首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The article presents the results of observations of the blazar 3C 454.3 (J2253+1608), obtained in 2010–2017 on the RATAN-600 radio telescope of the Special Astrophysical Observatory at 4.6, 8.2, 11.2, and 21.7 GHz and on the 32-m Zelenchuk and Badary radio telescopes of the Quasar VLBI Network of the Institute of Applied Astronomy at 4.84 and 8.57 GHz. Long-term variability of the radio emission is studied, as well as variability on time scales of several days and intraday variability (IDV). Two flares were observed in the long-term light curve, in 2010 and in 2015–2017. The flux density at 21.7 GHz increased by a factor of ten during these flares. The delay in the maximum of the first flare at 4.85 GHz relative to the maximum at 21.7 GHz was six months. The time scale for variability on the descending branch of the first flare at 21.7 GHz was τvar = 1.2 yrs, yielding an upper limit on the linear size of the emitting region of 0.4 pc, corresponding to an angular size of 0.06 mas. The brightness temperature during the flare exceeded the Compton limit, implying a Doppler factor δ = 3.5, consistent with the known presence of a relativistic jet oriented close to the line of sight. No significant variability on time scales from several days to several weeks was found in five sets of daily observations carried out over 120 days. IDV was detected at 8.57 GHz on the 32-m telescopes in 30 of 61 successful observing sessions, with the presence of IDV correlated with the maxima of flares. The characteristic time scale for the IDV was from two to ten hours. A number of IDV light curves show the presence of a time delay in the maxima in the light curves for simultaneous observations carried out on the Badary and Zelenchuk antennas, which are widely separated in longitude. This demonstrates that the IDV most like arises in the interstellar medium.  相似文献   

2.
Observations of the anomalous X-ray pulsar (AXP) 1E 2259+586 and the AXP candidate 1RXS J1308.6+212708 at 111, 87, and 61 MHz are reported. The observations were carried out on two high-sensitivity radio telescopes of the Pushchino Radio Astronomy Observatory. Mean pulse profiles are presented, and the dispersion measures, distances, spectral indices, and integrated radio luminosities of both objects are estimated. Comparison with X-ray data shows large differences in the mean pulse widths and luminosities. The detection of radio emission from these two AXPs, together with other data, suggests the need to revise the radio-emission mechanisms in the magnetar model or the magnetar model itself.  相似文献   

3.
Results of the observations of the blazar J1159+2914 (S1156+295) in 2010–2013 are reported. The observations were carried out on the RATAN-600 radio telescope (Special Astrophysical Observatory, Russian Academy of Sciences) at 4.85, 7.7, 11.1, and 21.7 GHz and the 32-m Zelenchuk and Badary radio telescopes of the Quasar-KVO Complex (Institute of Applied Astronomy, Russian Academy of Sciences) at 4.85 and 8.57 GHz. A flare peaked in August 2010, after which the flux density decreased monotonically at all studied frequencies. Variability on a timescale of 7 days was detected at 7.7 and 11.1 GHz near the flare maximum. The delay in the maximum at 7.7 GHz relative to the maximum at 11.1 GHz was 1.5 d, implying a Lorentz factor γ = 55 and angle of the jet to the line of sight θ ≈ 2° since mid-2011. Searches for intraday variability (IDV) were undertaken by the 32-m telescopes, mostly since mid-2011. Intraday variability was confidently detected only at the Badary station on November 10–11, 2012 at 4.85 GHz: the IDV timescale was τ acf = 6 h, the modulation index was m = 1.4%, and the flux density of the variable component was S var = 126 mJy.  相似文献   

4.
The presented observation results of the blazar J0238+1636 were obtained in: 2014–2019 with the RATAN-600 radio telescope from the Special Astrophysical Observatory of the Russian Academy of Sciences at 2.3, 4.8, 8.2, 11.2, and 21.7 GHz; and 2015–2017 with the 32-m Zelenchuk and Badary radio telescopes of the Institute of Applied Astronomy of the Russian Academy of Sciences at 4.84 and 8.57 GHz. Two flares were detected on the long-term light curve. The time scale for variability on the rising branch of the first flare is τvar = 0.5 year, and the upper limit for the linear and angular sizes of the emitting region at 21.7 GHz are 0.3 pc and 0.05 mas, respectively. The brightness temperature is Tb ≥ 2.6 × 1013 K, and the Doppler factor is δ ≥ 3. In three sets of the source’s daily observations, which lasted up to three months each, no significant variability on the day-to-day scale was found after subtracting the long-term variability. In the RT-32 data, the intraday variability (IDV) was found at a frequency of 4.84 GHz in three out of 15 sessions and at 8.57 GHz in two out of 13 sessions. The characteristic times for variability are 4−5 hours.  相似文献   

