首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Here, we present two high-resolution records of macroscopic charcoal from high-elevation lake sites in the Sierra Nevada, California, and evaluate the synchroneity of fire response for east- and west-side subalpine forests during the past 9200 yr. Charcoal influx was low between 11,200 and 8000 cal yr BP when vegetation consisted of sparse Pinus-dominated forest and montane chaparral shrubs. High charcoal influx after ∼ 8000 cal yr BP marks the arrival of Tsuga mertensiana and Abies magnifica, and a higher-than-present treeline that persisted into the mid-Holocene. Coeval decreases in fire episode frequency coincide with neoglacial advances and lower treeline in the Sierra Nevada after 3800 cal yr BP. Independent fire response occurs between 9200 and 5000 cal yr BP, and significant synchrony at 100- to 1000-yr timescales emerges between 5000 cal yr BP and the present, especially during the last 2500 yr. Indistinguishable fire-return interval distributions and synchronous fires show that climatic control of fire became increasingly important during the late Holocene. Fires after 1200 cal yr BP are often synchronous and corroborate with inferred droughts. Holocene fire activity in the high Sierra Nevada is driven by changes in climate linked to insolation and appears to be sensitive to the dynamics of the El Niño-Southern Oscillation.  相似文献   

2.

Heinrich 1事件是发生于末次冰消期的极端气候突变事件之一,对全球大气环流和陆地生态格局产生了深刻影响。基于对东亚夏季风边缘区最北端呼伦湖HL08孔5.75 m以上沉积岩芯的AMS 14C定年技术和415~275 cm段140个样品的孢粉分析,重建了东亚中高纬地区呼伦湖21500~13000 cal.a B.P.高分辨率植被变化历史,在此基础上揭示了Heinrich 1事件期间呼伦湖区植被响应过程,明确了Heinrich 1事件在东亚中高纬地区的表现特征。结果显示:呼伦湖区Heinrich 1事件发生于16500~15400 cal.a B.P.,以剧烈降温和显著干旱化为表现特征;事件发生期间湖区周围山地发育亚高山草甸,森林植被稀疏;湖盆区域以藜科为主的荒漠草原显著扩张,区域植被盖度降低、生态环境明显恶化;同时,不同植被类型对Heinrich 1事件的响应存在明显差别,亚高山草甸和蒿属为主的典型草原较藜科为主的荒漠草原和桦属为主的落叶阔叶林响应更为快速、敏感。

  相似文献   

3.
《International Geology Review》2012,54(11):1010-1032
The main purpose of the present study is the development of concepts and methods suitable for deriving climatological information on the basis of phytoindication in semiarid-semihumid regions where no climatological data are available. The macroclimate of the southwestern United States can be clearly defined using regression analysis. The humid oceanic and temperate climate in the western part of this region is distinguished from the dry continental climate of the Great Basin east of the Sierra Nevada. The very important role of summer precipitation for the distribution of vegetation is explained from a climatic-ecological point of view. Although microclimatic conditions point to unfavorable conditions for plant growth—extreme amounts of radiation lead to increasing thermal stress with altitude—the gradients of soil moisture during the warm season explain high vegetation densities.

Phytogeographical aspects show a clear separation between the Sierra Nevada and the White Mountains and between the White Mountains and Wheeler Peak. Lowest vegetation density is found in the Owens Valley and not, as might be expected, in the eastern part of the Great Basin. Thus, although the White Mountains are situated adjacent to the Sierra, their vegetation shows weak relations to the Sierran and Californian floristic province. In fact, Great Basin plants constitute the majority. An overall floristic comparison establishes a continuous change from the White Mountains to Wheeler Peak and an abrupt transition between the vegetation of the Sierra Nevada and the White Mountains.  相似文献   

4.
南海南部末次冰期以来的孢粉记录及其气候意义   总被引:24,自引:0,他引:24  
李逊  孙湘君 《第四纪研究》1999,19(6):526-535
本文通过分析南海南部17964柱状样的孢粉记录,重建了该地区26000aB.P.以来的植被和气候变化历史。南海南部末次盛冰期时高山雨林的范围可能是现在的2~3倍,表明气温明显下降;从末次盛冰期到冰消期,巽他陆架一直为热带低地雨林及红树林占据,表明在此期间湿度没有明显变化,但存在着千年级的准周期波动。这种波动一直持续到全新世中期。本地区在2000aB.P.以来芒萁孢子大量增加,一些高山雨林的成分重新出现,可能与人类活动所导致的低地植被的破坏有关。  相似文献   

