首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The LILE geochemical patterns of the three main lithological units (graywacke-shale metasedimentary sequence, tholeiitic metaigneous rocks and migmatitic rocks) of the Lapland Granulite belt are described. K, Ba, Sr and Th concentrations in metasediments are nearly similar to average continental crust, whereas Rb and U are unevenly impoverished. In particular graphitic metashales and calcsilicate rocks are not significantly depleted in uranium. Tholeiitic metaigneous rocks comprises metavolcanics which present K/Rb ratios similar to metasediments, and metaplutonics with LILE abundances close to those of the low-K-tholeiites. Migmatites show wide range in LILE content. Metatexites and diatexites have higher K, Rb, Th and U concentrations and similar K/Rb ratios with respect to equivalent unmobilized rocks. Potassic pegmatoïds are strongly enriched K, Rb, Ba and Th but moderately in Sr and U. Plagioclasic pegmatoids and ferromagnesian restites are rich in Sr and poor in other LIL elements.A comparative review of the LILE geochemistry between Lapland granulites and equivalent lithological units taken from non metamorphosed to high grade terrains suggest that fractionation processes are not systematic but controlled by original lithology and mineralogy, mineral — fluid equilibria during progressive (or retrogressive) metamorphism and mineral-melt-fluid equilibria during anatexis. Moreover, statistical analysis on K-Rb distribution patterns in these various rock types shows that there is no metamorphic trend characteristic of granulite facies terrains as previously suggested.Large Ion Lithophile Elements  相似文献   

2.
冀东迁西三屯营地区的高级变质杂岩,主要由早太古宙的三组片麻岩所组成。岩石地球化学研究表明,较早期的三屯营片麻岩为钙碱性石英闪长质岩石,除U和Th外,它不亏损不相容元素。较晚期的小关庄片麻岩和秋花峪片麻岩,分别为钙碱性石英闪长质和钙碱性英云闪长—奥长花岗质岩石,二者均发生了不相容元素的亏损。三屯营地区的岩石亏损与未亏损是源岩浆所具有的特征,可能是初始地壳形成时上地幔不均匀造成的。  相似文献   

3.
A comparison of K, Rb, Th and U concentrations in granulite facies rocks with those of unmetamorphosed common rock types shows that depletion of these elements in granulites is variable. K/Rb ratios for granulites are generally higher than unmetamorphosed rocks, but K/Rb ratios only reach extreme values when K < 1%. The covariation of K/Rb ratio with K concentration suggests that protolith composition, hence mineralogy, is very important in controlling the degree of Rb depletion in granulites. Felsic granulites exhibiting extreme K/Rb ratios are mainly Archean, reflecting the high abundance of low K felsic rocks in Archean terrains. The Scourian granulites of Scotland all have very high K/Rb ratios and cannot be considered to be representative of granulite facies terrains. It is impossible from this data set to state conclusively whether K is depleted in granulites; K/La ratios of granulites show complete overlap with igneous rocks. Th/U ratios in many granulites are greater than 4, indicating U loss relative to Th. Felsic granulites with low Th/U ratios also have high La/Th ratios, indicating that these granulites have been depleted in Th. The low Th/U ratios of these rocks may reflect retention of Th and U in resistant accessory phases.  相似文献   

4.
《Precambrian Research》1987,36(1):65-79
The trace element composition of high-grade metamorphic rocks in the Guaxupé Massif is investigated. The large ion lithophile element composition is compared in both the granulite facies rocks and the associated amphibolite facies gneisses. The K, Rb, Th contents in the granulite facies rocks from other parts of Brazil show that the depletion of these elements is variable. The covariance of KRb ratios with K suggest the importance of mineralogical control, protolith composition, nature of fluid etc. The distribution of U and Th appears to indicate the protolith composition of the rock types.  相似文献   

