions without reactive processes taking place. Hydrogeochemical modeling was applied to the study of hydrogeochemical processes, mainly cation exchange, using the codes NETPATH and PHREEQM. Calcite and gypsum equilibrium, together with cation exchange, are the main hydrogeochemical processes. Cation-exchange capacity of the solid phase was determined by empirical calculations and experimental methods. The affinity order for the groundwater in contact with the aquifer matrix is Ca>Mg>Na in the regional-flow system, but the order is reversed in the salinization process. Reactive transport modeling using the code PHREEQM is useful for analyzing cation exchange in a marine-intrusion process. Electronic Publication  相似文献   

10.
Three-dimensional modeling of groundwater flow and solute transport in the Pearl Harbor aquifer, southern Oahu, Hawaii, shows that the readjustment of the freshwater–saltwater transition zone takes a long time following changes in pumping, irrigation, or recharge in the aquifer system. It takes about 50 years for the transition zone to move 90% of the distance to its new steady position. Further, the Ghyben–Herzberg estimate of the freshwater/saltwater interface depth occurred between the 10 and 50% simulated seawater concentration contours in a complex manner during 100 years of the pumping history of the aquifer. Thus, it is not a good predictor of the depth of potable water. Pre-development recharge was used to simulate the 1880 freshwater-lens configuration. Historical pumpage and recharge distributions were used and the resulting freshwater-lens size and position were simulated through 1980. Simulations show that the transition zone moved upward and landward during the period simulated.Previous groundwater flow models for Oahu have been limited to areal models that simulate a sharp interface between freshwater and saltwater or solute-transport models that simulate a vertical aquifer section. The present model is based on the US Geological Surveys three-dimensional solute transport (3D SUTRA) computer code. Using several new tools for pre- and post-processing of model input and results have allowed easy model construction and unprecedented visualization of the freshwater lens and underlying transition zone in Hawaiis most developed aquifer.

Electronic Supplementary Material Supplementary material is available in the online version of this article at .
Resumen La modelación tridimensional del flujo de agua subterránea y del transporte de solutos en el acuífero de Pearl Harbor, en la parte sur de Oahu, Hawaii, muestra que el reajuste de la zona de transición agua dulce–agua salada, toma un largo tiempo a partir de cambios en el bombeo, irrigación o recarga en el sistema acuífero. Le toma alrededor de 50 años, a la zona de transición, moverse el 90% de la distancia hacia su nueva posición estacionaria. Además, el estimativo de Ghyben–Herzberg, sobre la profundidad de la interfase agua dulce–agua salada, se encuentra entre el 10 y el 50% en los contornos simulados de concentración de agua salada, de una manera compleja, durante 100 años de la historia de bombeo del acuífero. Por tanto, no es este un buen predictor de la profundidad del agua potable. Se utilizó una recarga pre – desarrollo, para simular la configuración del lente de agua dulce en 1880. Fueron utilizadas las distribuciones históricas del bombeo y de la recarga y se simularon el tamaño y posición resultantes del lente de agua dulce hasta 1980. Esas simulaciones muestran que la zona de transición se movió tierra adentro y hacia arriba, durante el periodo que se simuló.Los anteriores modelos de flujo para agua subterránea en Oahu, han sido limitados a modelos areales, que simulan una interfase abrupta entre agua dulce y agua salada, o bien han sido modelos de transporte de solutos que simulan una sección vertical del acuífero. El modelo presente está basado en el programa de computador del US Geological Survey (3D SUTRA), para transporte de solutos en tres dimensiones. Mediante el uso de varias herramientas nuevas para pre – procesamiento y post – procesamiento de las entradas y resultados del modelo, se ha permitido una construcción fácil del mismo y una visualización sin precedentes del lente de agua dulce y de la zona de transición subyacente en el acuífero más desarrollado de Hawaii.

Résumé La modélisation tridimensionnelle de lécoulement et du transport dans la partie sud de laquifère Oahu-Hawai montre que le temps de réajustement de la zone de transition entre leau douce et leau salée est assez long et dépend de la variation des pompages et des irrigations, ainsi que de la recharge du système aquifère. Il sont nécessaires 50 ans pour que la zone de transition parcoure 90% de la distance qui la sépare de sa nouvelle position. La profondeur du biseau estimée par le schéma Ghyben–Herzberg se trouve entre les contours de 10 et 50% de la concentration de leau salée. Ce résultat a été obtenu après la simulation de lhistoire du pompage de laquifère pendant une période de 100 ans. Donc le schéma Ghyben–Herzberg conduit aux valeurs erronées de la profondeur de leau potable. La valeur de la recharge davant lexploitation de laquifère a été utilisée pour simuler la configuration des lentilles deau douce en 1880. En utilisant lhistoire du pompage et la distribution de la recharge ont on a simulé les dimensions et le positions des lentilles deau douce jusqu› en 1980. Les simulation montrent que le mouvement de la zone de transition est ascendant et vers le continent.Les modèles antérieurs de la zone dOahu ont été des modèles locaux qui ont simulé une interface nette eau douce-eau salée ou des modèles de transport bidimensionnels, dans une coupe verticale. Le modèle actuel est basé sur le code 3D-SUTRA, réalisé par le Service Géologique des États-Unis. L› utilisation des différents techniques de traitement des données a permis une construction facile du modèle, ainsi qu› une visualisation sans précédent des lentilles deau douces et de la zone de transition sous-jacente dans le plus grand aquifère du Hawai.
  相似文献   