5.
Searches for intraday variability in the flat-spectrum radio sources J0527+0331, J0721+0406, and J1728+0427 have been carried out at 3.5 cm using the 32-m radio telescope of the Zelenchuk Observatory of the Kvazar-KVO complex of the Institute of Applied Astronomy of the Russian Academy of Sciences (located near the Zelenchuk Village, Karachaevo-Cherkesskaya Republic). Intraday variabiility with characteristic time scales from one to five hours was detected in all three sources.  相似文献   

6.
Losovsky  B. Ya.  Glushak  A. P. 《Astronomy Reports》2022,66(11):981-988
Astronomy Reports - Search observations of radio signals from the new magnetar SGR J1830–0645 have been carried out since January 2021 and up to the present at the Pushchino Radio Astronomy...  相似文献   

7.
Observations of the hard X-ray and radio event of October 27, 2002 are analyzed. This flare was observed from near-Martian orbit by the HEND instrument developed at the Space Research Institute of the Russian Academy of Sciences and installed on the Mars Odyssey satellite. Although this powerful flare was observed far over the eastern solar limb, the extended source associated with the flare was detected by RHESSI at energies up to about 60 keV. The eruptive event was observed in the radio at the Nobeyama Radio Observatory. The properties of the X-ray radiation are used to calculate the spectrum of the accelerated electrons responsible for the observed radiation, assuming that the target is thick for a Martian observer and thin for a terrestrial observer. The results are compared with the results of radio observations. The conditions for electron propagation in the corona are discussed.  相似文献   

8.
Flux-density variations of the quasar S0528+134 (Nimfa) are analyzed based on long-term monitoring at five radio frequencies between 4.8 and 37 GHz, performed at the Crimean Astrophysical Observatory, the Metsähovi Radio Observatory of Aalto University, and the University of Michigan Radio Astronomy Observatory. The dynamics of a powerful flare in 1996 are analyzed using gamma-ray (0.1–300 GeV), X-ray (2–10 keV, 15–50 keV), and radio observations. The delays of the flare between different spectral ranges and between different radio wavelengths have been measured. The dependence for the delays at different radio wavelengths relative to the X-ray and optical flares is established based on long-term observations in the X-ray, optical, and radio obtained from 2004 to 2013. Multi-frequency monitoring in the radio is used to estimate the orbital and precession periods in the binary supermassive black hole system S0528+134 and the physical characteristics of this system.  相似文献   

9.
The paper presents an analysis of dual-polarization observations of the Crab pulsar obtained on the 64-m Kalyazin radio telescope at 600 MHz with a time resolution of 250 ns. A lower limit for the intensities of giant pulses is estimated by assuming that the pulsar radio emission in the main pulse and interpulse consists entirely of giant radio pulses; this yields estimates of 100 and 35 Jy for the peak flux densities of giant pulses arising in the main pulse and interpulse, respectively. This assumes that the normal radio emission of the pulse occurs in the precursor pulse. In this case, the longitudes of the giant radio pulses relative to the profile of the normal radio emission turn out to be the same for the Crab pulsar and the millisecond pulsar B1937+21, namely, the giant pulses arise at the trailing edge of the profile of the normal radio emission. Analysis of the distribution of the degree of circular polarization for the giant pulses suggests that they can consist of a random mixture of nanopulses with 100% circular polarization of either sign, with, on average, hundreds of such nanopulses within a single giant pulse.  相似文献   

10.
Simultaneous dual-frequency observations of giant radio pulses from the millisecond pulsar B1937+21 were performed for the first time in January–February 2002 on the Westerbork Synthesis Radio Telescope (2210–2250 MHz) and the 64-m Kalyazin radio telescope (1414–1446 MHz). The total observing time was about three hours. Ten giant pulses with peak flux densities from 600 to 1800 Jy were detected at 2210–2250 MHz, and fifteen giant pulses with peak flux densities from 3000 to 10000 Jy were observed at 1414–1446 MHz. No events were found to occur simultaneously at both frequencies. Thus, the observed radio spectra of individual giant pulses of this pulsar are limited in frequency to scales of about \(\frac{{\Delta v}}{v} < 0.5\). The duration of the giant pulses is less than 100 ns and is consistent with the expected scattering timescale in these frequency ranges. Instantaneous radio spectra of the detected giant pulses were compared with the diffractive spectra obtained from ordinary pulses of the pulsar. In some cases, considerable deviations of the radio spectra of the giant pulses from the diffractive spectrum were revealed, which can be interpreted as indicating temporal structure of the giant pulses on timescales of 10–100 ns.  相似文献   