5.
In addition to being of interest to ancient Greek and Roman historians, the site of Philippi, NE Greece, has long been noted in Quaternary circles for providing the longest continuous European pollen record, spanning the last one million years. Here the original age model is re-evaluated and a new marine-terrestrial correlation is proposed. An astronomical calibration procedure, based on a correspondence between changes in certain vegetation elements and March and June perihelion configurations, suggests that the base of the sequence extends back to 1.35 million years ago. The revised chronological framework for the Tenaghi Philippon sequence provides an opportunity to examine the long-term behaviour of individual taxa and vegetation trends within the context of global climate changes. Comparisons reveal a close correspondence between the terrestrial and marine records, in terms of orbital and suborbital variability. However, joint time-frequency analysis of the arboreal pollen record shows that the obliquity and eccentricity/precession signals persist into the ‘100-kyr’ and ‘41-kyr’ worlds, respectively, suggesting the operation of additional climate mechanisms that are independent of high-latitude glacial–interglacial effects. Unlike ice core and marine sequences, no change in the magnitude of interglacial tree population expansions is observed after the Mid-Brunhes Event. Instead, the Tenaghi Philippon record suggests a major shift in the vegetational composition of interglacials after MIS 16, with the establishment of forests of reduced diversity and a ‘modern’ appearance.  相似文献   

6.
Pollen and macrofossil analyses of a core spanning 26,000 yr from Davis Lake reveal late Pleistocene and Holocene vegetational patterns in the Puget Lowland. The core ranges lithologically from a basal inorganic clay to a detritus gyttja to an upper fibrous peat and includes eight tephra units. The late Pleistocene pollen sequence records two intervals of tundra-parkland vegetation. The earlier of these has high percentages of Picea, Gramineae, and Artemisia pollen and represents the vegetation during the Evans Creek Stade (Fraser Glaciation) (ca. 25,000–17,000 yr B.P.). The later parkland interval is dominated by Picea, Tsuga mertensiana, and Gramineae. It corresponds to the maximum ice advance in the Puget Lowland during the Vashon Stade (Fraser Glaciation) (ca. 14,000 yr B.P.). An increase in Pinus ontorta pollen between the two tundra-parkland intervals suggests a temporary rise in treeline during an unnamed interstade. After 13,500 yr B.P., a mixed woodland of subalpine and lowland conifers grew at Davis Lake during a period of rapid climatic amelioration. In the early Holocene, the prolonged expansion of Pseudotsuga and Alnus woodland suggests dry, temperate conditions similar to those of present rainshadow sites in the Puget Lowland. More-mesic forests of Tsuga eterophylla, Thuja plicata, and Pseudotsuga, similar to present lowland vegetation, appeared in the late Holocene (ca. 5500 yr B.P.).  相似文献   

7.
Until recently, the oldest-known packrat (Neotoma spp.) midden records of desert scrub vegetation were less than 10,500 yr old and were restricted to altitudes below 300 m in the northern Sonoran Desert. Recent discovery of macrofossil assemblages in the Mojave Desert extends the record of desert vegetation back to 14,800 yr ago and to altitudes as high as 910 m. Although xerophytic conifer woodland was widespread in current desert habitats during the Late Wisconsin and early Holocene, the development of extensive desert vegetation was not delayed until the beginning of the middle Holocene. A regional vegetation mosaic of desert scrub and woodland existed at altitudes below 1000 m in the Mojave Desert during the last part of the Late Wisconsin.  相似文献   

8.
第四纪冰期与间冰期旋回的形成过程,及其陆生植被系统的响应及演化过程是研究地质时期全球变化的重点问题,本文通过对华北地区北部LN1钻孔的121个高质量孢粉数据重建了过去3 Ma以来的区域植被演化过程。研究结果显示,区域植被经历了4个主要发展过程,约3~2 Ma气候相对温暖湿润,主要为以松、桦、栎、胡桃、榆等组成的落叶阔叶林;约2 Ma,区域植被急剧变化,主要表现为针叶林扩张,阔叶林比例的减少,在2~1. 2 Ma转变为以松、云杉、桦为主的针阔叶混交林。在中更新世全球气候转型期,区域植被再次发生迅速改变,在约1. 2~0. 7 Ma转变为稀树的灌丛草原,0. 7 Ma以后区域气候进一步干旱化,在最近0. 7 Ma内区域环境转变为典型草原为主的植被景观。区域的植被变化反映了华北平原区近3 Ma以来整体上呈现出干旱化与寒冷化的趋势,其中2. 0 Ma,1. 2 Ma, 0. 7 Ma气候事件最为突出。上述结果反映了华北地区植被的演变过程及季风降水的逐渐减少与北极冰盖在近3 Ma以来的迅速扩张期同步对应。  相似文献   

