首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crystal field stabilization (CFS) plays a significant role in determining equilibrium phase boundaries in olivine→spinel transformations involving transition-metal cations, including Fe2+ which is a major constituent of the upper mantle. Previous calculations for Fe2SiO4 ignored pressure and temperature dependencies of crystal field stabilization enthalpies (CFSE) and the electronic configurational entropy (S CFS). We have calculated free energy changes (ΔG CFS) due to differences of crystal field splittings between Fe2SiO4 spinel and fayalite from: ΔG CFS=?ΔCFSE?TΔS CFS, as functions of P and T, for different energy splittings of t 2g orbital levels of Fe2+ in spinel. The results indicate that ΔG CFS is always negative, suggesting that CFS always promotes the olivine→spinel transition in Fe2SiO4, and expands the stability field of spinel at the expense of olivine. Because of crystal field effects, transition pressures for olivine→spinel transformations in compositions (Mg1?x Fe x )2SiO4 are lowered by approximately 50x kbar, which is equivalent to having raised the olivine→spinel boundary in the upper mantle by about 15 km.  相似文献   

2.
Electrical conductivities of Ni2SiO4, Fe2SiO4, and MgSiO3 were measured on synthetic powders in the temperature range 340° to 1,100° C and at pressures up to 20 kbars. For ternary compounds such as olivines and pyroxenes the control of two further variables, like the chemical activities of two components are needed, besides temperature and pressure. The activities of the corresponding binary oxides were controlled by equilibrating the samples with their neighbour-phases. Control of the oxygen partial pressure was achieved by buffer techniques. From the slopes of the lg σ vs. 1/T lines the activation energies were calculated for 10 kbar: 0.56 eV and 2.7 eV for Ni2SiO4 in equilibrium with SiO2 and Ni/NiO-buffer for the temperature range 500°–800°C and 800°–1,000°C resp. 0.52 eV for Fe2SiO4 in equilibrium with SiO2 and metallic iron, and 0.38 eV in equilibrium with SiO2 and magnetite; 1.11 eV for MgSiO3 in equilibrium with SiO2, and 1.25 eV in equilibrium with Mg2SiO4.  相似文献   

3.
Experiments on the join Al2SiO5-“Mn2SiO5” of the system Al2O3-SiO2-MnO-MnO2 in the pressure/temperature range 10–20 kb/900–1050° C with gem quality andalusite, Mn2O3, and high purity SiO2 as starting materials and using /O2-buffer techniques to preserve the Mn3+ oxidation state had following results: At 20 kb/1000°C orange-yellow kyanite mixed crystals are formed. The kyanite solid solubility is limited at about (Al1.88Mn 0.12 3+ )SiO5 and, thus, equals approximately that on the join Al2SiO5-“Fe2SiO5” (Langer and Frentrup, 1973) indicating that there is no Jahn-Teller stabilisation of Mn3+ in the kyanite matrix. 5 mole % substitution causes the kyanite lattice constants a o, b o, c o, and V o to increase by 0.015, 0.009, 0.014 Å, and 1.6 Å3, resp., while α, β, γ, remain unchanged. Between 10 and 18 kb/900°C, Mn3+-substituted, strongly pleochroitic (emeraldgreen-yellow) andalusitess (viridine) was obtained. At 15 kb/900°C, the viridine compositional range is about (Al1.86Mn 0.14 3+ )SiO5-(Al1.56Mn 0,44 3+ )SiO5. Thus, Al→Mn3+ substitutional degrees are appreciably higher in andalusite than in kyanite, proving a strong Jahn-Teller effect of Mn3+ in the andalusite structure, which stabilises this structure type at the expense of kyanite and sillimanite and, thus, enlarges its PT-stability range extremely. 17 mole % substitution cause the andalusite constants a o, b o, c o, and V o to increase by 0.118, 0.029, 0.047 Å and 9.4 Å3, resp. At “Mn2SiO5”-contents smaller than about 7 mole %, viridine coexists with Mn-poor kyanite. At “Mn2SiO5”-concentrations higher than the maximum kyanite or viridine miscibility, braunite (tetragonal, ideal formula Mn2+Mn3+[O8/Si04]), pyrolusite and SiO2 were found to coexist with the Mn3+-saturated ky ss or and ss, respectively. In both cases, braunites were Al-substituted (about 1 Al for 1 Mn3+). Pure synthetic braunites had the lattice constants a o 9.425, c o, 18.700 Å, V o 1661.1 Å3 (ideal compn.) and a o 9.374, c o 18.593 Å3, V o 1633.6 Å3 (1 Al for 1 Mn3+). Stable coexistence of the Mn2+-bearing phase braunite with the Mn4+-bearing phase pyrolusite was proved by runs in the limiting system MnO-MnO2-SiO2.  相似文献   