5.
Mineralogy,geochemistry and petrogenesis of Kurile island-arc basalts   总被引:1,自引:0,他引:1  
Whole-rock (major- and trace-element) and mineral chemical data are presented for basaltic rocks from the main evolutionary stages of the Kurile island arc, NW Pacific. An outer, inactive arc contains a Cretaceous-Lower Tertiary sequence of tholeiitic, calcalkaline and shoshonitic basalts. The main arc (Miocene-Quaternary) is dominated by weakly tholeiitic, with lesser, alkalic basalts. The mineralogy of Kuriles basalts is characterised by An-rich plagioclases, a continuous transition from chromites to titanomagnetites, pyroxenes with low Fe3+ contents and without strong Fe-enrichment, abundance of groundmass pigeonites and the absence of amphiboles. There is an increase in K2O contents both along-arc (northwards) and towards the reararc side. The basalts show an exceptionally wide but continuous range of K2O contents (0.1–4.7%) which correlate with other LIL element contents. Tholeiitic basalts with low LIL element contents, La/Yb and Th/U, but high K/ Rb, P2O5/La and Zr/Nb were derived from depleted, lherzolitic mantle which had suffered fluid metasomatism by K, Rb, Cs, Sr, Ba, Pb and H2O only. Alkali basalts are also thought to be derived from depleted mantle but melt metasomatism involved addition of all LIL elements to a garnet lherzolite mantle. The Kuriles basalts and their mantle sources range continuously between these two end-member compositions. The metasomatic fluids/melts were probably released by early dehydration and later melting within subducted oceanic lithosphere though the process is not adequately constrained.  相似文献   

6.
相山两种不同成因角闪石的地球化学特征对比   总被引:1,自引:0,他引:1  
通过详细研究相山两种不同成因角闪石的元素及同位素地球化学发现:江西相山铀矿田北部同时存在两种不同成因的角闪石:正变质成因的角闪石,寄主岩石为斜长角闪(片)岩,微量元素以富集大离子亲石元素(LILE)(K,Rb,Th,Ta,U)、稍为富集Ti,Se和相对贫高场强元素(HFSE)(Zr,Hf,Y,Yb,Cr,HREE)为特征,稀土总量低,稀土分布型式为近水平型,δ^18O为7.95~8.58,显示变质火成岩的氧同位素特征;副变质成因的角闪石,寄主岩石为含石榴角闪石英片岩.微量元素以高度富集大离子亲石元素(LILE)(K,Rb,Th,U)、稍为富集Ta,Nb,Ce,Zr,Hf,Sm和相对贫高场强元素(HFSE)(Ti,Y,Yb,Cr)、强烈亏损Sc为特征,稀土总量高.轻重稀土相互分离程度高,轻稀土富集,O同位素组成(δ^18O)较高,为9.95~10.02,显示碎屑沉积变质岩的氧同位素特征。  相似文献   

7.
本文首次系统地研究了二克山—五大连池—科洛富钾火山岩带中幔源超镁铁岩包体的岩相、组构、矿物及地化特征,并分析了包体的成因类型及交代作用。研究表明,该包体是受富含K_2O+LIL+LREE±FeO±~(87)Sr流体交代的、已亏损了的地幔样品,反映了地幔交代的普遍性和不均一性。  相似文献   

8.
9.
Analyses of Sm-Nd and U-Th-Pb systematics, REE, Ba, Sr, Rb and K concentrations were carried out for whole rock and mineral separates from the Nakhla meteorite. The 1.26 ±.07 b.y. Sm-Nd age obtained in this work is in good agreement with those previously obtained by the Rb-Sr and Ar-Ar methods. The high initial ?Nd value of +16 suggests that Nakhla was derived from a light REE-depleted, old planetary mantle source. U-Th-Pb data, after correction for pre-analytical terrestrial Pb contamination assuming an age of 1.26 b.y., suggest that the age of the Nakhla source is ?4.33 b.y. The agreement in the age determined by three independent radiometric methods and the high initial ?Nd value strongly suggest that the 1.3 b.y. age dates one thorough igneous event in the parent body which not only reset these isotopic systems but also established the chemical and petrologic characteristics observed for the Nakhla meteorite.Using a three-stage Sm-Nd evolution model in combination with LIL element data and estimated partition coefficients, we have tested partial melting and fractional crystallization models to estimate LIL element abundances in a possible Nakhla source. Our model calculations suggest that partial melting of the light REE-depleted source followed by extensive fractional crystallization (?50%) of the partial melt could account for the REE abundances in the Nakhla constituent minerals. The estimated source is depleted in the light REE, Ba, Rb and K and therefore may resemble the MORB source in the earth's upper mantle or the upper 60–300 km of the moon.The significantly younger age of Nakhla than the youngest lunar rock; the young differentiation age inferred from the U-Th-Pb data, and the estimated LIL element abundances (including those of K, U and Th) in the source suggest that the Nakhla meteorite may have been derived from a relatively large, well-differentiated planetary body such as Mars.  相似文献   