9.
The marine record shows that over the last 350 ka Northern Hemisphere ice sheet volumes have fluctuated widely and only on rare short occasions have they been reduced to the present interglacial state. The fluctuations are well synchronized with hemispheric average summer insolation variations of 20 ka periodicity caused by changing orbital parameters. The development of a model which explains the varied amplitudes of the fluctuations and is consistent with the geological record embodies the following arguments: The transition from an interglacial state like today's to a glacial state is initiated when a summer insolation deficit causes a southerly extension of the North Atlantic-Arctic pack ice to 60°N latitude. The extension alters the subpolar low pressure patterns and thus causes a southward diversion of the European Gulf Stream flow. It also produces an enhanced warm West Greenland current. This current causes open seas as far north as Baffin Bay which provides moisture for rapid northern Laurentide ice sheet growth. After several glacial fluctuations driven by insolation variations, the southern Laurentide ice front may reach an extreme extension. This diverts the westerlies and the Gulf Stream thus weakening a dominant subpolar North Atlantic gyre and consequently producing a prolonged cutoff of the West Greenland current and a reduction of high latitude glacial precipitation. The subsequent high insolation can then melt back the eastern pack ice and restore the northern European Gulf Stream. This warms the high latitudes for a time sufficient to melt the continental ice, thus causing the transition back to the interglacial state.An analysis of the record in the context of model suggests that the threshold deficit in average summer insolation that is required to initiate major glacial growth is influenced by the cooling effect of the Greenland ice cap on the seas to the east. The threshold level under conditions like today's is found to lie between ?7 and ?17 ly/day relative to the present. This threshold will not be crossed for at least 54 millenia due to an interval of smaller orbital eccentricity. Probable melting of the Greenland ice cap about 30 ka AP would ensure the extension of the present interglacial beyond 120 ka AP.  相似文献   

10.
The quantification of energy interactions among land surface, atmosphere, and surface vegetation is significant to comprehend the hydrological cycle in montane watersheds. Moreover, elevation change is an essential in causing variations in energy fluxes. Thus, estimating the major components of energy interactions is essential for better understanding of the hydrological process. The advanced land surface models (LSMs); the common land model (CLM) and variables infiltration capacity (VIC) are used to estimate accurate hydrometeorological variables. These hydrometeorological variables such as net radiation and sensible, latent, and ground heat fluxes were estimated using CLM and VIC at upper and lower meteorological stations in Sierra Nevada Mountain, California, USA. The estimated fluxes were compared with observations at each site. The estimated daily and monthly net radiation and sensible heat flux from both models showed good agreement with the observations (R ≥ 0.84). The CLM-modeled estimates showed lower trends during the rainfall periods, which occurred mainly during winter at both sites. In comparison, the estimated daily and monthly latent heat flux from CLM at both sites showed better results with lower RMSE and bias than that from VIC, which underestimated latent heat flux. Both models overestimated ground heat flux, and the variation trend was similar to observation. For sensitivity analysis, according to elevation change, all the estimated energy fluxes had slightly different values at the upper and lower met stations. In future studies, parameterization for the LSMs will be conducted for more robust estimations of hydrometeorological variables in montane watersheds.  相似文献   