11.
Results of a study of the variability of the blazar J0721+7120 carried out on the RATAN-600 based on daily observations from March 5, 2010 to April 30, 2010 at five frequencies from 2.3 to 21.7 GHz are reported. In the same time interval, 13 observing sessions at 37 GHz were carried out on the 14-m radio telescope of the Mets?hovi Radio Astronomy Observatory of the Aalto University School of Technology (Finland). From March 19, 2010 to October 20, 2010, 16 daily sessions at 6.2 cm and five sessions at 3.5 cm were conducted on the 32-m radio telescope of the Zelenchukskaya Observatory (Quasar-KVO complex of the Institute of Applied Astronomy, Russian Academy of Sciences). A powerful flare was detected during the observations, with a time scale of approximately 20 days, derived from an analysis of the light curves and the structure and autocorrelation functions. The flare spectrum has been determined. In five sessions on the 32-m Zelenchukskaya telescope at 6.2 cm, intraday variability with time scales 8-16 h was detected; in four sessions, trends with time scales longer than a day were observed. In three sessions at 3.5 cm, intraday variability with a time scale of approximately 5 h was detected.  相似文献   

12.
Radio observations of the Crab pulsar were performed on the 100-m radio telescope of the Green Bank Observatory at a frequency of 2100 MHz in a 64-MHz band in two channels with right-and left-circular polarization. The Mark5A recording system was used. During 15 min of observing time, 609 giant pulses were recorded; the brightest had a peak flux density of 670 kJy. The energy distribution has been constructed, polarization properties have been analyzed, and the characteristic temporal and frequency scales in the radio emission of the detected giant pulses have been found. Comparison of these parameters indicates that the properties of giant pulses detected at the main-pulse and interpulse longitudes do not differ, as is clearly observed at frequencies above 4 GHz. Probable origins of the frequency evolution of the properties of giant pulses are discussed.  相似文献   

13.

The results of observations of the blazar J1504+1029 (PKS 1502+106, OR 103), obtained in 2000–2018 on the RATAN-600 radio telescope of the Special Astrophysical Observatory at 2.3, 3.9 (4.7), 7.7 (8.2), 11.2, and 21.7 GHz and on the 32-m Zelenchuk and Badary radio telescopes of the Quasar-KVO complex of the Institute of Applied Astronomy of the Russian Academy of Sciences at 5.05 and 8.63 GHz are presented. The long-term variability is studied, as well as variability on time scales from several days to several weeks and intraday variability (IDV). The long-term light curves are correlated at all frequencies and show continuous activity, against which three flares with their maxima in 2002, 2009, and 2018 are distinguished. The time scale for variability of the flare in 2009 is τvar ≈ 1 year. At 21.7 GHz, the linear size of the emitting region is R ≤ 0.3 pc, its angular size is θ ≤ 0.05 mas, its brightness temperature is Tb ≥ 2 × 1014 K, and the Doppler factor is δ ≥ 5.8. The flare with its maximum in 2018 has a long rising branch at 21.7 GHz: τvar = 3.2 years, linear size R ≤ 1.1 pc, angular size θ ≤ 0.17 μas, brightness temperature Tb ≥ 2.2 × 1012 K, and Doppler factor δ ≥ 2.8. Among eleven sets of daily observations of the source over 75–120 days in 2000–2017, variability was detected in eight data sets at two to four frequencies with characteristic time scales of 4–30 days. In seven data sets, the variability is due to one to three cyclic processes with characteristic time scales τacf = 4?30d. The spectral indices of the variable components in different years vary from αvar = ?1.6 to +1.8. In at least four data sets, the variability is due to processes in the source itself. In this case, at 21.7 GHz, the apparent linear size of the emitting region is ≤4000 AU, the angular size is θ ≤ 3.5 μas, the brightness temperature is Tb ≥ 3 × 1014 K, and the Doppler factor is δ ≥ 14. In the 2004 data set, the variability has an “ anti-flare” form, with the flux density of the variable component falling at high frequencies. Thirty-six successful sessions were conducted on the 32-m telescopes at 8.63 GHz, and 16 at 5.05 GHz. IDV was detected in 17 sessions at 8.63 GHz and in three sessions at 5.05 GHz, with the IDV being detected mainly near flare maxima.

