共查询到4条相似文献,搜索用时 15 毫秒
1.
R. C. Searle 《Marine Geophysical Researches》1989,11(1):15-26
This paper describes GLORIA sidescan sonar data from a single swath along the Cocos-Nazca Spreading Centre between the 95.5° W propagating rift and the Pacific-Cocos-Nazca triple junction. Almost the whole of the plate boundary was imaged. Five medium sized offsets of the spreading centre, ranging from 10 to 25 km, were seen. Of these, at least one (at 99° W) is a previously unknown propagating rift, propagating westwards away from the Galapagos hotspot at about 40 mm a-1. Two other offsets have some, but not all, of the characteristics of propagating rifts, and may be poorly developed (possibly duelling) propagating rifts or migrating overlapping spreading centres. In each case the apparent propagation rate is between one and two times the half spreading rate. The average length of ridge segments in this region is 70 km, but lengths range from 12 to 135 km. The longest segments are those immediately behind actively propagating ridge offsets. The overall plan shape of the ridge axis is roughly sinusoidal, with a wavelength of 400–500 km and an amplitude of ±20 km. This nonlinear shape has arisen since the spreading centre was created, and may reflect an instability in the mantle plumes that control ridge segmentation. 相似文献
2.
John D. Bicknell Jean-Christophe Sempere Ken C. Macdonald P. J. Fox 《Marine Geophysical Researches》1987,9(1):25-45
Sea Beam and Deep-Tow were used in a tectonic investigation of the fast-spreading (151 mm yr-1) East Pacific Rise (EPR) at 19°30 S. Detailed surveys were conducted at the EPR axis and at the Brunhes/Matuyama magnetic reversal boundary, while four long traverses (the longest 96 km) surveyed the rise flanks. Faulting accounts for the vast majority of the relief. Both inward and outward facing fault scarps appear in almost equal numbers, and they form the horsts and grabens which compose the abyssal hills. This mechanism for abyssal hill formation differs from that observed at slow and intermediate spreading rates where abyssal hills are formed by back-tilted inward facing normal faults or by volcanic bow-forms. At 19°30 S, systematic back tilting of fault blocks is not observed, and volcanic constructional relief is a short wavelength signal (less than a few hundred meters) superimposed upon the dominant faulted structure (wavelength 2–8 km). Active faulting is confined to within approximately 5–8 km of the rise axis. In terms of frequency, more faulting occurs at fast spreading rates than at slow. The half extension rate due to faulting is 4.1 mm yr-1 at 19°30 S versus 1.6 mm yr-1 in the FAMOUS area on the Mid-Atlantic Ridge (MAR). Both spreading and horizontal extension are asymmetric at 19°30 S, and both are greater on the east flank of the rise axis. The fault density observed at 19°30 S is not constant, and zones with very high fault density follow zones with very little faulting. Three mechanisms are proposed which might account for these observations. In the first, faults are buried episodically by massive eruptions which flow more than 5–8 km from the spreading axis, beyond the outer boundary of the active fault zone. This is the least favored mechanism as there is no evidence that lavas which flow that far off axis are sufficiently thick to bury 50–150 m high fault scarps. In the second mechanism, the rate of faulting is reduced during major episodes of volcanism due to changes in the near axis thermal structure associated with swelling of the axial magma chamber. Thus the variation in fault spacing is caused by alternate episodes of faulting and volcanism. In the third mechanism, the rate of faulting may be constant (down to a time scale of decades), but the locus of faulting shifts relative to the axis. A master fault forms near the axis and takes up most of the strain release until the fault or fault set is transported into lithosphere which is sufficiently thick so that the faults become locked. At this point, the locus of faulting shifts to the thinnest, weakest lithosphere near the axis, and the cycle repeats. 相似文献
3.
Channels are relatively common on river-mouth deltas, but the process by which they arise from river sediment discharge is unclear because they can potentially be explained either by negatively buoyant (hyperpycnal) flows produced directly from the river outflow or by flows generated by repeated failure and mobilisation of sediment rapidly deposited at the delta front. Channels eroded through a dump site of dredge spoils are described here from multibeam and older sonar data collected in Commencement Bay, at the mouth of the Puyallup River. Shallow channels on the seaward upper surface of the dump site, away from any flows that could have been produced by delta front failures, suggest that at least some hyperpycnal flows were produced directly from the positively buoyant river outflow up to 200 m from the edge of the river mouth platform. The form of channel bed erosion is revealed by the longitudinal shape of the main eroded channel compared with the adjacent dump site profile. It suggests that the channel evolved by its steep front retreating, rather than by simple vertical entrenchment or diffusive-like evolution of the profile, a geometry interpreted as evidence that repeated failure of the bed occurred in response to shear stress imposed by bottom-travelling flows. Model calculations based on shear strengths back-calculated from the geometry of channel wall failures suggest that, if the main channel were eroded solely by hyperpycnal flows, their generation was remarkably efficient in order to create flows vigorous enough to cause channel bed failure. Besides the sediment concentration and discharge characteristics that have been considered to dictate the ability of rivers to produce hyperpycnal flows, it is suggested that the timing of floods with respect to the tidal cycle should also be important because extreme low tides may be needed to ensure that coarse sediment is transferred vigorously to the edge of river mouth platforms. 相似文献
4.
In this study we provide evidence for methane hydrates in the Taranaki Basin, occurring a considerable distance from New Zealand's convergent margins, where they are well documented. We describe and reconstruct a unique example of gas migration and leakage at the edge of the continental shelf, linking shallow gas hydrate occurrence to a deeper petroleum system. The Taranaki Basin is a well investigated petroleum province with numerous fields producing oil and gas. Industry standard seismic reflection data show amplitude anomalies that are here interpreted as discontinuous BSRs, locally mimicking the channelized sea-floor and pinching out up-slope. Strong reverse polarity anomalies indicate the presence of gas pockets and gas-charged sediments. PetroMod™ petroleum systems modelling predicts that the gas is sourced from elevated microbial gas generation in the thick slope sediment succession with additional migration of thermogenic gas from buried Cretaceous petroleum source rocks. Cretaceous–Paleogene extensional faults underneath the present-day slope are interpreted to provide pathways for focussed gas migration and leakage, which may explain two dry petroleum wells drilled at the Taranaki shelf margin. PetroMod™ modelling predicts concentrated gas hydrate formation on the Taranaki continental slope consistent with the anomalies observed in the seismic data. We propose that a semi-continuous hydrate layer is present in the down-dip wall of incised canyons. Canyon incision is interpreted to cause the base of gas hydrate stability to bulge downward and thereby trap gas migrating up-slope in permeable beds due to the permeability decrease caused by hydrate formation in the pore space. Elsewhere, hydrate occurrence is likely patchy and may be controlled by focussed leakage of thermogenic gas. The proposed presence of hydrates in slope sediments in Taranaki Basin likely affects the stability of the Taranaki shelf margin. While hydrate presence can be a drilling hazard for oil and gas exploration, the proposed presence of gas hydrates opens up a new frontier for exploration of hydrates as an energy source. 相似文献