首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic and Mössbauer absorption spectra and electron microprobe data are correlated for iron-bearing orthopyroxenes. The correlation provides a means of quantitatively determining the distribution of Fe2+ between the M(1) and M(2) sites of orthopyroxene crystals from electronic spectra and electron microprobe analysis. The electronic spectra are used to analyze the changes in the Fe2+ distribution produced during heating experiments and confirm earlier results from Mössbauer spectra. Two components of the spin-allowed transition of Fe2+ in the M(1) site are identified at about 13,000 cm?1 and 8,500 cm?1 in γ. Molar absorptivity (?) values for all spin-allowed Fe2+ absorption bands in the near-infrared region are determined. The M(2) Fe2+ band at ~5,000 cm?1 in β is the analytically most useful for site occupancy determinations. It remains linear with concentration (?=9.65) over the entire compositional range. The band at ~10,500 cm?1 in α is the most sensitive to M(2) Fe2+ concentration (?=40.8), but deviates from linearity at high iron concentrations. The origins of spin-forbidden transitions in the visible region are examined.  相似文献   

2.
The mixed valence iron silicate ilvaite, CaFe 2 2+ Fe3+Si2O8(OH), displays electron delocalization associated with Fe2+→Fe3+ charge transfer as observed by Mössbauer spectroscopy. Previous studies report the observation of an ‘electron hopping phenomenon’ with resolution of discrete valence states below 320 K. Mössbauer spectra of a suite of naturally occurring ilvaites were recorded over a temperature range, 80 K to 575 K. Five quadrupole doublets were resolved by computer fitting and assigned to Fe2+(A), Fe2+(B), Fe3+(A), and Fe2+(A)→Fe3+(A)‖c and ⊥c. Contrary to prior work, doublets associated with electron delocalization are resolved at 80 K and preclude the use of a Verwey-type order-disorder model. We propose a thermal activation model and discuss its criteria from molecular orbital and mineralogical viewpoints.  相似文献   

3.
Natural and synthetic olivines with ferrous and ferric iron have been studied by Mössbauer spectroscopy. Their spectra exhibit three superimposed quadrupole-split doublets corresponding to Fe2+ at M1 and M2 sites and Fe3+ at an unidentified position, which is probably M2. The hyperfine parameters of Fe3+ at temperatures between 300°C and 450°C are: Δ=0.67–1.23 mm/s, δ=0.04–0.23 mm/s relative to metallic iron, and the full width at half height, HW=0.15–0.43 mm/s. The Fe2+ populations of M2 decrease with increasing Fe3+ content. However, Fe2+ prefers M1 in synthetic olivines, even at high temperatures (800°–1,400°C). In kirschsteinite, Fe2+ and Fe3+ are exclusively in M1. Fe2+/Fe3+ ratios estimated from the peak areas are consistent with chemical analyses.  相似文献   

4.
Synthetic clinopyroxenes of compositions between CaFe3+AlSiO6 and CaFe 0.85 3+ Ti0.15Al1.15Si0.85O6 have been studied by 57Fe Mössbauer spectroscopy. The spectra consist of two doublets assigned to Fe3+ in M1 and T sites. From the area ratios of the doublets the site occupancies of Fe3+ and Al were determined. Si decreases from 1.00 to 0.85 and Al+Fe3+ increases from 1.00 to 1.15 per formula unit with increasing CaTiAl2O6 component of the clinopyroxene. The atomic ratio of Fe3+(T)/Fe3+(total) is 0.11–0.16; 4.5–7.5 percent of the T sites are occupied by Fe3+. Thus the presence of Si-O-Fe3+, Al-O-Fe3+, and Fe3+-O-Fe3+ bonds is expected in addition to Si-O-Si, Si-O-Al and Al-O-Al bonds. However, the possibility of the former bonds being present would be small, because the amount of Fe3+(T) is far less than that of Si and Al. The isomer shift of Fe3+(T) is one of the largest in the values found previously for Fe3+(T) in silicates. It increases with increasing CaTiAl2O6 component and seems to be correlated to the ionic character of the cation — anion bonds calculated from electronegativity. The quadrupole splittings of Fe3+(M1) and Fe3+(T) decrease with the substitution of Fe3+?Ti4+ in the M1 and of Si?Al in the T sites.  相似文献   