11.
Thirteen packrat (Neotoma spp.) and two porcupine (Erethizon dorsatum) middens from 1555 to 1690 m elevation from the Sacramento Mountains, New Mexico, provide an 18,000-yr vegetation record in the northern Chiuahuan Desert. The vegetation sequence is a mesic, Wisconsin fullglacial (18,000–16,000 yr B.P.) pinyon-juniper-oak woodland; a xeric, early Holocene (ca. 11,000–8000 yr B.P.) juniper-oak woodland; a middle Holocene (ca. 8000-4000 yr B.P.) desert-grassland; and a late Holocene (ca. 4000 yr B.P. to present) Chihuahuan desertscrub. The frequency of spring freezes and summer droughts in the late Wisconsin probably set the northern limits of Pinus edulis and Juniperus monosperma at about 34°N, or 6° south of today's limit. Rising summer tempratures in the early Holocene eliminated pinyon and other mesic woodland plants from the desert lowlands and allowed the woodland to move upslope. At this time pinyon-juniper woodland and pine forest dominated by Pinus ponderosa probably began their spectacular Holocene expansions to the north. Continued warming in the middle Holocene led to very warm summers with strong monsoons, relatively dry, cold winters, and widespread desert-grasslands. Desertscrub communities in the northern Chihuahuan Desert did not develop until the late Holocene when the biseasonal rainfall shifted slightly back toward the winter, catastrophic winter freezes decreased, and droughts in all seasons increased. The creosote bush desertscrub corridor across the Continental Divide between the Chihuahuan and Sonoran deserts was probably connected for the first time since the last interglaciation.  相似文献   

12.
A soil geochemical survey was conducted in a 27,000-km2 study area of northern California that includes the Sierra Nevada Mountains, the Sacramento Valley, and the northern Coast Range. The results show that soil geochemistry in the Sacramento Valley is controlled primarily by the transport and weathering of parent material from the Coast Range to the west and the Sierra Nevada to the east. Chemically and mineralogically distinctive ultramafic (UM) rocks (e.g. serpentinite) outcrop extensively in the Coast Range and Sierra Nevada. These rocks and the soils derived from them have elevated concentrations of Cr and Ni. Surface soil samples derived from UM rocks of the Sierra Nevada and Coast Range contain 1700–10,000 mg/kg Cr and 1300–3900 mg/kg Ni. Valley soils west of the Sacramento River contain 80–1420 mg/kg Cr and 65–224 mg/kg Ni, reflecting significant contributions from UM sources in the Coast Range. Valley soils on the east side contain 30–370 mg/kg Cr and 16–110 mg/kg Ni. Lower Cr and Ni concentrations on the east side of the valley are the result of greater dilution by granitic sources of the Sierra Nevada.Chromium occurs naturally in the Cr(III) and Cr(VI) oxidation states. Trivalent Cr is a non-toxic micronutrient, but Cr(VI) is a highly soluble toxin and carcinogen. X-ray diffraction and scanning electron microscopy of soils with an UM parent show Cr primarily occurs within chromite and other mixed-composition spinels (Al, Mg, Fe, Cr). Chromite contains Cr(III) and is highly refractory with respect to weathering. Comparison of a 4-acid digestion (HNO3, HCl, HF, HClO4), which only partially dissolves chromite, and total digestion by lithium metaborate (LiBO3) fusion, indicates a lower proportion of chromite-bound Cr in valley soils relative to UM source soils. Groundwater on the west side of the Sacramento Valley has particularly high concentrations of dissolved Cr ranging up to 50 μg L−1 and averaging 16.4 μg L−1. This suggests redistribution of Cr during weathering and oxidation of Cr(III)-bearing minerals. It is concluded that regional-scale transport and weathering of ultramafic-derived constituents have resulted in enrichment of Cr and Ni in the Sacramento Valley and a partial change in the residence of Cr.  相似文献   

13.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

14.
Fire and vegetation records at the City of Rocks National Reserve (CIRO), south-central Idaho, display the interaction of changing climate, fire and vegetation along the migrating front of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma). Radiocarbon dating of alluvial charcoal reconstructed local fire occurrence and geomorphic response, and fossil woodrat (Neotoma) middens revealed pinyon and juniper arrivals. Fire peaks occurred ~ 10,700–9500, 7200–6700, 2400–2000, 850–700, and 550–400 cal yr BP, whereas ~ 9500–7200, 6700–4700 and ~ 1500–1000 cal yr BP are fire-free. Wetter climates and denser vegetation fueled episodic fires and debris flows during the early and late Holocene, whereas drier climates and reduced vegetation caused frequent sheetflooding during the mid-Holocene. Increased fires during the wetter and more variable late Holocene suggest variable climate and adequate fuels augment fires at CIRO. Utah juniper and single-leaf pinyon colonized CIRO by 3800 and 2800 cal yr BP, respectively, though pinyon did not expand broadly until ~ 700 cal yr BP. Increased fire-related deposition coincided with regional droughts and pinyon infilling ~ 850–700 and 550–400 cal yr BP. Early and late Holocene vegetation change probably played a major role in accelerated fire activity, which may be sustained into the future due to pinyon–juniper densification and cheatgrass invasion.  相似文献   