11.
 "Capture" is the increase in recharge and the decrease in discharge that occurs when pumping is imposed on an aquifer system that was in a previous state of approximate dynamic equilibrium. Regional groundwater models are usually used to calculate capture in a two-step procedure. A steady-state solution provides an initial-head configuration, a set of flows through the boundaries for the modeled region, and the initial basis for the capture calculation. The transient solutions provide the total change in flows through the boundaries. A difference between the transient and steady-state solutions renders the capture calculation. When seasonality is a modeling issue, the use of a single initial hydraulic head and a single set of boundary flows leads to miscalculations of capture. Instead, an initial condition for each season should be used. This approach may be accomplished by determining steady oscillatory solutions, which vary through the seasons but repeat from year to year. A regional groundwater model previously developed for a portion of the San Pedro River basin, Arizona, USA, is modified to illustrate the effect that different initial conditions have on transient solutions and on capture calculations. Received, September 1996 · Revised, October 1997 · Accepted, October 1997  相似文献   

12.
Rainfall is the main source of groundwater recharge in the Gaza Strip area in Palestine. The area is located in the semi-arid zone and there is no source of recharge other than rainfall. Estimation of groundwater recharge from rainfall is not an easy task since it depends on many uncertain parameters. The cumulative rainfall departure (CRD) method, which depends on the water balance principle, was used in this study to estimate the net groundwater recharge from rainfall. This method does not require much data as is the case with other classical recharge estimation methods. The CRD method was carried out using optimisation approach to minimise the root mean square error (RMSE) between the measured and the simulated groundwater head. The results of this method were compared with the results of other recharge estimation methods from literature. It was found that the results of the CRD method are very close to the results of the other methods, but with less data requirements and greater ease of application. Based on the CRD method, the annual amount of groundwater recharge from rainfall in the Gaza Strip is about 43 million m3. An erratum to this article can be found at  相似文献   

13.
 The Dawu well field, one of the largest in China, supplies most of the water for the Zibo City urban area in Shandong Province. The field yields 522,400–535,400 m3/d from an aquifer in fractured karstic Middle Ordovician carbonate rocks. Much of the recharge to the aquifer is leakage of surface water from Zihe Stream, the major drainage in the area. Installation of the Taihe Reservoir in 1972 severely reduced the downstream flow in Zihe Stream, resulting in a marked reduction in the water table in the Dawu field. Since 1994, following the installation of a recharge station on Zihe Stream upstream from the well field that injects water from the Taihe Reservoir into the stream, the groundwater resources of the field have recovered. An average of 61.2×103 m3/d of groundwater, mostly from the Ordovician aquifer, is pumped from the Heiwang iron mine, an open pit in the bed of Zihe Stream below the Taihe Reservoir. A stepwise regression equation, used to evaluate the role of discharge from the reservoir into the stream, confirms that reservoir water is one of the major sources of groundwater in the mine. Received, May 1998 / Revised, May 1999 / Accepted, June 1999  相似文献   

14.
A numerical assessment of seawater intrusion in Gaza, Palestine, has been achieved applying a 3-D variable density groundwater flow model. A two-stage finite difference simulation algorithm was used in steady state and transient models. SEAWAT computer code was used for simulating the spatial and temporal evolution of hydraulic heads and solute concentrations of groundwater. A regular finite difference grid with a 400 m2 cell in the horizontal plane, in addition to a 12-layer model were chosen. The model has been calibrated under steady state and transient conditions. Simulation results indicate that the proposed schemes successfully simulate the intrusion mechanism. Two pumpage schemes were designed to use the calibrated model for prediction of future changes in water levels and solute concentrations in the groundwater for a planning period of 17 years. The results show that seawater intrusion would worsen in the aquifer if the current rates of groundwater pumpage continue. The alternative, to eliminate pumpage in the intruded area, to moderate pumpage rates from water supply wells far from the seashore and to increase the aquifer replenishment by encouraging the implementation of suitable solutions like artificial recharge, may limit significantly seawater intrusion and reduce the current rate of decline of the water levels.  相似文献   