5.
Room temperature and low temperature Mössbauer and optical absorption spectroscopic data on six natural chloritoids characterized by means of electron microprobe and X-ray powder diffraction techniques are presented. Two narrow quadrupole doublets with widths of 0.25–0.29 mm/s assigned to Fe2+ in a relatively large octahedral site and Fe3+ in a smaller octahedral site, are observed in the Mössbauer spectra. Polarized optical absorption spectra reveal three main absorption bands. A broad absorption band at 16,300 cm?1, which is strongly polarized in EX and EY and shows a linear increase in integral absorption with increasing [Fe2+] [Fe3+] concentration product, is assigned to a Fe2++Fe3+→Fe3++Fe2+ charge transfer transition. This band displays also a temperature dependence different from that of single ion d?d transitions. Two absorption bands at 10,900 cm?1 and 8,000 cm?1 are, on the basis of compositional dependence and energy, assigned to Fe2+ in the large M(1B) octahedra of the brucite-type layer in chloritoid. Combined spectroscopic evidence and structural and chemical considerations support a distribution scheme for ferrous and ferric iron which orders the Fe2+ ions in the M(1B) octahedra and the Fe3+ ions in the small M(1A) octahedral sites. Both types of octahedra are found in the brucite type layer of chloritoid.  相似文献   

6.
The Mössbauer spectra of ilvaite CaFe 2 2+ Fe3+[Si2O7/O/OH] and their temperature dependence between 298 K and 455 K can be satisfactorily least-squares fitted by a superposition of the resonances for Fe2+(8d), Fe3+(8d) and Fe2+(4c). The relative areas under the three resonances are nearly equal and vary only weakly with temperature. No additional resonances or line broadenings have to be introduced, if we assume that the hyperfine interactions of Fe2+(8d) and Fe3+(8d) fluctuate between their values due to electron hopping between the iron ions at the 8d sites. Hopping can be assumed to occur homogeneously among nearly equivalent sites. The fluctuation rate is described by an Arrhenius law with a pre-exponent of about 9 × 108 s?1 and an activation energy of 0.11 eV indicating non-adiabatic hopping. In addition to the intersite hopping process, the strong decrease of the quadrupole splitting and the isomer shift of Fe2+(8d) between 298 K and 360 K suggests the occurrence of intrinsic charge delocalization from Fe2+(8d) which does not involve the neighbouring Fe3+(8d) ions.  相似文献   

7.
(Mg,Fe)(Si,Al)O3 perovskite samples with varying Fe and Al concentration were synthesised at high pressure and temperature at varying conditions of oxygen fugacity using a multianvil press, and were characterised using ex?situ X-ray diffraction, electron microprobe, Mössbauer spectroscopy and analytical transmission electron microscopy. The Fe3+/ΣFe ratio was determined from Mössbauer spectra recorded at 293 and 80?K, and shows a nearly linear dependence of Fe3+/ΣFe with Al composition of (Mg,Fe)(Si,Al)O3 perovskite. The Fe3+/ΣFe values were obtained for selected samples of (Mg,Fe)(Si,Al)O3 perovskite using electron energy-loss near-edge structure (ELNES) spectroscopy, and are in excellent agreement with Mössbauer data, demonstrating that Fe3+/ΣFe can be determined with a spatial resolution on the order of nm. Oxygen concentrations were determined by combining bulk chemical data with Fe3+/ΣFe data determined by Mössbauer spectroscopy, and show a significant concentration of oxygen vacancies in (Mg,Fe)(Si,Al)O3 perovskite.  相似文献   

8.
A number of mixed valence iron oxides and silicates (e.g., magnetite, ilvaite) exhibit thermally induced electron delocalization between adjacent Fe2+ and Fe3+ ions and optically induced electronic transitions which are assigned to Fe2+→Fe3+ intervalence charge transfer. In this paper, the mechanism of electron delocalization (i.e., polarons versus itinerant electrons) and the nature of optically induced intervalence charge-transfer in minerals are investigated using molecular orbital theory. SCF-Xα-SW molecular orbital calculations were done for several mixed-valence (Fe2O10)15? clusters corresponding to edgesharing Fe2+ and Fe3+ coordination polyhedra. A spinunrestricted formalism was used so that the effect of ferromagnetic versus antiferromagnetic coupling of adjacent Fe2+ and Fe3+ cations could be determined. The molecular orbital results can be related to the polaron theory of solid state physics and the perturbation theory formalism used by Robin and Day (1967) and others to describe electron transfer in mixed valence compounds. Intervalence charge-transfer results from the overlap of Fe(3d) orbitals across the shared edges of adjacent FeO6 polyhedra to give weak Fe-Fe bonds. Electron delocalization, however, requires that adjacent Fe cations be ferromagnetically coupled. Antiferromagnetic coupling results in distinguishable Fe2+ and Fe3+ cations. Electronic transitions between the Fe-Fe bonding and Fe-Fe antibonding orbitals results in the optically-induced intervalence charge transfer bands observed in the electronic spectra of mixed valence minerals. Such transitions are predicted to be polarized along the metal-metal bond direction, in agreement with experimental observations.  相似文献   