4.
5.
The decomposition of fayalite (Fe2SiO4) in oxygen potential gradients is studied at T=1,418 K. The compound will be decomposed into its component oxides wüstite, Fe1?δO, and silica, SiO2, by the simultaneous action of two different oxygen partial pressures, exceeding a critical ratio, despite the fact that fayalite is stable at both the lower and the higher oxygen potential. A quantitative analysis of the decomposition process caused by defect fluxes within the bulk Fe2SiO4 is given.  相似文献   

6.
This work is one of the stages of study of the deep C-O-H fluid and investigates the behavior of polycyclic aromatic hydrocarbons (PAHs) under conditions of the Earth’s mantle. The composition of the C-O-H fluid in the upper mantle is estimated as a mixture of H2O and CH4 with a minor amount of H2 and heavier hydrocarbons. Some theoretical calculations show that the stability of heavy hydrocarbons (alkanes, alkenes, and PAHs) increases with an increase in temperature. This paper presents the results of an XRD study of PAHs stability in multianvil presses on a Spring-8 accelerator (Japan). The primary compositions were chosen according to the abundance of PAHs in nature. In situ diffraction spectrums were recorded to determine the PAHs stability field. It was established that the PAHs become unstable at a pressure of 6–9 GPa and a temperature of 873–1073 K.  相似文献   

7.
The data published earlier on zircon and sphene fission track ages and annealing are discussed in the light of different etching conditions used for age determination and annealing experiments in order to explain the age discordances of some zircon and sphene pairs, as well as numerous closing temperatures obtained for individual minerals. Using the new set of simple etching conditions, zircon (KOH melt) and sphene (HF+HCl), the annealing experiments indicate that tracks in sphene are annealed more easily than in zircon. The closing temperature of zircon and sphene have been calculated at 300° and 250° C respectively. The study reveals that both the fission track age and the closing temperature of a mineral can vary considerably if different etchants are used. For different etching conditions the closing temperatures (T) of sphene have the following order: T NaOH> T HF+HCl+HNO3+H2O> THF+HCl>THCl. An alternative method can be used to obtain thermal histories of rocks by selectively applying various etchants on the same mineral.  相似文献   

8.
Boninite primary magmas: Evidence from the Cape Vogel Peninsula,PNG   总被引:1,自引:0,他引:1  
Boninites from Cape Vogel, PNG, are dominantly pyroxene-glass rocks, but many contain olivine, sometimes as refractory as Fo94. We derive a parental magma for this suite (in equilibrium with Fo94) which contains 20 wt.% MgO and is quartz-normative. This liquid is hydrous, and from petrographie evidence and whole rock H2O+ values, we estimate it to contain 2–3 wt.% H2O. These data suggest olivine fractionation and primary magmatic water are important in boninite genesis, but both are often obscured by later alteration. The derived parental magma has probably formed at 1,250–1,300° C and low pressures (< ?10kB) and is similar to those which gave rise to olivine-clinoenstatite phyric boninites from New Caledonia and from Howqua, Australia, and possibly to a proposed parental magma for the Bushveld Complex.  相似文献   