15.
The Basin of the Valley of Mexico is a closed basin of 9600?km2, where average annual precipitation (1980–85) is 746?mm (226.7?m3/s). Calculated actual evapotranspiration is 72–79% of the precipitation. The surrounding mountain ranges of the Sierra de Las Cruces, Sierra Nevada, and Sierra Chichinautzin are the main recharge areas for the enclosed Basin, in decreasing order. Calculated recharge rate is a maximum of 19?m3/s in the Metropolitan Zone, whereas a recent estimate of the groundwater exploitation rate indicates that 51.35?m3/s is being withdrawn from the Basin aquifer systems, resulting in a deficit of more than 30?m3/s. Taking into account infiltration processes by leaking water-supply systems, the calculated deficit is reduced to 20.5?m3/s. Overexploitation of the natural aquifer systems is also indicated by an average annual decline of 1?m of the potentiometric levels of the shallow groundwater systems. Possible solutions include: (1) the use of surface runoff water (unused amount in 1995?:?17.6?m3/s) for consumption purposes, which is currently pumped to areas outside the Basin; (2) an increased number and capacity of treatment plants; (3) the renovation of the leaky water-distribution network; (4) the reinjection of treated water; and (5) possible exploitation of deep regional aquifer systems.  相似文献   

16.
17.
18.
A method of identifying the dominant hydrodynamic sea-intrusion mechanism of brackish karst springs is presented. A karst spring becomes brackish when tubes, which bring the freshwater to the spring (freshwater discharge), intersect other tubes that come from the sea and bring saltwater to the freshwater tubes (saltwater discharge) when the saltwater pressure at the intersection is higher than the freshwater pressure. There are two potential seawater intrusion mechanisms. The first one is the difference between the freshwater density and the seawater density, and the second is the venturi effect. Both mechanisms are present but it is a matter of great significance to know which mechanism dominates. In order to find out the dominant mechanism, the seawater discharge versus the freshwater discharge was charted using the MODKARST model, which estimates these discharges. The model determines how the freshwater discharge affects the saltwater discharge estimating thereby the dominant seawater intrusion mechanism. Application was made to the “Almiros” and “Makaria” springs in Greece.
Resumen Se presenta un método para identificar el mecanismo hidrodinámico dominante de la intrusión marina en manantiales salobres cársticos. Un manantial cárstico se vuelve salobre cuando los conductos, que suministran agua dulce al manantial (caudal de agua dulce), interceptan a otros conductos provenientes del mar que traen agua salada a este (caudal de agua salada), bajo la condición que la presión del agua salada en la intersección es mayor que la del agua dulce. Hay dos mecanismos potenciales de intrusión salina. El primero es la diferencia de densidades entre agua salada y agua dulce, mientras que el segundo es el efecto venturi. Ambos mecanismos están presentes en cualquier caso, sin embargo es de gran importancia establecer cual de ellos predomina. Con el fin de hallar el mecanismo dominante se tabularon los valores de caudal de agua salada versus el de agua dulce. Lo anterior fue posible mediante el uso del modelo MODKARST, el cual estima estos caudales. A partir de esta tabla se puede examinar como el caudal de agua dulce afecta al de agua salada, estimando como resultado de lo anterior el mecanismo dominante en la intrusión marina. Esto se aplicó a los manantiales “Almiros” y “Makaria” en Grecia.

Résumé On présente une méthode pour déterminer le mécanisme hydraulique dominant de l’intrusion de l’eau salée marine dans le cas des émergences karstiques saumatres. Une émergence karstique devienne saumatre á l’intersection des conduites de l’eau douce avec des autres conduits qui apportent l’eau salée de la mer. Ce processus est possible si la pression de l’eau salée dépasse la pression de l’eau douce. Il y a deux mécanismes potentiels de l’intrusion de l’eau salée. A la base du premier mécanisme se trouve la différence entre les densités de l’eau douce et de l’eau salée pendant que dans le deuxième mécanisme il s’agit de phénomène Venturi. Afin de trouver le mécanisme dominant on a cartographié avec le modèle MODKARST le rapport entre les décharges de l’eau douces et respectivement de l’eau salée. A partir de la carte résultée on peut estimer comment la décharge de l’eau douce influence celle de l’eau salée en estimant en même temps le mécanisme dominat de l’eau salée. On a appliqué la méthode dans le cas des émergences d’Almiros et Makaria de la Grèce.
  相似文献   

