首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soil and ground water at a General Motors plant site were contaminated with petroleum products from leaking underground storage tanks. Based on the initial assessment, the site was complex from the standpoint of geology (clay layers), hydrology (a recharge zone with a perched water table), and contaminant (approximately 4800 gallons of mixed gasoline and oil). After a thorough study of remedial alternatives, a synergistic remedial approach was adopted including pump and treat, product removal, vapor extraction, and bioventing. The system was designed and implemented at the site through 22 dual-extraction wells. Over a 21-month period, 4400 gallons of gasoline and oil were removed from the system, including 59 percent by vapor extraction, 28 percent by bioventing, and 13 percent by pump and treat. Synergism between the various remedial methods was demonstrated clearly. Ground water pump and treat lowered the water table, allowing air to flow for vapor extraction. The vacuum applied for vapor extraction increased the ground water removal rate and the efficiency of pump and treat. The vapor extraction system also added oxygen to the soil to stimulate aerobic biodegradation.  相似文献   

2.
A modeling approach is presented that optimizes separate phase recovery of light non-aqueous phase liquids (LNAPL) for a single dual-extraction well in a homogeneous, isotropic unconfined aquifer. A simulation/regression/optimization (S/R/O) model is developed to predict, analyze, and optimize the oil recovery process. The approach combines detailed simulation, nonlinear regression, and optimization. The S/R/O model utilizes nonlinear regression equations describing system response to time-varying water pumping and oil skimming. Regression equations are developed for residual oil volume and free oil volume. The S/R/O model determines optimized time-varying (stepwise) pumping rates which minimize residual oil volume and maximize free oil recovery while causing free oil volume to decrease a specified amount. This S/R/O modeling approach implicitly immobilizes the free product plume by reversing the water table gradient while achieving containment. Application to a simple representative problem illustrates the S/R/O model utility for problem analysis and remediation design. When compared with the best steady pumping strategies, the optimal stepwise pumping strategy improves free oil recovery by 11.5% and reduces the amount of residual oil left in the system due to pumping by 15%. The S/R/O model approach offers promise for enhancing the design of free phase LNAPL recovery systems and to help in making cost-effective operation and management decisions for hydrogeologists, engineers, and regulators.  相似文献   

3.
Lost circulation, the inadvertent injection of drilling fluids into a highly permeable and/or fractured aquifer during rotary drilling, may result in collection of spurious information if the lost drilling fluids are not adequately purged before sampling the ground water. The purpose of this study was to determine whether removal of the volume of water lost during coring of a monitoring well in the carbonate Scotch Grove Formation (Silurian, east central Iowa) necessarily ensures collection of representative ground water samples. To monitor dilution of the ground water due to lost circulation, rhodamine dye was added to the drilling water and dye recovery was measured in samples collected during purging of five separate 5- to 10-foot intervals.
Circulation loss occurred in all five intervals, ranging from nearly 200 gallons in the upper permeable portion of the Scotch Grove to 25 gallons in the less permeable Buck Creek Member below. When the volume of water purged from the upper three intervals corresponded to the volume of water lost during coring, the purge water still contained 11 to 20 percent dyed drilling water. As purging continued, the proportion of drilling water in the samples decreased slowly. After purging more than 200 gallons of water, 86 to 98 percent of the dyed drilling water was recovered from the five test intervals. Four traditionally measured water quality parameters-pH, temperature, specific conductance, and dissolved oxygen — were less useful than the dye recovery for distinguishing drilling water from formation water in those zones in which the ground water quality was similar to the drilling water. These results indicate that the determination of the quantity of water to be purged prior to sampling must be based, at least in part, on aquifer lithology and hydraulic characteristics.  相似文献   