9.
The maxima of the electron difference densities of Fe2+ atM(1) andM(2) positions of fayalite, Fe2SiO4, determined by x-ray diffraction are considered to correspond to atomic dipoles. Provided the selection rules of dipole radiation are satisfied and the energy of the incident radiation lies within the appropriate range, the interaction of incident radiation with these atomic dipoles should lead to three absorption bands of which two originate from Fe2+ atM(1), one from Fe2+ atM(2). The relative intensities of the three bands, dependent on the polarization direction, are estimated. The result ist in excellent agreement with the interpretation of olivine spectra given by Burns (1970).  相似文献   

10.
This contribution is finalized at the discussion of the magnetic structure of two samples, belonging to phlogopite–annite [sample TK, chemical composition IV(Si2.76Al1.24) VI(Al0.64Mg0.72 $ {\text{Fe}}_{1.45}^{2 + } $ Mn0.03Ti0.15) (K0.96Na0.05) O10.67 (OH)1.31 Cl0.02] and polylithionite–siderophyllite joints [sample PPB, chemical composition IV(Si3.14Al0.86)VI(Al0.75Mg0.01 $ {\text{Fe}}_{1.03}^{2 + } $ $ {\text{Fe}}_{1.03}^{3 + } $ Mn0.01Ti0.01Li1.09) (K0.99Na0.01) O10.00 (OH)0.65F1.35]. Samples differ for Fe ordering in octahedral sites, Fe2+/(Fe2+?+?Fe3+) ratio, octahedral composition, defining a different environment around Fe cations, and layer symmetry. Spin-glass behavior was detected for both samples, as evidenced by the dependency of the temperature giving the peak in the susceptibility curve from the frequency of the applied alternating current magnetic field. The crystal chemical features are associated to the different temperature at which the maximum in magnetic susceptibility is observed: 6?K in TK, where Fe is disordered in all octahedral sites, and 8?K in PPB sample, showing a smaller and more regular coordination polyhedron for Fe, which is ordered in the trans-site and in one of the two cis-sites.  相似文献   

11.
Ferrous and ferric iron concentrations in feldspars with low total iron content (<0.32 wt% total Fe) were determined from optical and electron paramagnetic resonance (EPR) spectra to better than ±15 percent of the amount present. Optical spectra indicate that Fe2+ occupies two distorted M-sites in plagioclases of intermediate structural state. The linear dependence of the Fe2+/Fe total ratio on An content demonstrates that Fe2+ substitutes for Ca (not Na) so that the number of Ca-sites is a principal factor in iron partitioning in plagioclase. EPR powder spectra show that the number of sites for Fe3+ depends on structural state rather than on plagioclase chemistry. The observed linear correspondence of EPR double-integrated intensities with optical peak areas shows that all Fe3+ is tetrahedrally coordinated in both plagioclase and disordered potassium feldspar. Microcline perthites show, in addition to tetrahedral Fe3+, a signal due to axially coordinated ferric iron, which we associate with formation of hematite inclusions.  相似文献   

12.
Mössbauer spectra were recorded at multiple temperatures between 80 and 293 K to study the nature of Fe3+ in Fe0.05Mg0.95SiO3 perovskite that had been synthesised in a multianvil press at 1650 °C and 25 GPa at its mimimum stability limit. The Mössbauer data were fitted to a model with quadrupole splitting distributions (Fe2+) and Lorentzian lineshapes (Fe3+ and Fen+). The centre shift data were fitted to a Debye model with the following results: ΘM (Fe2+)=365±52 K and ΘM (Fe3+)=476±96 K. Hyperfine parameter data for Fe3+ suggest occupation of the octahedral site only. The average valence seen by the Mössbauer effect in rapid electron exchange that occurs between Fe2+ and Fe3+ is calculated from the hyperfine parameters to be 2.50±0.07. Correction of area fractions for site-dependent recoil-free fractions gives a value for Fe3+/∑Fe of 9.4±1.4%, which is independent of temperature. A perovskite phase of similar composition synthesised in the multianvil press at higher oxygen fugacity gives a value for Fe3+/∑Fe of 16±3%, where Fe3+ appears to occupy both sites in the perovskite structure.  相似文献   

