首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The rigorous determination of orthometric heights   总被引:1,自引:2,他引:1  
The main problem of the rigorous definition of the orthometric height is the evaluation of the mean value of the Earth’s gravity acceleration along the plumbline within the topography. To find the exact relation between rigorous orthometric and Molodensky’s normal heights, the mean gravity is decomposed into: the mean normal gravity, the mean values of gravity generated by topographical and atmospheric masses, and the mean gravity disturbance generated by the masses contained within geoid. The mean normal gravity is evaluated according to Somigliana–Pizzetti’s theory of the normal gravity field generated by the ellipsoid of revolution. Using the Bruns formula, the mean values of gravity along the plumbline generated by topographical and atmospheric masses can be computed as the integral mean between the Earth’s surface and geoid. Since the disturbing gravity potential generated by masses inside the geoid is harmonic above the geoid, the mean value of the gravity disturbance generated by the geoid is defined by applying the Poisson integral equation to the integral mean. Numerical results for a test area in the Canadian Rocky Mountains show that the difference between the rigorously defined orthometric height and the Molodensky normal height reaches ∼0.5 m.  相似文献   

2.
Following our earlier definition of the rigorous orthometric height [J Geod 79(1-3):82–92 (2005)] we present the derivation and calculation of the differences between this and the Helmert orthometric height, which is embedded in the vertical datums used in numerous countries. By way of comparison, we also consider Mader and Niethammer’s refinements to the Helmert orthometric height. For a profile across the Canadian Rocky Mountains (maximum height of ~2,800 m), the rigorous correction to Helmert’s height reaches ~13 cm, whereas the Mader and Niethammer corrections only reach ~3 cm. The discrepancy is due mostly to the rigorous correction’s consideration of the geoid-generated gravity disturbance. We also point out that several of the terms derived here are the same as those used in regional gravimetric geoid models, thus simplifying their implementation. This will enable those who currently use Helmert orthometric heights to upgrade them to a more rigorous height system based on the Earth’s gravity field and one that is more compatible with a regional geoid model.  相似文献   

3.
This paper studies the use of two new methods for gravimetric geoid undulation computations: The Molodenskii's and Sjöberg's methods that both modify the original Stokes'function so that certainrms errors are minimized. These new methods were checked against the traditional methods of Stokes' and Meissl's modification with the criterion of the globalrms undulation error that each method implies. Sjöberg's method gave consistently the smallest globalrms undulation error of all the other methods for capsizes 0° to 10°. However with the exception of Stokes' method, for capsizes between 0° to 5°, all the methods gave approximately (within±5cm) the same globalrms undulation error. Actual gravity data within a cap of 2° and potential coefficient information were then combined to compute the undulation of 39 laser stations distributed around the world. Therms discrepancy between the gravimetric undulations using all the four methods and the undulations computed as the ellipsoidal minus the orthometric height of 28 at the above stations was±1.70,±1.65,±1.66,±1.65m for the Stokes', Meissl's, Molodenskii's and Sjöberg's method respectively. For five oceanic laser stations where no terrestrial gravity data was available, theGEOS-3/SEASAT altimeter sea surface heights were used to compute the undulations of these stations in a collocation method. Therms discrepancy between the altimeter derived undulation and the ellipsoidal mirus orthometric value of the undulation was ±1.30m for the above five laser stations.  相似文献   

4.
Fast and accurate relative positioning for baselines less than 20 km in length is possible using dual-frequency Global Positioning System (GPS) receivers. By measuring orthometric heights of a few GPS stations by differential levelling techniques, the geoid undulation can be modelled, which enables GPS to be used for orthometric height determination in a much faster and more economical way than terrestrial methods. The geoid undulation anomaly can be very useful for studying tectonic structure. GPS, levelling and gravity measurements were carried out along a 200-km-long highly undulating profile, at an average elevation of 4000 m, in the Ladak region of NW Himalaya, India. The geoid undulation and gravity anomaly were measured at 28 common GPS-levelling and 67 GPS-gravity stations. A regional geoid low of nearly −4 m coincident with a steep negative gravity gradient is compatible with very recent findings from other geophysical studies of a low-velocity layer 20–30 km thick to the north of the India–Tibet plate boundary, within the Tibetan plate. Topographic, gravity and geoid data possibly indicate that the actual plate boundary is situated further north of what is geologically known as the Indus Tsangpo Suture Zone, the traditionally supposed location of the plate boundary. Comparison of the measured geoid with that computed from OSU91 and EGM96 gravity models indicates that GPS alone can be used for orthometric height determination over the Higher Himalaya with 1–2 m accuracy. Received: 10 April 1997 / Accepted: 9 October 1998  相似文献   