10.
Pekka Tuisku 《Lithos》1991,27(4):279-300
The amphibolite facies, iron-rich metapelites (garnet-staurolite mica schists) of the early Proterozoic Puolankajärvi Formation are intercalated with metamorphosed basic rocks which vary from iron-rich amphibolites to magnesium-rich layered sills and serpentinites. Garnet-cummingtonite-hornblende assemblages are abundant at the contacts of the metapelites with amphibolites, while garnet-chlorite, garnet-gedrite±chlorite, garnet-gedrite-cummingtonite±chlorite and chlorite-cummingtonite-hornblende assemblages occur at their contacts with the layered magnesium-rich sill.

The bulk composition profiles of these contacts, normalised with respect to chromium and/or aluminium, show conspicuous enrichment in Fe, S, Ga and Co and depletion in Si, K, Ba and Rb. Some elements (e.g. Mg, Mn, Ni, P, Zr and Hf) are depleted or enriched in only small amounts, while others (e.g. Ca, Na, Sr and the rare earth elements) may show both enrichment and depletion in the course of a profile.

Although early infiltration during the hydration of metabasites and tectonic reworking may have produced some interaction of the basites with the pelites, the major metasomatic event is considered to have bile elements. The composition of the metapelites, for example, approached that of magnesium-rich ultramafites through potassium depletion, while the ultramafites became markedly enriched in iron. To conserve the volume, silica was depleted from the contact which underwent iron enrichment.  相似文献   


11.
云南香格里拉春都斑岩体岩石地球化学特征研究   总被引:2,自引:0,他引:2  
春都矿区复式斑岩体主要由闪长玢岩岩株及侵入其中的花岗闪长斑岩岩枝组成,后者为斑岩铜矿的成矿母岩。岩石地球化学特征表明,春都侵人岩属于钙碱性系列,cs、Rb、K、Ba、Sr等大离子亲石元素(LIL)在岩石中明显富集,Y、Hf、zr、Ti、Nb、Ta等较不活泼的高场强元素(HFS)则在岩石中相对亏损。通过构造环境图解判别,斑岩体形成于主动大陆边缘的火山弧构造环境,是甘孜.理塘洋壳向西俯冲的产物。  相似文献   