13.
Fe57 Mössbauer spectra were measured on compositions of the series Fe1?x/3Ta1+x/3O4, 0≤x≤1. The spectra are characterized by mixed valencies of Fe2+ and Fe3+ ions for 0<x<1. Starting from x=0 with rutile structure, a trirutile structure forms towards x=1. Quadrupole splitting QS of Fe3+ is QS(Fe3+)≈0.55 mm/s and isomer shift IS is IS(Fe3+)≈0.40 mm/s (referred to Fe); both quantities exhibit minor variations along the series. The Fe2+ subspectra for x>0.5 were fitted using one symmetrical doublet; however, for x<0.5 two symmetrical doublets were necessary to describe these patterns. QS(Fe2+)=2.0–3.2 mm/s and IS(Fe2+)=0.90–1.15 mm/s for all compositions. In the case x<0.5, marked temperature dependent QS values appear to exist. This feature may be related to short range order effects and possibly also in part to intervalence electron transfer betwee Fe2+ and Fe3+ ions.  相似文献   

14.
Structural and compositional data as well as 57Fe Mössbauer parameters were determined on a natural Mn-rich monoclinic ilvaite crystal (ideal composition CaFe 2 2+ Fe3+Si2O8(OH)) which was used for electrical conductivity and thermopower measurements (part 2 of this paper). A zonar structure was found by electron microprobe analysis with a strong decrease in Mn concentration from the rim to the centre of the crystal in a plane perpendicular to the [001] direction. X-ray powder diffraction analysis of the most Mn-rich composition was performed. Mn2+ cations populate preferentially M2 sites of the ilvaite unit cell (space group P21/a), to a lower extent they reside on M1 and a reduced part is on Ca sites. The monoclinic angle was determined to β=90.178(4)°. The structural results are compared to literature data for other natural Mn-rich as well as low-impurity ilvaites; this concerns in particular the lattice b parameter and the undecided issue of the varying β angle. In the literature, the order parameter σ, which describes the varying degree of ordering of Fe2+–Fe3+ pairs on M11 and M12 sites in chains running parallel to the [001] direction, and structural defects are thought to be related to β. The interrelationship between β and σ with respect to a possible twin domain structure is discussed. Various 57Fe Mössbauer spectra were recorded between 151 K and 327 K. Mössbauer parameters and Fe2+/Fe3+ concentration ratios were determined from the fits to the spectra. Fitting of subspectra was accomplished with the idea to find assignments of Fe2+ and Fe3+ doublets in agreement with X-ray results. The fraction of Mn2+ substituting Fe2+ on M1 sites could be estimated.  相似文献   

15.
57Fe Mössbauer spectra of natural glasses (pumices and obsidians) and of synthetic glasses of granitic composition have been analyzed. — Ferric iron is found in tetrahedral coordination if enough M+-cations are available to balance the charge of both M+Fe3+O2 and M+AlO2 complexes. In other compositions the ratio of tetrahedrally to octahedrally coordinated Fe3+ depends on the ratio of mono-to divalent cations. — Ferrous iron occurs in two distinctly different octahedral sites. The existence of these sites can be attributed to different anionic units adjacent to Fe2+. The degree of polymerization of these units is reflected in the quadrupole splitting. The anionic units adjacent to Fe2+ are depolymerized for increasing mean Z/r 2 of the network modifiers, which do not stabilize M3+ in the tetrahedra by local charge balance. — Increasing pressure diminishes the geometric differences between these types of ferrous iron-oxygen-octahedra, which gives rise to a more even distribution of Fe2+ among these sites and thereby to an ordering in the network of melts.  相似文献   

16.
57Fe-Mössbauer spectra of eleven Fe-Mg-bearing staurolite samples, synthesized at 5, 20 and 25 kbar and 680°C, ranging in composition from xFe?=1.00 to xFe?=0.15, and of two Zn-Fe-bearing staurolite samples, synthesized at 20 kbar and 700°C with xFe?=0.10 and xFe?=0.32 were collected at room temperature. The spectra reveal that about 80% of Fetot (in case of Fe-Mg-bearing staurolite) and about 70% of Fetot (in case of Fe-Zn-bearing staurolite) are located as Fe2+ at the three subsites Fe1, Fe2 and Fe3 of the tetrahedral T2-site. The refinement of the spectra results in almost identical values for the isomer shift (IS) (±1.0 mm/s) but significantly different values for the quadropole splitting (QS) for the three subsites which is in accordance with the different distortions of these sites. About 8% of Fetot (in case of Fe-Mg-bearing staurolite) and 13% of Fetot (in case of Fe-Zn-bearing staurolite) are located as Fe2+ at the octahedral M4 site, while the remainder percents of Fetot indistinguishably occur as Fe2+ at the octahedral M1 and M2 sites of the kyanite-like part of the structure. Within the whole Fe-Mg-staurolite solid solution series the Mössbauer parameters QS of the sites M4 and (M1, M2) vary systematically with composition whereas IS remains constant. There is a high negative correlation of the total Mg-content with Fe-occupation of all the Fe-bearing sites indicating a continuous substitution of Fe2+ by Mg on all these sites. Synthetic Fe-staurolites show no increasing occupation of the octahedral sites by two-valent cations with pressure, as was assumed by several authors.  相似文献   