5.
This paper takes advantage of space-technique-derived positions on the Earth’s surface and the known normal gravity field to determine the height anomaly from geopotential numbers. A new method is also presented to downward-continue the height anomaly to the geoid height. The orthometric height is determined as the difference between the geodetic (ellipsoidal) height derived by space-geodetic techniques and the geoid height. It is shown that, due to the very high correlation between the geodetic height and the computed geoid height, the error of the orthometric height determined by this method is usually much smaller than that provided by standard GPS/levelling. Also included is a practical formula to correct the Helmert orthometric height by adding two correction terms: a topographic roughness term and a correction term for lateral topographic mass–density variations.  相似文献   

6.
本文利用登山路线上的实测重力点,通过试算分析确定了珠穆朗玛峰地区应采用的均衡模型及均衡深度,并利用该均衡模型推估了珠穆朗玛峰峰顶地形均衡重力异常与珠穆朗玛峰峰顶重力值。根据正常高和正高换算关系的需要,计算了珠穆朗玛峰峰顶沿垂线方向至黄海平均海平面的重力值的平均值与正常重力值的平均值,在此基础上完成了珠穆朗玛峰峰顶正常高和正高的换算,即大地水准面与似大地水准面差值计算,并对此结果采用其他方法进行了验证。  相似文献   

7.
Geopotential, dynamic, orthometric and normal height systems and the corrections related to these systems are evaluated in this paper. Along two different routes, with a length of about 5 kilometers, precise leveling and gravity measurements are done. One of the routes is in an even field while the other is in a rough field. The magnitudes of orthometric, normal and dynamic corrections are calculated for each route. Orthometric, dynamic, and normal height differences are acquired by adding the corrections to the height differences obtained from geometric leveling. The magnitudes of the corrections between the two routes are compared. In addition, by subtracting orthometric, dynamic, and normal heights from geometric leveling, deviations of these heights from geometric leveling are counted.  相似文献   

8.
重力归算及其对大地水准面及外部重力场的影响   总被引:2,自引:1,他引:2  
申文斌 《测绘科学》2006,31(6):30-32
本文论述并探讨了各种不同的重力归算方法对大地水准面以及地球外部重力场的影响,讨论了与确定cm级大地水准面相关的一些问题,特别阐述了高程误差对大地水准面的影响。  相似文献   

9.
Terrestrial free-air gravity anomalies form a most essential data source in the framework of gravity field determination. Gravity anomalies depend on the datums of the gravity, vertical, and horizontal networks as well as on the definition of a normal gravity field; thus gravity anomaly data are affected in a systematic way by inconsistencies of the local datums with respect to a global datum, by the use of a simplified free-air reduction procedure and of different kinds of height system. These systematic errors in free-air gravity anomaly data cause systematic effects in gravity field related quantities like e.g. absolute and relative geoidal heights or height anomalies calculated from gravity anomaly data. In detail it is shown that the effects of horizontal datum inconsistencies have been underestimated in the past. The corresponding systematic errors in gravity anomalies are maximum in mid-latitudes and can be as large as the errors induced by gravity and vertical datum and height system inconsistencies. As an example the situation in Australia is evaluated in more detail: The deviations between the national Australian horizontal datum and a global datum produce a systematic error in the free-air gravity anomalies of about −0.10 mgal which value is nearly constant over the continent  相似文献   