4.
A pool of dense nonaqueous phase liquid (DNAPI.) containing TCE and other chlorinated solvents has been removed from the subsurface at Hill Air Force Base, Uthah. as part of an interim remedial action. The removal of the DNAPI. pool means that future off-site migration of dissolved contaminants in the ground water is minimized, and costs for final remedial actions are reduced. A pump-and-treat system recovered more than 23.000) gallons of DNAPI. and one million gallons of contaminated ground water from the aquifer. The efficiency of this remedial action was evaluated on the basis of extensive field and laboratory data. The behavior of DNAPI. flow in the aquifer sands was characterized by collecting core samples from two borings in the DNAPL pool and measuring relative permeabilities and DMAPI. saturation. Core Hooding results show that approximately one-third of the DNAPI. originally in the pool is not recovered by water displacement, but remains as a residual saturation held in place by capillary pressure. However, subsequent Hooding with two pore volumes of surfactant solution reduced the residual DNAPI. saturation in the sand by one order of magnitude. Analytical and numerical models for the DNAPI flow behavior at the site were developed. This is the first time that such models have been developed and applied to an actual DNAPI. pumping lest conducted in the field. Because measured permeabilities and residual saturations were used lo calibrate the models. the model predictions could be used lo provide valuable insights into the controlling mechanisms for DNAPL recovery. The data collection and modeling procedures outlined in this paper can be used lo enhance the efficiency and minimize the cost 10 clean up this and other DNAPI.-contaminated sites.  相似文献   

5.
Heterogeneity in the physical properties of an aquifer can significantly affect the viability of aquifer storage and recovery (ASR) by reducing the recoverable proportion of low-salinity water where the ambient ground water is brackish or saline. This study investigated the relationship between knowledge of heterogeneity and predictions of solute transport and recovery efficiency by combining permeability and ASR-based tracer testing with modeling. Multiscale permeability testing of a sandy limestone aquifer at an ASR trial site showed that small-scale core data give lower-bound estimates of aquifer hydraulic conductivity (K), intermediate-scale downhole flowmeter data offer valuable information on variations in K with depth, and large-scale pumping test data provide an integrated measure of the effective K that is useful to constrain ground water models. Chloride breakthrough and thermal profiling data measured during two cycles of ASR showed that the movement of injected water is predominantly within two stratigraphic layers identified from the flowmeter data. The behavior of the injectant was reasonably well simulated with a four-layer numerical model that required minimal calibration. Verification in the second cycle achieved acceptable results given the model's simplicity. Without accounting for the aquifer's layered structure, high precision could be achieved on either piezometer breakthrough or recovered water quality, but not both. This study demonstrates the merit of an integrated approach to characterizing aquifers targeted for ASR.  相似文献   

6.
Aqueous Surfactant Washing of Residual Oil Contamination from Sandy Soil   总被引:2,自引:0,他引:2  
A laboratory study was conducted to determine the efficiency of different aqueous concentrations of an alcohol ethoxylate surfactant in washing residual levels of an oil [automatic transmission fluid (ATF)] from sandy soil. Five glass columns packed with the soil were prepared in a manner that simulated conditions leading to residual saturation in an actual oil leak. Each of four columns was washed continuously with 28 pore volumes of solution by pumping either 0.0 percent (water), 0.5 percent, 1.0 percent, or 2.0 percent aqueous surfactant solutions through the columns. The fifth column was washed intermittently with 28 pore volumes of a 1.0 percent surfactant solution. Water washed only 25.5 percent of the ATF from the column soil, while the 0.5 percent, 1 percent, and 2 percent surfactant solutions washed 55 percent, 60 percent, and 72.8 percent of the ATF, respectively. The distribution of the ATF remaining in the column after washing showed that the ATF removed by water was mainly from the outlet side of the column, while the ATF removed by the 2.0 percent surfactant solution was mainly from the inlet side of the column. This observation indicated that different mechanisms were involved; namely, the displacement of oil through the soil-pore space, the dispersion of oil due to reduced surface tension, and the solubilization of oil by surfactant micelles. In the case of water, the displacement of oil was the main washing mechanism, while all three mechanisms were operative during surfactant washing. ATF dispersion and solubilization were improved at higher surfactant concentrations. The column that was washed intermittently to pulse ATF from dead end pores did not show a significant improvement over the column that was continuously washed with the same 1.0 percent surfactant solution. The results show promising potential for application in the field and will be further investigated in a two-dimensional model aquifer.  相似文献   