15.
A new extended pollen and charcoal record is presented from Lake Euramoo, Wet Tropics World Heritage rainforest of northeast Queensland, Australia. The 8.4-m sediment core taken from the center of Lake Euramoo incorporates a complete record of vegetation change and fire history spanning the period from 23,000 cal yr B.P. to present. The pollen record is divided into five significant zones; 23,000–16,800 cal yr B.P., dry sclerophyll woodland; 16,800–8600 cal yr B.P., wet sclerophyll woodland with marginal rainforest in protected pockets; 8600–5000 cal yr B.P., warm temperate rainforest; 5000–70 cal yr B.P., dry subtropical rainforest; 70 cal yr B.P.–AD 1999, degraded dry subtropical rainforest with increasing influence of invasive species and fire.The process of rainforest development appears to be at least partly controlled by orbital forcing (precession), though more local environmental variables and human activity are also significant factors. This new record provides the opportunity to explore the relationship between fire, drought and rainforest dynamics in a significant World Heritage rainforest region.  相似文献   

16.
Geobarometric studies have documented that most of the metasedimentary wall rocks and plutons presently exposed in the southernmost Sierra Nevada batholith south of the Lake Isabella area were metamorphosed and emplaced at crustal levels significantly deeper (~15 to 30 km) than the batholithic rocks exposed to the north (depths of ~3 to 15 km). Field and geophysical studies have suggested that much of the southernmost part of the batholith is underlain along low-angle faults by the Rand Schist. The schist is composed mostly of metagraywacke that has been metamorphosed at relatively high pressures and moderate temperatures. NNW-trending compositional, age, and isotopic boundaries in the plutonic rocks of the central Sierra Nevada appear to be deflected westward in the southernmost part of the batholith. Based on these observations, in conjunction with the implicit assumption that the Sierra Nevada batholith formerly continued unbroken south of the Garlock fault, previous studies have inferred that the batholith was tectonically disrupted following its emplacement during the Cretaceous. Hypotheses to account for this disruption include intraplate oroctinal bending, W-vergent overthrusting, and gravitational collapse of overthickened crust. In this paper, new geologic data from the eastern Tehachapi Mountains, located adjacent to and north of the Garlock fault in the southernmost Sierra Nevada, are integrated with data from previous geologic studies in the region into a new view of the Late Cretaceous-Paleocene tectonic evolution of the region. The thesis of this paper is that part of the southernmost Sierra Nevada batholith was unroofed by extensional faulting in Late Cretaceous-Paleocene time. Unroofing occurred along a regional system of low-angle detachment faults. Remnants of the upper-plate rocks today are scattered across the southern Sierra Nevada region, from the Rand Mountains west to the San Emigdio Mountains, and across the San Andreas fault to the northern Salinian block.

Batholithic rocks in the upper plates of the Blackburn Canyon fault of the eastern Tehachapi Mountains, low-angle faults in the Rand Mountains and southeastern Sierra Nevada, and the Pastoria fault of the western Tehachapi Mountains are inferred to have been removed from a position structurally above rocks exposed in the southeastern Sierra Nevada and transported to their present locations along low-angle detachment faults. Some of the granitic and metamorphic rocks in the northern part of the Salinian block are suggested to have originated from a position structurally above deep-level rocks of the southwestern Sierra Nevada. The Paleocene-lower Eocene Goler Formation of the El Paso Mountains and the post-Late Cretaceous to pre-lower Miocene Witnet Formation in the southernmost Sierra Nevada are hypothesized to have been deposited in supradetachment basins that formed adjacent to some of the detachment faults.