  相似文献   

14.
The results of observations of a complete sample of radio sources with spectral indices α>?0.5 (Sv α) are presented. The sample was selected from the Zelenchuk Survey at 3.9 GHz and contains all sources with declinations 4°–6°, Galactic latitudes |b|>10°, and 3.9-GHz fluxes >200 mJy. Spectra at 0.97–21.7 GHz were obtained for all 69 sample sources. The spectra were classified, and a correlation between variability amplitude and spectrum shape was found. The spectra were separated into extended and compact components. The distribution of spectral indices α for the extended components coincides with the distribution for sources with power-law spectra. The correlation between the luminosity and frequency of the peak flux density is confirmed. This correlation is due to the fact that the distribution of source linear dimensions does not depend on luminosity.  相似文献   

15.
Solar filtergrams obtained at the Crimean Astrophysical Observatory at the center and wings of the H?? line are used to study variations in filaments, in particular, in arch filament systems (AFSs). These are considered as an indicator of emerging new magnetic flux, providing information about the spatial locations of magnetic-field elements. Magnetic-field maps for the active region NOAA 10030 are analyzed as an example. A method developed earlier for detecting elements of emerging flux using SOHO/MDI magnetograms indicates a close link between the increase in flare activity in theNOAA 10030 group during July 14?C18, 2002 and variations in the topological disconnectedness of the magnetograms. Moreover, variations in the flare activity one day before a flare event are correlated with variations in the topological complexity of the field (the Euler characteristic) in regions with high field strengths (more than 700 G). Analysis of multi-wavelength polarization observations on the RATAN-600 radio telescope during July 13?C17, 2002 indicate dominance of the radio emission above the central spot associated with the increase in flare activity. In addition to the flare site near the large spot in the group, numerous weak flares developed along an extended local neutral line, far from the central line of the large-scale field. The statistical characteristics of the magnetic-field maps analyzed were determined, and show flare activity of both types, i.e., localized in spot penumbras and above the neutral line of the field.  相似文献   

16.
Data from the Nobeyama Radioheliograph at 17 GHz with high spatial and temporal resolution are used to detect quasi-periodic pulsations with periods from 55 to 250 s in the thermal component of the microwave emission of a solar flare loop observed on June 2, 2007. Observed pulsations with periods of about 110–120 s are co-phased along the entire loop axis. The observed periodicity is most likely due to modulation of the radio emission by slow magnetoacoustic waves trapped in the filamentary flare loop.  相似文献   

17.
Rodin  A. E.  Fedorova  V. A. 《Astronomy Reports》2022,66(1):32-37
Astronomy Reports - In the paper, observation results of the magnetar SGR 1935+2154 at the frequency 111 MHz by the LPA (BSA) FIAN radio telescope are presented. For the search of single...  相似文献   

18.
New data for the energy and location of the hard-emission centers of a solar flare agree with an electrodynamic model of a solar flare based on the idea of the accumulation of free magnetic energy in the field of a current sheet. Three-dimensional MHD simulations are used to show that the energy stored in the preflare magnetic field of the current sheet is sufficient for the development of a flare and a coronal mass ejection. The flare and coronal mass ejection result from the explosive decay of the current sheet. The position of the brightness-temperature maximum of the radio emission during the flare coincides with the maximum of the current in the current sheet. The exponential spectrum of relativistic protons generated during the flare is consistent with acceleration by the electric field during the current-sheet decay.  相似文献   

19.
The results of monitoring the water-vapor maser at λ=1.35 cm in Sgr B2 are presented. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) in 1982–1992. A strong flare of the maser radiation associated with Sgr B2(N) was detected in this period. The absolute strength of this flare is comparable to the megamaser emission observed in Orion in 1979–1987. The flare is probably due to a strengthening of the flow of material from the rotating accretion disk, in which are embedded the three ultracompact HII regions K1, K2, and K3. A subsequent excitation of emission features at increasingly higher radial velocities was observed, associated with a gradient of VLSR along the direction of the outflow. The large width of the lines (>0.86 km/s) could reflect a complex structure for the maser spots, such as a chain or filamentary structure, as has been observed in Orion and S140.  相似文献   

20.
A one-dimensional aeronomic model of the upper atmosphere of a giant planet is used to study the reaction of the atmosphere of the hot Jupiter HD 209458b to additional heating by a stellar flare. It is shown that the absorption of additional energy from the stellar flare in the extreme ultraviolet leads to local heating of the atmosphere, accompanied by the formation of two shocks propagating in the atmosphere. Possible observational manifestations of these shocks and the feasibility of their detection are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号