7.
Reinjection of untreated ground water during hydrocarbon recovery operations provides for economical water handling and can accelerate the recovery of the free hydrocarbons. However, considering current regulatory trends, water containing dissolved hydrocarbon constituents would require treatment prior to reinjection into the aquifer. The disposal of coproduced ground water is dependent on several factors, including the volume of water, level of treatment required, and availability of disposal options. Disposal options include reinjection, discharge to surface water, and beneficial use. This paper presents treatment and disposal options for coproduced water during hydrocarbon recovery operations including cost comparisons for a particular case study.
Treatment technologies for oil/water separation, inorganics and heavy metals removal, and dissolved hydrocarbon removal are presented. The primary technologies discussed for dissolved hydrocarbon removal include air stripping, activated carbon adsorption, biological treatment, and combinations of these technologies. Consideration of the use of existing refinery waste water treatment facilities for ground water treatment should be encouraged where applicable. However, separate treatment facilities are usually required because the use of existing on-site treatment facilities is usually not feasible because of the volume of water produced during large recovery projects and the effectiveness of existing treatment facilities. A specific case example is presented with costs for applying different technologies including the use of existing on-site facilities. Treatment costs ranged between 44 cents to $2.82 per thousand gallons (11 cents to 75 cents per thousand liters) of water treated for the specific technologies examined herein.  相似文献   

8.
Release of an estimated 150,000 gallons (568,000 L).of 1.2–dichloroethane (EDC) from a buried pipeline into a ditch and surrounding soil resulted in shallow subsurface contamination of a Gulf Coast site. Short-term remediation included removal of EDC DNAPI. (dense nonaqueous phase liquid) by dredging and vacuuming the ditch, and by dredging the river where the ditch discharged. EDC saturation in shallow impacted sediments located beneath the ditch was at or below residual saturation and these sediments were therefore left in place. The ditch was lined, backfilled, and capped. Long-term remediation includes EDC DNAPL recovery and hydraulic containment from the shallow zone with long-term monitoring of the shallow, intermediate, and deep (200 foot) aquifers. Ground water, DNAPL., and dissolved phase models were used to guide field investigations and the selection of an effective remedial action strategy. The DNAPL. modeling was conducted for a two-dimensional vertical cross section of the site, and included the three aquifers separated by two aquitards with microfractures. These aquitards were modeled using a dual porosity approach. Matrix and fracture properties of the aquitards used for DNAPL modeling were determined from small-scale laboratory properties. These properties were consistent with effective hydraulic conductivity determined from ground water flow modeling. A sensitivity analysis demonstrated that the vertical migration of EDC was attenuated by dissolution of EDC into the matrix of the upper aquitard. When the organic/water entry pressure of the aquitard matrix, or the solubility of EDC were decreased to unrealislically low values. EDC DNAPL. accumulated in the aquifer below the upper aquitard.
EDC DNALM, did not reach the regional (deepest) aquifer in any of the cases modeled. The limited extent of vertical EDC migration predicted is supported by ground water monitoring conducted over the four years since the spill.  相似文献   

9.
A total of four vertical electrical soundings were conducted in a layered andesitic rock aquifer known in places to yield ground water with total dissolved solids (TDS) in excess of 2,000 milligrams per liter (mg/L). The objective of the soundings was to locate zones of moderate to high permeability but with acceptable chemical quality.
The resistivity of a geologic unit is a function that includes the quantity of total dissolved solids in the interstitial water and the distribution of the water within the unit. Thus, the resistivity of most granular soils and rocks is controlled more by porosity, water content and water quality than by the conductivity of the matrix materials.
The electrical data delimited a drill site where it was believed that ground water of acceptable chemical quality could be expected. Completion and test pumping of two exploration wells confirmed the electrical sounding results.
The first test well drilled prior to the survey yielded only small amounts of ground water with total dissolved solids in excess of 2,000 mg/L. The second exploration well drilled at the site as a result of the electrical study yielded in excess of 100 gallons per minute of ground water with total dissolved solids of 830 mg/L.  相似文献   

10.
AGalerkin finite-element model coupled with a particle tracking routine was developed to analyze the flow and transport dynamics near a high-capacity irrigation well. The model was used to compute the head distribution around the pumping well, to determine the area of influence, and to define ground water flowlines during short-term pumping periods typical of those used to collect water quality samples from high-capacity wells. In addition to hypothetical example results, the model was used to qualitatively analyze data obtained from pump-and-sample experiments conducted in an unconfined alluvial aquifer within the Platte River valley of south-central Nebraska where nitrate-nitrogen (NO3-N) contamination is prevalent.
Simulation results of both the hypothetical and field cases suggest that short-term pumping events, impact a limited volume of aquifer. The area of influence and flowlines are affected by aquifer anisotropy, pumping rate, and well construction characteristics). Ground water above or below the screened intervals does not enter a partially penetrating well in anisotropic aquifers. In aquifers where NO3-N concentration varies vertically and horizontally, waler quality samples from an irrigation, or other high-capacity, well provide only limited information about ground water contamination. A numerical model is thus recommended for calculating the area of influence and determining flowlines around high-capacity wells so that information derived from water quality samples collected at the wellhead can be better interpreted.  相似文献   