10.
The set of plumb lines and the set of lines perpendicular to the geoid are shown to be geodesics of the local geometry. From the properties of geodesics, it is shown that the two sets are identical. Therefore, reduction of gravity along a perpendicular is equivalent to reduction along a plumb line.  相似文献   

11.
论述了高精度推求正高的两种方法 ,并对正高精度的推估及其在模型上的试算也作了讨论 ,对于海拔为 5 0 0 0m的高山 ,正高的误差一般不超过± 1 0cm ,这与距青岛水准原点达数千公里的西部高山 (原 )处正常高的精度也比较接近  相似文献   

12.
In an elementary approach every geometrical height difference between the staff points of a levelling line should have a corresponding average g value for the determination of potential difference in the Earth’s gravity field. In practice this condition requires as many gravity data as the number of staff points if linear variation of g is assumed between them. Because of the expensive fieldwork, the necessary data should be supplied from different sources. This study proposes an alternative solution, which is proved at a test bed located in the Mecsek Mountains, Southwest Hungary, where a detailed gravity survey, as dense as the staff point density (~1 point/34 m), is available along a 4.3-km-long levelling line. In the first part of the paper the effect of point density of gravity data on the accuracy of potential difference is investigated. The average g value is simply derived from two neighbouring g measurements along the levelling line, which are incrementally decimated in the consecutive turns of processing. The results show that the error of the potential difference between the endpoints of the line exceeds 0.1 mm in terms of length unit if the sampling distance is greater than 2 km. Thereafter, a suitable method for the densification of the decimated g measurements is provided. It is based on forward gravity modelling utilising a high-resolution digital terrain model, the normal gravity and the complete Bouguer anomalies. The test shows that the error is only in the order of 10−3mm even if the sampling distance of g measurements is 4 km. As a component of the error sources of levelling, the ambiguity of the levelled height difference which is the Euclidean distance between the inclined equipotential surfaces is also investigated. Although its effect accumulated along the test line is almost zero, it reaches 0.15 mm in a 1-km-long intermediate section of the line.  相似文献   

13.
Analytical continuation of gravity anomalies and height anomalies is compared with Helmert's second condensation method. Assuming that the density of the terrain is constant and known the latter method can be regarded as correct. All solutions are limited to the second power of H/R, where H is the orthometric height of the terrain and R is mean sea-level radius. We conclude that the prediction of free-air anomalies and height anomalies by analytical continuation with Poisson's formula and Stokes's formula goes without error. Applying the same technique for geoid determination yields an error of the order of H2, stemming from the failure of analytical continuation inside the masses of the Earth.  相似文献   

14.
2005年我国对珠穆朗玛峰高程进行了新的测定,为此在珠峰及其邻近地区开展了大规模的大地测量数据获取和数据处理工作。相对于1975年珠峰测高,2005年在珠峰以北地区的地面控制和珠峰高程测定中采用了GPS技术,采用了雷达探测技术测定珠峰峰顶冰雪覆盖层的深度,利用地球重力场模型、重力和数字地形数据、以及GPS水准等资料,精化珠峰地区的大地水准面,提高了测量珠峰高程和探测峰顶冰雪覆盖层深度的精度和可靠性。由此测得珠峰峰顶雪面正常高为8 846.67 M,珠峰峰顶雪面正高(海拔高)为8 847.93 M,珠峰峰顶岩面正高为8 844.43 M,珠峰峰顶相应点的冰雪层厚度为3.50 M。  相似文献   

15.
    
The application of a Sartorius 4104 microbalance after Gast in vertical gradiometry was tested. A small mass of about 20 grams is suspended on thin fibers of different lengths Δℓ≤80 cm. From the weight difference of the small mass obtained at different levels along the plumb line the corresponding differences of gravity along the plumb line are inferred. The microbalance is mounted on a steal rack; measurements at constant low pressure (moderate vacuum) show the applicability of the balance as gravity difference sensor for field work. When environmental effects are further reduced (i,e, temperature is kept constant within ±0.1°C; pressure is controlled within 0.1 Torr etc.) the resolution of the balance can be fully exploited so a relative accuracy of ±10−9 should be feasible and for laboratory experiments should be of the order of a few parts in ±10−10. Vertical gravity gradients as observed on an improved moving platform with a LaCoste model G gravimeter are discussed. New possibilities of microgravimetry are pointed out. High precision observations and establishment of a system in an area of tectonic interest for detecting secular gravity changes are described. Paper presented at the meeting of the “International Gravity Commission”, Paris, September 1974.  相似文献   