9.
A thermochemical data base for phases in the system Fe-Mg-Si-O at high pressures up to 300 kbar is established by supplementing the available calorimetric data with data calculated from experimental high pressure synthesis studies. Phases included in the data base are the SiO2 polymorphs, rock salt solid solutions (Fe-Mg-O), Fe2O3, Fe3O4, (Mg, Fe)2SiO4 olivine, spinel, modified spinel and (Mg, Fe)SiO3 perovskite and pyroxene. Phases not included are the MgSiO3-ilmenite and -garnet. Fe-Mg solution properties of olivine, spinel, perovskite and wustite (rock salt) are estimated. The wüstite solid solution has been modeled as a nonideal solution of three end members; FeO, FeO1.5 and MgO. The new data base is made consistent with most of the available information on high pressure phase studies. The data base is useful in generating phase diagrams of various different compositions for the purpose of planning new experiments and analysing existing phase synthesis data.  相似文献   

10.
In the lattice energy expression of forsterite, based on a Born-Mayer (electrostatic+repulsive+dispersive) potential, the oxygen charge z o, the hardness parameter ρ and the repulsive radii r Mg and r Si appear as unknown parameters. These were determined by calculating the first and second partial derivatives of the energy with respect to the cell edges, and equalizing them to quantities related to the crystal elastic constants; the overdetermined system of equations was solved numerically, minimizing the root-mean-square deviation. To test the results obtained, the SiO 4 4? ion was assumed to move in the unit-cell, and the least-energy configuration was sought and compared with the experimental one. By combining the two methods, the optimum set of parameters was: z o=?1.34, ρ=0.27 Å, r Mg=0.72 Å, r Si=0.64 Å. The values ?8565.12 and ?8927.28 kJ mol?1 were obtained, respectively, for the lattice energy E Land for its ionic component E L 0 ,which accounts for interactions between Mg2+ and SiO 4 4? ions only. The charge distribution calculated on the SiO 4 4? ion was discussed and compared with other results. Using appropriate thermochemical cycles, the formation enthalpy and the binding energy of SiO 4 4? were estimated to be: ΔH f(SiO 4 4? )=2117.6 and E(SiO 4 4? )=708.6 kJ mol?1, respectively.  相似文献   

11.
Itaipu Lake, which includes the Itaipu hydroelectric power plant, is one of the largest dams in the world and has a strong relationship with its surroundings. The flooded area has multiple uses such as navigation, recreation, water abstraction for industrial, urban and agricultural irrigation. The lake is located at the frontier between Brazil, Argentina and Paraguay. In this study, superficial sediments collected from nine sampling sites were analysed for grain size, organic matter and 16 priority polycyclic aromatic hydrocarbons (PAHs) using high-performance liquid chromatography (HPLC) with fluorescence detector. The total concentration of PAHs in the dry sediment ranged from 35.21 to 685.37 µg kg?1. Diagnostic ratios showed that the possible source of PAHs in the Itaipu Lake could be pyrolitic and petrogenic. The potential toxicity of sediment of PAHs varied from not detected to 127.70 µg g?1, suggesting that some adverse ecological effects would arise due to PAHs in these sediments.  相似文献   

12.
Infrared (IR) absorption spectra are presented for olivine (α) and spinel (γ) phases of A2SiO4 (A=Fe, Ni, Co) and Mg2GeO4. IR spectra of β phase (“modified spinel”) Co2SiO4 and of α Mg2SiO4 are also included. These results provide reference spectra for the identification of olivine high-pressure polymorphs. Isostructural and isochemical correlations are used to support a general interpretation of the spectra and to predict the spectrum of γ Mg2SiO4. A γ Mg2GeO4 sample equilibrated at 1,000° C shows evidence of partial inversion, but one equilibrated at 730° C does not. This suggests that partial inversion could occur in silicate spinels at elevated temperatures and pressures, however no evidence of inversion is seen in the ir spectra of the silicates in this study.  相似文献   