Regional age constraints for this inferred tectonic unroofing and disaggregation of the southern Sierra Nevada batholith suggest that it occurred between ~90 to 85 Ma and ~55 to 50 Ma. Upper-plate rocks of the detachment system appear to have been rotated clockwise by as much as 90° based on differences in the orientation of foliation and contacts between inferred correlative hanging-wall and footwall rocks. Transport of the upper-plate rocks is proposed to have occurred in two stages. First, the upper crust in the southern Sierra Nevada extended in a south to southeast direction, and second, the allochthonous rocks were carried westward at the latitude of the Mojave Desert by a mechanism that may include W-vergent faulting and/or oroclinal bending. The Late Cretaceous NNW extension of the upper crust in the southernmost Sierra Nevada postulated in this study is similar to Late Cretaceous, generally NW-directed, crustal extension that has been recognized to the northeast in the Funeral, Panamint, and Inyo mountains by others. Extensional collapse of the upper crust in the southern Sierra Nevada batholith may be closely linked to the emplacement of Rand Schist beneath the batholith during Late Cretaceous time, as has been suggested in previous studies.  相似文献   

17.
Owing to proximity of the North Atlantic Stream and the shelf, the Andøya biota are assumed to have responded rapidly to climatic changes taking place after the Weichselian glaciation. Palynological, macrofossil, loss‐on‐ignition, tephra and 14C data from three sites at the northern part of the island of Andøya were studied. The period 12 300–11 950 cal. yr BP was characterized by polar desert vegetation, and 11 950–11 050 cal. yr BP by a moisture‐demanding predominantly low‐arctic Oxyria vegetation. During the period 11 050–10 650 cal. yr BP, there was a climatic amelioration towards a sub‐arctic climate and heaths dominated by Empetrum. After 10 650 cal. yr BP the Oxyria vegetation disappeared. As early as about 10 800 cal. yr BP the bryozoan Cristatella mucedo indicated a climate sufficient for Betula woodland. However, tree birch did not establish until 10 420–10 250 cal. yr BP, indicating a time‐lag for the formation of Betula ecotypes adapted to the oceanic climate of Andøya. From about 10 150 to 9400 cal. yr BP the summers were dry and warm. There was a change towards moister, though comparatively warm, climatic conditions about 9400 cal. yr BP. The present data are compared with evidence from marine sediments and the deglaciation history in the region. It is suggested that during most of the period 11 500–10 250 cal. yr BP a similar situation as in present southern Greenland existed, with birch woodland in the inner fjords near the ice sheet and low‐arctic heath vegetation along the outer coast.  相似文献   

18.
Sediments of Balsam Meadow have produced a 11,000-yr pollen record from the southern Sierra Nevada of California. The Balsam Meadow diagram is divided into three zones. (1) The Artemisia zone (11,000–7000 yr B.P.) is characterized by percentages of sagebrush (Artemisia) and other nonarboreal pollen higher than can be found in the modern local vegetation. Vegetation during this interval was probably similar to the modern vegetation on the east slope of the Sierra Nevada and the climate was drier than that of today. (2) Pinus pollen exceeded 80% from 7000 to 3000 yr B.P. in the Pinus zone. The climate was moister than during the Artemisia zone. (3) Fir (Abies, Cupressaceae, and oak (Quercus) percentages increased after 3000 yr B.P. in the Abies zone as the modern vegetation at the site developed and the present cool-moist climatic regime was established. Decreased fire frequency after 1200 yr B.P. is reflected in decreased abundance of macroscopic charcoal and increased concentration of Abies magnifica and Pinus murrayana needles.  相似文献   

19.
The vegetation of the treeline ecotone of the southern declivity of arid High Asia (Hindu Kush, northern areas of Pakistan; Himalaya, northern central Nepal) is dominated by hedgehog-like open dwarf shrublands of thorny cushions. Since climatically sensitive ecotones are always also sensitive to human impact, the question arises whether the current lack of forests is a result of the Subboreal climate decline or of human impact. Due to inadequate knowledge of the pollen flora and of ecological indicator values of the plants, pollen analyses in High Asia have mainly been limited to the regional verification of globally known climatic impulses. However, the role of human impact on regional vegetation patterns has been widely neglected. We postulate that today's open dwarf shrublands replace woodlands and forests. Isolated vigorous juniper trees and successful reforestation appear to confirm our hypothesis. An abrupt decline of Pinus forests before 5700 and 5400 ka cal yr BP can be demonstrated. As the first indicator pollen of human impact appeared at both sites synchronous with the forest pollen decline, we infer human impact to be a more decisive cause for this environment change superimposing the effects of a climatic deterioration. The forests were displaced by open dwarf shrublands.  相似文献   

20.
This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada.The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of hörst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament.Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE—SW compression axis (σ1) and an EW to NW—SE extension axis (σ3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号