19.
Source, type, and quantity of various components of groundwater, as well as their spatial and temporal variations were determined by different hydrochemical methods in the alluvial aquifer of the upper Rhone River valley, Bois de Finges, Wallis Canton, Switzerland. The methods used are hydrochemical modeling, stable-isotope analysis, and chemical analysis of surface water and groundwater. Sampling during high- and low-water periods determined the spatial distribution of the water chemistry, whereas monthly sampling over three years provided a basis for understanding seasonal variability. The physico-chemical parameters of the groundwater have spatial and seasonal variations. The groundwater chemical composition of the Rhone alluvial aquifer indicates a mixing of weakly mineralized Rhone River water and SO4-rich water entering from the south side of the valley. Temporal changes in groundwater chemistry and in groundwater levels reflect the seasonal variations of the different contributors to groundwater recharge. The Rhone River recharges the alluvial aquifer only during the summer high-water period. Electronic Publication  相似文献   

20.
Numerical modeling and dimensional analysis is used to study the salinization of thick, high-permeability aquifers by free convection from a salt source at the surface. Current understanding of this process mainly concerns the initial stages of salinization only (boundary-layer development, break-up into fingers and initial phase of finger descent). In the modeling, special attention is paid to the role of two processes in the long-term salinization rate: (1) the progressive loss of salt from fingers by lateral diffusion, and (2) the coalescence of fingers during their descent. From the numerical simulations a relationship is derived that describes the development of the horizontally averaged salinity with depth and time as a function of permeability and initial-density contrast for aquifer Rayleigh numbers up to Ra =6,000. This relationship is consistent with and provides an extension to previous generalized relationships of the rate of finger descent. Its applicability to real-world aquifers (Ra >105) that include complexities due to anisotropy, heterogeneity, and mechanical dispersion is discussed. Application to the Pleistocene coastal aquifer of the Netherlands (thickness 200 m, permeability 10-11 m2) suggests that salinization of the aquifer during historic episodes of inundation by seawater occurred within decades.
Resumen Se utiliza modelos numéricos y un análisis dimensional para estudiar la salinización de acuíferos potentes de alta permeabilidad por convección libre a partir de una fuente salina superficial. El conocimiento acutal de este proceso se limita a las fases iniciales de la salinización (desarrollo de la capa de contorno, creación de digitaciones y fase inicial de la progresión de éstas). En la modelación, se presta atención especial al papel desempeñado por dos procesos de salinización a largo plazo: (1) la pérdida progresiva de sal por difusión lateral desde las digitaciones, y (2) la coalescencia de las digitaciones durante su avance. A partir de las simulaciones numéricas, se obtiene una relación que describe el desarrollo de la salinidad con la profundidad y el tiempo, promediada horizontalmente, el cual depende de la permeabilidad y del contraste inicial de densidad para números de Rayleigh inferiores a 6.000. Esta relación es coherente con índices previos generalizados del avance de las digitaciones, y representa una extensión a estos. Se discute su aplicabilidad a acuíferos reales (con números de Rayleigh superiores a 105), que tienen complejidades asociadas a la anisotropía, la heterogeneidad y la dispersión mecánica. La aplicación al acuífero costero Pleistoceno de los Países Bajos (20 m de potencia y 10-11 m2 de permeabilidad) sugiere que la salinización tuvo lugar en décadas, debido a episodios históricos de inundación por aguas marinas.

Résumé Une modélisation numérique et une analyse dimensionnelle ont été mises en oeuvre pour étudier la salinisation d'aquifères épais et à forte perméabilité par convection libre d'une source de sel en surface. La compréhension habituelle de ce processus concerne principalement les étapes initiales de la salinisation seule (développement d'une couche limite, partition en digitations et phase initiale de développement des digitation). Dans la modélisation, une attention particulière a été portée au rôle de deux processus du taux de salinisation à long terme: (1) la perte progressive de sel dans les digitations par diffusion latérale et (2) la coalescence des digitations au cours de leur développement. À partir de simulations numériques, une relation a été obtenue qui permet de décrire l'extension de la salinité horizontalement en profondeur et au cours du temps en fonction de la perméabilité et du contraste initial de densité pour des nombres de Rayleigh de l'aquifère jusqu'à Ra =6,000. Cette relation est compatible avec ces résultats et fournit une extension des relations précédemment généralisées du taux de développement des digitations. On discute son applicabilité à des aquifères réels (Ra >105) incluant des complexités liées à l'anisotropie, l'hétérogénéité et la dispersion mécanique. L'application à l'aquifère côtier du Pléistocène des Pays-Bas (épaisseur environ 200 m, perméabilité environ10–11 m2) laisse penser que la salinisation de cet aquifère au cours d'épisodes historiques d'inondation par la mer s'est produit durant des décennies.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号