13.
In this paper we present a theoretical investigation of the structures and relative stability of the olivine and spinel phases of Mg2SiO4. We use both a purely ionic model, based on the Modified Electron Gas (MEG) model of intermolecular forces, and a bond polarization model, developed for low pressure silica phases, to investigate the role of covalency in these compounds. The standard MEG ionic model gives adequate structural results for the two phases but incorrectly predicts the spinel phase to be more stable at zero pressure. This is mainly because the ionic modeling of Mg2SiO4 only accounts for 95 percent of the lattice energy. The remainder can be attributed to covalency and many-body effects. An extension of the MEG ionic model using “many-body” pair potentials corrects the phase stability error, but predicts structures which are in poorer agreement with experiment than the standard ionic approach. In addition, calculations using these many-body pair potentials can only account for 10 percent of the missing lattice energy. This model predicts an olivine-spinel phase transition of 8 GPa, below the experimental value of 20 GPa. Therefore, in order to understand more fully the stability of these structures we must consider polarization. A two-shell bond polarization model enhances the stability of both structures, with the olivine structure being stabilized more. This model predicts a phase transition at about 80 GPa, well above the observed value. Also, the olivine and spinel structures calculated with this approach are in poorer agreement with experiment than the ionic model. Therefore, based on our investigations, to properly model covalency in Mg2SiO4, a treatment more sophisticated than the two-shell model is needed.  相似文献   

14.
The Burro Mountain ultramafic complex, Monterey County, California, consists of dunites and peridotites which are partially or wholly serpentinized. Primary minerals in both rock types are olivine, enstatite, diopside, and picotite which upon alteration yield chrysotile, lizardite, brucite, magnetite, talc, tremolite, and carbonate. Electron microprobe analyses show that enstatite, En85.8 to En90.8, alters to “bastite” composed only of lizardite (5.0–12.0 weight percent FeO), whereas olivine, Fo90.8 to Fo91.6, forms lizardite+chrysotile+brucite with or without magnetite. The chrysotile ranges from 3.0 to 5.0 weight percent FeO, the brucite from 16.0 to 43.0 weight percent FeO. As Serpentinization proceeds, the alteration products are enriched in FeO relative to MgO. Serpentinization probably originates in a changing \(P_{O_2 }\)-T environment by two different reactions:
  1. (a)
    Olivine+enstatite+H2O+O2?Mg, Fe+2 chrysotile+Mg, Fe+3, Fe+2 lizardite with or without magnetite.  相似文献   

15.
The object of the paper is to analyze changes in modal and port allocation of general cargo flows in Sweden's foreign trade between 1960 and 1976. It summarizes some results of a forthcoming report on the project ‘Tendencies in Liner Shipping’ financed by the ‘Transport Research Delegation’, Stockholm.  相似文献   

16.
Five different refraction formulas were applied to SiO2 polymorphs in order to determine the most suitable refractive index-density relation. 13 SiO2 polymorphs with topological different tetrahedral frameworks are used in this study including eight new low density SiO2 polymorphs — so called “guest free porosils”. These SiO2 polymorphs cover a density range from 1.76 to 2.92 g/cm3. The mean refractive indices (ovn) of the porosils have been determined by the immersion method, the densities (ρ) were calculated from the unit cell parameters. Assuming the polarizability (α) of all SiO2 polymorphs to be constant the general refractivity formula $$\{ 2\overline {11} 0\} \langle 0001\rangle $$ turned out to be the most suitable for SiO2 polymorphs. Regression analysis yields an electronic overlap parameter b=1.2(1).  相似文献   