11.
An approach is presented to determine the seasonal variations in travel time in a bank filtration system using a passive heat tracer test. The temperature in the aquifer varies seasonally because of temperature variations of the infiltrating surface water and at the soil surface. Temperature was measured with distributed temperature sensing along fiber optic cables that were inserted vertically into the aquifer with direct push equipment. The approach was applied to a bank filtration system consisting of a sequence of alternating, elongated recharge basins and rows of recovery wells. A SEAWAT model was developed to simulate coupled flow and heat transport. The model of a two‐dimensional vertical cross section is able to simulate the temperature of the water at the well and the measured vertical temperature profiles reasonably well. MODPATH was used to compute flowpaths and the travel time distribution. At the study site, temporal variation of the pumping discharge was the dominant factor influencing the travel time distribution. For an equivalent system with a constant pumping rate, variations in the travel time distribution are caused by variations in the temperature‐dependent viscosity. As a result, travel times increase in the winter, when a larger fraction of the water travels through the warmer, lower part of the aquifer, and decrease in the summer, when the upper part of the aquifer is warmer.  相似文献   

12.
The objective of this article is to analyze the influence of clay zones on subsidence from groundwater pumping. Finite element analyses were conducted on a sand‐only aquifer and a sand aquifer with two clay zones located at different distances from the well face. A model that accounts for recoverable and nonrecoverable strains was used to simulate the sand and clay. This model couples the groundwater flow with the stress‐deformation response of the aquifer materials. Each aquifer was pumped from a single well for a period of 6 months, and then the groundwater level was lowered gradually to an elevation below the elevation of the clay zones and kept there for 10 years. The groundwater level was then raised gradually back to the original elevation over a period of 10 years. The results of the analyses show that the ground surface subsidence profile is strongly influenced by the presence of the clays zones. The ground surface sags where these clay zones are present resulting in a wavy ground surface profile. Subsidence continued when pumping is stopped, albeit at a much slower rate than during pumping, and when the groundwater level is below the elevation of the clay zones. Clay zones further away from the well face lag the subsidence of clay zones nearer the well face because of lower changes in hydrostatic head. Sags in ground surface subsidence profile from groundwater pumping are indicators of the presence of low hydraulic conductive geological materials.  相似文献   

13.
A post audit of a model-designed ground water extraction system   总被引:1,自引:0,他引:1  
Andersen PF  Lu S 《Ground water》2003,41(2):212-218
Model post audits test the predictive capabilities of ground water models and shed light on their practical limitations. In the work presented here, ground water model predictions were used to design an extraction/treatment/injection system at a military ammunition facility and then were re-evaluated using site-specific water-level data collected approximately one year after system startup. The water-level data indicated that performance specifications for the design, i.e., containment, had been achieved over the required area, but that predicted water-level changes were greater than observed, particularly in the deeper zones of the aquifer. Probable model error was investigated by determining the changes that were required to obtain an improved match to observed water-level changes. This analysis suggests that the originally estimated hydraulic properties were in error by a factor of two to five. These errors may have resulted from attributing less importance to data from deeper zones of the aquifer and from applying pumping test results to a volume of material that was larger than the volume affected by the pumping test. To determine the importance of these errors to the predictions of interest, the models were used to simulate the capture zones resulting from the originally estimated and updated parameter values. The study suggests that, despite the model error, the ground water model contributed positively to the design of the remediation system.  相似文献   

14.
A confined aquifer may become unconfined near the pumping wells when the water level falls below the confining unit in the case where the pumping rate is great and the excess hydraulic head over the top of the aquifer is small. Girinskii's potential function is applied to analyze the steady ground water flow induced by pumping wells with a constant-head boundary in a mixed confined-unconfined aquifer. The solution of the single-well problem is derived, and the critical radial distance at which the flow changes from confined to unconfined condition is obtained. Using image wells and the superposition method, an analytic solution is presented to study steady ground water flow induced by a group of pumping wells in an aquifer bounded by a river with constant head. A dimensionless function is introduced to determine whether a water table condition exists or not near the pumping wells. An example with three pumping wells is used to demonstrate the patterns of potentiometric surface and development of water table around the wells.  相似文献   