12.
New REE data, and new Nd, O, Sr, and Pb isotopic data are presentedand integrated with previous data for this low-K intra-oceanicarc suite. Geochemically, the arc tholeiites and basaltic andesitesrange from extremely HFS element depleted (northern Tonga) tonear N-MORB-like HFS element abundances in L'Esperance (southernKermadecs). LIL elements (Sr, Rb, K, Rb, Ba, Th) show the characteristicselective enrichment generally recognized in arc magmas, andthus indicate decoupling of the HFS and LIL elements. Modellingsuggests a compositionally variable source (mantle wedge) alongthe arc, ranging from restite after remelting an N-type MORBsource (northern end), to progressively less depleted, MORB-likesources southwards. Thus, the low HFS/LIL element ratios areinterpreted in terms of HFS depletion followed by LIL elementenrichment associated with subduction; broad correlations occurbetween Zr/Ba and Sr/Nd ratios (fractionation corrected) and87Sr/86Sr and 143Nd/144Nd ratios. Derivation of the arc magmas from depleted peridotote requiressuperimposed fractional crystallization, which has been modelledthermodynamically using SILMIN (Ghiorso, 1985), utilizing experimentallyproduced partial melts from depleted lherzolite (Jaques &Green, 1980). It is shown that the arc tholeiites and basalticandesites (and also high Mg-andesites) are potentially developedat low pressures 5 kb), from parental magmas also generatedat relatively low pressure ( 10 kb). These data further suggestthat a southward increasing depth of magma segregation (correlatingwith Benioff Zone geometry) could account for differences inchemistry between the Tonga and Kermadec arc segments. The mechanism of LILE enrichment is still highly problematic,but it is suggested that the model of Tatsumi et al. (1986)may account for much of the geochemical data; this involvesrelatively shallow release, via fluids, of LIL elements intooverlying peridotite beneath the fore-arc region. Induced convectionin the mantle wedge moves the metasomatized mantle into thezones of magma generation. The development of the inferred, variably depleted mantle wedgesource is here related to active back-arc spreading which isslightly older and more rapid behind the northern region ofthe arc. The lherzolite restite from this spreading processis interpreted to undergo further partial melting in the metasomatizedmantle wedge overlying the subduction zone, involving inducedconvection. The back-arc island of Niua fo'ou is geochemically quite distinctfrom the arc magmas, being similar to N-MORB in its trace elements,but to OIB in its isotope ratios.  相似文献   

13.
Shock metamorphosed rocks and shock-produced melt glasses from the Wanapitei Lake impact structure have been examined petrographically and by electron microprobe. Eleven clasts exhibiting varying degrees of shock metamorphism and eight impact-produced glasses have been analyzed for Rb, Sr and Sr isotopic composition. Five clasts and one glass have also been analyzed for large ion lithophile (LIL) trace element abundances including Li, Rb, Sr, and Ba and the REE's.The impact event forming the Wanapitei Lake structure occurred 37 m.y. ago based on K/Ar dating of glass and glassy whole-rock samples. Rb/Sr isotopic dating failed to provide a meaningful whole-rock or internal isochron. The isotopic composition of the glasses can be explained by impact-produced mixing and melting of metasediments. Large ion lithophile trace element abundance patterns confirm the origin of the glasses by total shock melting of metasediments.  相似文献   

14.
Geochemical investigations in the Utralanama Block, an intermediate pressure granulite facies terrain in the Arunta Block, central Australia, has revealed several anomalous features, not consistent with the depletion of granitophile components generally considered to accompany granulite facies metamorphism. However, other geochemical features are indicative of depletion. The mean K2O for the Utralanama Block is exceptionally low relative to most other granulite facies terrains, but Rb contents are comparatively high. Consequently, the mean K/Rb ratio is relatively low for granulite facies terrains as is the mean Ba/Rb ratio, whilst mean K/Sr and Rb/Sr ratios are much higher than usual for such terrains. Only the K/Ba ratio shows equivalent values to depleted terrains elsewhere.Comparison of these ratios for the three main compositional groups of rocks in the Utralanama Block reveals that for mafic rocks all the above ratios are characteristic of extreme depletion, whereas, for all but the K/Ba ratio, mean ratios for the pelitic rocks, and to a lesser extent for the quartzofeldspathic rocks approach normal crustal values or values for metasomatic rocks. The abnormally high Rb/Sr ratios of these rocks compared to average crustal rocks suggest, however, that metasomatism is the cause of the anomalous geochemical features of the Utralanama Block, and this is supported by field and microstructural evidence. Thus, Rb/Sr ratios appear to be useful indicators of metasomatism where no gross mineralogical or microstructural evidence for metasomatism is obvious, and under such conditions the K/Ba ratio may be more reliable than the K/Rb ratio for indicating prior depletion of the terrain.  相似文献   