17.
The opaque minerals in eclogite xenoliths from Stockdale Kimberlite are rutile, ilmenite, and a complex polysulfide assemblage. Rutile shows exsolutions of ilmenite and spinel. Discrete ilmenite contains up to 10 wt % MgO in solid solution and is a primary mineral, but not of kimberlitic origin. Pyrrhotite containing exsolved pentlandite is the major sulfide mineral, and is usually rimmed by chalcopyrite which may display exsolution of cubanite. A veneer of monosulfide solid solution (12 wt % Ni and 5 wt % Cu) forms a rim on the chalcopyrite-pyrrhotite masses. The simple model of sulfide liquid immiscibility within a silicate melt may account for the origin of the pyrrhotite-pentlandite-chalcopyrite assemblage, but it fails to explain the occurrence within one and the same sulfide globule of a monosulfidess rim, separated from an exsolved pyrrhotite core by chalcopyrite. The monosulfidess is probably a metastable phase produced by the partial melting of a preexisting sulfide assemblage of similar bulk chemical composition to that existing at present. The melting possibly took place instantaneously when the eclogite was incorporated into the rising hot kimberlitic magma. Fast cooling during the explosive ascent of the kimberlite could have led to the quenching of the monosulfide solid solution. Rutile in the eclogite xenolith was unaffected by the heating, but secondary amphibole and biotite may have possibly formed during this event.  相似文献   

18.
Rates of shoreline change and overwash penetration distances were calculated for barrier islands along the Louisiana, Mississippi, and Alabama coasts with the orthogonal grid mapping system (OGMS). Average rates of shoreline change are exceptionally high in Louisiana, being of the order ?4.7 to ?7.4 m yr?1. Mississippi and Alabama recession rates are lower and range from ?2.0 to ?3.1 m yr?1 over the period of record. Erosion rates along the shorelines of these islands have remained relatively constant over the period of study with five exceptions in coastal Louisiana and the Chandeleur-Breton Islands Arc, and two exceptions along the Mississippi-Alabama barrier islands where they have accelerated. Mean overwash penetration is greatest along Dauphin Island, Alabama, and Cat Island, Mississippi: 207.6 and 197.9 m, respectively. The Chandeleur-Brenton Islands Arc range from 88.1 m at the central barrier to 180.4 along the flanks. The Mississippi islands range from 105.2 m on Ship Island to 200.5 m along central Horn Island. Mean overwash penetration along the Louisiana barriers is highly variable: 46.3 to 211.4 m.  相似文献   

19.
Infrared absorption spectra of the high-pressure polymorphs β-Mg2SiO4 and β-Co2SiO4 have been measured between 0 and 27 GPa at room temperature. Grüneisen parameters determined for 11 modes of β-Mg2SiO4 (frequencies of 300 to 1,050 cm?1) and 5 modes of β-Co2SiO4 (490 to 1,050 cm?1) range between 0.8 and 1.9. Averaging the mid-infrared spectroscopic data for β-Mg2SiO4 yields an average Grüneisen parameter of 1.3 (±0.1), in good agreement with the high-temperature thermodynamic value of 1.35. Similarly, we find a value of 1.05 (±0.2) for the average spectroscopic Grüneisen parameter of β-Co2SiO4.  相似文献   

20.
Polarized infrared (IR) spectroscopy of olivine crystals from Zabargad, Red Sea shows the existence of four pleochroic absorption bands at 3,590, 3,570, 3,520 and 3,230 cm?1, and of one non pleochroic band at 3,400 cm?1. The bands are assigned to OH stretching frequencies. Transmission electron microscopy (TEM) shows no oriented intergrowths in this olivine; it is concluded that OH is structural. On the basis of the pleochroic scheme of the absorption spectra it is proposed that [□O(OH)3] and [□O2(OH)2] tetrahedra occur as structural elements, assuming that the vacancies are on Si sites. If M2 site vacancies were assumed [SiO3(OH)] and [SiO2(OH)2] tetrahedra occur as structural elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号