16.
Calibration of satellite gradiometer data aided by ground gravity data   总被引:1,自引:0,他引:1  
Parametric least squares collocation was used in order to study the detection of systematic errors of satellite gradiometer data. For this purpose, simulated data sets with a priori known systematic errors were produced using ground gravity data in the very smooth gravity field of the Canadian plains. Experiments carried out at different satellite altitudes showed that the recovery of bias parameters from the gradiometer “measurements” is possible with high accuracy, especially in the case of crossing tracks. The mean value of the differences (original minus estimated bias parameters) was relatively large compared to the standard deviation of the corresponding second-order derivative component at the corresponding height. This mean value almost vanished when gravity data at ground level were combined with the second-order derivative data set at satellite altitude. In the case of simultaneous estimation of bias and tilt parameters from ∂2 T/∂z 2“measurements”, the recovery of both parameters agreed very well with the collocation error estimation. Received: 10 October 1996 / Accepted 25 May 1998  相似文献   

17.
When height networks are being adjusted, many geodesists advocate the approach where the adjustment should be done by using geopotential numbers rather than the orthometric or normal heights used in practice. This is based on a conviction that neither orthometric nor normal heights can be used for the adjustment because these height systems are not holonomic, meaning–among other things–that height increments (orthometric or normal) when summed around a closed loop do not sum up to zero. If this was the case, then the two height systems could not be used in the adjustment; the non-zero loop closure would violate the basic, usually unspoken, assumption behind the adjustment, namely that the model claiming that height differences are observable is correct. In this paper, we prove in several different ways that orthometric and normal heights are theoretically just as holonomic as the geopotential numbers are, when they are obtained from levelled height differences using actual gravity values. This disposes of the argument that geopotential numbers should be used in the adjustment. Both orthometric and normal heights are equally qualified to be used in the adjustment directly.  相似文献   

18.
This paper investigates the normal-orthometric correction used in the definition of the Australian Height Datum, and also computes and evaluates normal and Helmert orthometric corrections for the Australian National Levelling Network (ANLN). Testing these corrections in Australia is important to establish which height system is most appropriate for any new Australian vertical datum. An approximate approach to assigning gravity values to ANLN benchmarks (BMs) is used, where the EGM2008-modelled gravity field is used to ‘re-construct’ observed gravity at the BMs. Network loop closures (for first- and second-order levelling) indicate reduced misclosures for all height corrections considered, particularly in the mountainous regions of south eastern Australia. Differences between Helmert orthometric and normal-orthometric heights reach 44 cm in the Australian Alps, and differences between Helmert orthometric and normal heights are about 26 cm in the same region. Normal-orthometric heights differ from normal heights by up to 18 cm in mountainous regions >2,000 m. This indicates that the quasigeoid is not compatible with normal-orthometric heights in Australia.  相似文献   

19.
利用我国实测重力值计算完成了全国5'×5'格网平均空间重力异常,并结合重力场模型WDM94,利用国内外最新发展起来的快速谱算法确定了我国高分辨率5'×5'重力大地水准面WZD94。  相似文献   

20.
Model computations were performed for the study of numerical errors which are interjected into local geoid computations byFFT. The gravity field model was generated through the attractions of granitic prisms derived from actual geology. Changes in sampling interval introduced only0.3 cm variation in geoid heights. Although zero padding alone provided an improvement of more than5 cm in theFFT generated geoid, the combination of spectral windowing (tapering) and padding further reduced numerical errors. For theGPS survey of Franklin County, Ohio, the parameters selected as a result of model computations, allow large reduction in local data requirements while still retaining the centimeter accuracy when tapering and padding is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号