17.
We report application of the flank method using the electron microprobe to a suite of twelve (Mg,Fe)O samples with composition 2–47 wt% Fe and Fe3+/ΣFe = 1 to 11%, where Fe3+/ΣFe was determined independently using Mössbauer spectroscopy on the same grains used for the flank method measurements. A calibration curve of the form Fe2+ = A + B × (ΣFe)2 + C × (Lβ/Lα) was fit to the data and gave excellent agreement between Fe3+/ΣFe calculated from the flank method and Fe3+/ΣFe determined using Mössbauer spectroscopy. We found the method to be sufficiently sensitive to determine meaningful variations in Fe3+/ΣFe for geophysically relevant compositions of (Mg,Fe)O (<25 wt% Fe), and calibration parameters remained constant within experimental uncertainty over the course of the entire study (20 months). Flank method measurements on an inhomogeneous sample of synthetic (Mg,Fe)O showed evidence of diffusion processes resulting from rupture of the capsule during the high-pressure experiment and the possibility to measure Lβ/Lα variations with a spatial resolution of a few microns. We detected the presence of exsolved magnesioferrite in a suite of (Mg,Fe)O single crystals using transmission electron microscopy and Mössbauer spectroscopy. Flank method measurements on the same suite of single crystals showed enhanced Fe3+/ΣFe values, consistent with the presence of magnesioferrite even though the grains were too small to be resolved by conventional electron microprobe measurements.  相似文献   

18.
Hyperfine parameters of 57Fe in anthophyllites (Mg2+, Fe2+)7 Si8O22(OH, F)2 mainly depend on the amount of Al present in the structure. The quadrupole splitting of the doublet due to Fe2+ in M1, M2 and M3 decreases systematically with the Al content, whereas that of the doublet due to Fe2+ in M4 and the half-width of the combined M1, M2, M3 doublet increases. Structurally these variations suggest that, with the incorporation of Al (miscibility towards gedrite), the distortion of the M4 polyhedron decreases, whereas the M1, M2 and M3 polyhedra become more distorted and dissimilar.  相似文献   

19.
Synthetic Fe3+-melilites containing NaCaFe3+-Si2O7-, Ca2Fe3+AlSiO7- or Sr2Fe3+AlSiO7-components have been studied by 57Fe Mössbauer spectroscopy. The spectrum of åkermanite containing an NaCaFe3+Si2O7-component consists of one doublet identified to belong to Fe3+ in T1 sites. The spectra of åkermanite and gehlenite containing Ca2Fe3+ AlSiO7- or Sr2Fe3+ AlSiO7-component consist of two doublets. The inner and outer doublets are identified to belong to Fe3+ in the less distorted T1 and that in the more distorted T2 sites, respectively. The area ratios of the spectra show that the site occupancy of Fe3+ (T1) in gehlenite is less than that in åkermanite in which the distribution of Fe3+ in T1 and T2 sites is apparently random. The different distributions can be explained in terms of competition between minimizing the deficiency in the electrostatic valence and the preference of Al for T1 sites which the isomer shift measurements show to be more ionic.  相似文献   

20.
Mössbauer studies of micas on the polylithionite-side-rophyllite join show the existence of a relation between the quadrupole splitting (ΔE Q) values of Fe2+ high spin doublets and both cationic and anionic composition of micas. This linear relation is positive as Li2O content increases and negative as F content increases. In the lithium iron micas, the inner ferrous quadrupole doublet is assigned to the cis-site M(2), while the outer doublet is assigned to the trans-site M(1). A random distribution of Fe2+ is observed in fluorine-rich compositions, while slight enrichment of the M(1) site is noticed in hydroxyl compositions, perhaps due to a more sensitive oxidation in situ in M(2) than M(1) sites. The Mössbauer spectrum of siderophyllite K2(Fe 4 2+ Al2)(Si4Al4)O20(OH)4 shows the presence of only one ferrous doublet, which is assigned to M(2) sites. Hence from Mössbauer data we must consider a clintonite (“xanthophyllite”) structure for this mica. The ordered octahedral layer has two distorted ferrous cis-sites and one, more symmetrical, aluminum trans-site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号