15.
Abstract Lewisian grey gneisses from Gruinard Bay, North-west Scotland retain mineralogical and geochemical evidence for Scourian horn-blende-granulite facies metamorphism, and they may be used to assess current models of elemental depletion at granulite grade. Their 'immobile'major and trace element geochemistry is indistinguishable from that of Lewisian amphibolite and pyroxene-granulite facies counterparts. The K, Rb, Th and U contents of the Gruinard Bay gneisses are depleted relative to amphibolite facies gneisses, but generally the abundances of these elements are above those of comparable pyroxene granulites. U and Th have reached an advanced stage of depletion, but allanite appears to be crucial in maintaining significantly higher U and Th abundances at Gruinard Bay than in pyroxene granulites. K and Rb loss is less extreme, and depends on the stability of the rock-forming minerals: K-feldspar; biotite; and, amphibole. Early removal of K and Rb has resulted in a small rise in K/Rb, but further preferential Rb loss would have been required to generate the characteristically high K/Rb ratios of Lewisian pyroxene granulites.
The residence of U and Th in the accessory minerals of granulite facies gneisses, which are often correlated with the residua of intracrustal partial melting, renders unlikely their extreme incompatibility required by such models. Even if such phases are ignored, high mineral-melt partition coefficients for silicic melts argue against partial fusion as an efficient depletion mechanism. On the other hand, the advanced stage of U and Th depletion reached in Gruinard Bay gneisses, which were still partly hydrous, severely restricts the role played by CO2-dominated fluids and a hydrous medium is preferred.  相似文献   

16.
通过对祁漫塔格地区华力西期花岗岩类型、空间分布、地质地球化学特征的研究表明,该区花岗岩分布最广的是华力西中、晚期花岗岩。华力西中期花岗岩岩石组合为钾长花岗岩、花岗岩、二长花岗岩,为高钾钙碱性系列,稀土元素含量较低,属轻稀土富集型,铕亏损较小,LILE中的Cs、Rb、Ba、K等含量相对富集,而LILE中的Sr、HFSE中Nb、Ti和P相对亏损,形成于碰撞后或造山晚期;华力西晚期花岗岩岩石组合为钾长花岗岩、花岗闪长岩、中粗粒黑云母二长花岗岩、花岗斑岩,为高钾钙碱性系列,稀土元素含量高于华力西中期花岗岩的稀土元素含量,铕亏损较为明显,微量元素以Sr、Ti和P更为亏损为特征,形成于活动大陆边缘到碰撞后花岗岩的过渡环境。  相似文献   

17.
This paper discusses the relationship between the volume loss, fluid flow and component variations in the ductile shear zone of the southern Tan-Lu fault belt. The results show that there is a large amount of fluids flowing through the shear zone during mylonitization, accompanied with the loss of volume of rocks and variations of elements and oxygen isotopes. The calculated temperature for mylonitization in different mylonites ranges from 446 to 484℃, corresponding to that of 475 to 500℃ for the wall rocks. The condition of differential stress during mylonization has been obtained between 99 and 210 MPa, whereas the differential stress in the wall rock gneiss is 70-78 MPa. The mylonites are enriched by factors of 1.32-1.87 in elements such as TiO2, P2O5, MnO, Y, Zr and V and depleted in SiO2, Na2O, K2O, Al203, Sr, Rb and light REEs compared to their protolith gneiss. The immobile element enrichments are attributed to enrichments in residual phases such as ilmentite, zircon, apatite and epidote in mylonites and are interpreted as due to volume losses from 15% to 60% in the ductile shear zone. The largest amount of SiO2 loss is 35.76 g/100 g in the ductile shear zone, which shows the fluid infiltration. Modeling calculated results of the fluid/rock ratio for the ductile shear zone range from 196 to 1192 by assuming different degrees of fluid saturation. Oxygen isotope changes of quartz and feldspar and the calculated fluid are corresponding to the variations of differential flow stress in the ductile shear zone. With increasing differential flow stress, the mylonites show a slight decrease of δ^18O in quartz, K-feldspar and fluid.  相似文献   

18.
鲁山太华群麻粒岩相岩石形成的地球化学限制   总被引:4,自引:0,他引:4  
鲁山太华群麻粒岩相岩石形成的地球化学限制徐启东,高山,刘庆生(中国地质大学,武汉430074)主题词麻粒岩相岩石,LIL元素亏损,下地壳太华群提要河南鲁山太古宙高级区表壳岩中的麻粒岩相岩石及相关的角闪岩相岩石与世界其它地区麻粒岩相岩石相比并没有明显的...  相似文献   

19.
川西同德和沙坝麻粒岩及其退变质岩石之间的元素迁移   总被引:6,自引:0,他引:6  
利用川西麻粒岩的全岩化学组成与岩石中特征矿物的化学性质,研究了麻粒岩退变质作用的元素迁移。对紫苏辉石、普通辉石和普通角闪石的电子探针分析表明,随着麻粒岩退变质作用程度的加深,矿物的化学组成与全岩的元素迁移同步变化。由于矿物组合和岩相的转变以及地壳流体的作用,同德二辉麻粒岩在退变质至黑云角闪斜长片麻岩过程中,K,Rb,Cs,K/Na,Fe^3+和Fe3+/Fe^2+增加,Fe^2+,V,Co,Ba,Sr和Pb降低;在沙坝二辉麻粒岩退变质为含绿帘石角闪斜长片麻岩过程中,Na,Ca,Fe^3+,Zr,Hf,Nb,Ta,Rb,U,Th,REE和Fe^3+/Fe^2+增加,Fe^2+,Mg,K,Co,Zn,Cs,Pb和K/Na降低。麻粒岩退变质过程中制约不同元素迁移的主要矿物相是普通角闪石等退变质新生矿物。同德和沙坝两个麻粒岩块退变质作用中,个别元素迁移性状并不相同,这可能与原岩的性质和变质流体的成分等环境地质条件有关。  相似文献   

20.
Petrochemical characteristics of igneous, sedimentary, and metasomatic rocks; chemical and isotopic compositions of minerals and fluids; and PT parameters of mineral formation at the Nezhdaninsky deposit are reported. A model of hydrothermal system formation is developed on this basis. In addition to decreasing Ba/Rb and Li/Mg ratios in the course of the hydrothermal process, resulting in the formation of ore-bearing metasomatic rocks, increasing K/Ba and diminishing K/Cs ratios indicate the probable participation of magmatic fluid in the ore deposition. The agreement of the K/Rb and K/Ba ratios with the values typical of the main trend of igneous rocks (MT) implies that the K, Rb, and Ba contents were distributed in the ore-forming hydrothermal fluid according to the ratios in the source magmatic chamber. The K/Rb ratios in metasomatic rocks correspond to the MT and approach the pegmatitic-hydrothermal trend and the composition of orthomagmatic fluid of Mo-W greisen. Similar REE patterns of igneous and terrigenous rocks do not allow the REE source to be constrained unequivocally. The lithological control of lithophile element distribution testifies to the supply of host rock components to the hydrothermal system. All studied rocks and minerals are enriched in LREE. The REE total and the contribution of HREE decrease from preore to synore metasomatic rocks, from preore to regenerated carbonates, and from older to younger scheelite. A similar tendency is noted in granitoids of the Kurum pluton. The δ18O values of quartz range from +10.3 to +12.6‰ in Au-Mo-W zones, from +15.9 to +16.4‰ in metasomatic rocks, from +14.8 to +16.6‰ in gold-ore veins, and from +13.5 to +16.9‰ in silver-base-metal ore mineralization. The estimates of \(\delta ^{18} O_{H_2 O} \) suggest that water was supplied from a magmatic source (δ18O = +(5.5?9.0‰)) and as a product of sedimentary rock dehydration. High-temperature (up to 390°C) and highly concentrated (up to 31 wt % NaCl equiv) fluids participated in the mineral formation. The phase separation of the fluid into H2O-CO2 liquid and predominantly carbon dioxide gas was combined with mixing of a high-temperature and relatively highly concentrated chloride solution with a low-temperature and poorly mineralized fluid. The redox conditions varied from equilibrium with CH4-bearing fluid at the gold-molybdenum-tungsten stage to equilibrium with CO2-bearing fluid during the gold-ore stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号