15.
Field-based experiments were designed to investigate the release of naturally occurring, low to moderate (< 50 microg/L) arsenic concentrations to well water in a confined sandstone aquifer in northeastern Wisconsin. Geologic, geochemical, and hydrogeologic data collected from a 115 m2 site demonstrate that arsenic concentrations in ground water are heterogeneous at the scale of the field site, and that the distribution of arsenic in ground water correlates to solid-phase arsenic in aquifer materials. Arsenic concentrations in a test well varied from 1.8 to 22 microg/L during experiments conducted under no, low, and high pumping rates. The quality of ground water consumed from wells under typical domestic water use patterns differs from that of ground water in the aquifer because of reactions that occur within the well. Redox conditions in the well can change rapidly in response to ground water withdrawals. The well borehole is an environment conducive to microbiological growth, and biogeochemical reactions also affect borehole chemistry. While oxidation of sulfide minerals appears to release arsenic to ground water in zones within the aquifer, reduction of arsenic-bearing iron (hydr)oxides is a likely mechanism of arsenic release to water having a long residence time in the well borehole.  相似文献   

16.
Two key challenges regarding the design and operation of aquifer recharge and recovery (ARR) systems are evaluating aquifer heterogeneity and understanding hydrochemical interactions. Uncertainty in this respect can impact the volume of recoverable water and the improvement in water quality. The objective of this research is to leverage the advantages of geophysical measurements and hydrochemical sampling to reveal the properties of an ARR site to inform current ARR system operations and future design decisions. Electrical resistivity tomography was used to image the subsurface below two key infiltration/extraction areas of an ARR site in Colorado, USA. Hydrochemical measurements on transects intersecting the geophysical measurements resolved bulk parameters (i.e., total organic carbon, nitrate, and major cations and anions) and trace organic chemicals (e.g., pharmaceuticals, personal care products). Conservative tracers were also used to estimate degrees of mixing and water travel times and to better assess the performance of the ARR site regarding water quality changes and water recovery. The electrical resistivity measurements suggest that certain areas of the infiltration basins have hydraulic connections to the extraction wells through preferential flow paths, compared with other infiltration basins that are separated by fine‐grained materials from their respective extraction wells. The hydrochemical results indicate that consistent improvements in water quality can be achieved in these preferential flow paths within relatively short travel times (<5 d) at this ARR site.  相似文献   

17.
The water crisis in the gaza strip: prospects for resolution   总被引:1,自引:0,他引:1  
Israel and the Palestinian Authority share the southern Mediterranean coastal aquifer. Long-term overexploitation in the Gaza Strip has resulted in a decreasing water table, accompanied by the degradation of its water quality. Due to high levels of salinity and nitrate and boron pollution, most of the ground water is inadequate for both domestic and agricultural consumption. The rapid rate of population growth in the Gaza Strip and dependence upon ground water as a single water source present a serious challenge for future political stability and economic development. Here, we integrate the results of geochemical studies and numerical modeling to postulate different management scenarios for joint management between Israel and the Palestinian Authority. The chemical and isotopic data show that most of the salinity phenomena in the Gaza Strip are derived from the natural flow of saline ground water from Israel toward the Gaza Strip. As a result, the southern coastal aquifer does not resemble a classic "upstream-downstream" dispute because Israel's pumping of the saline ground water reduces the salinization rates of ground water in the Gaza Strip. Simulation of different pumping scenarios using a monolayer, hydrodynamic, two-dimensional model (MARTHE) confirms the hypothesis that increasing pumping along the Gaza Strip border combined with a moderate reduction of pumping within the Gaza Strip would improve ground water quality within the Gaza Strip. We find that pumping the saline ground water for a source of reverse-osmosis desalination and then supplying the desalinated water to the Gaza Strip should be an essential component of a future joint management strategy between Israel and the Palestinian Authority.  相似文献   

18.
Hu LT  Chen CX 《Ground water》2008,46(4):642-646
Concurrent existence of confined and unconfined zones of an aquifer can arise owing to ground water withdrawal by pumping. Using Girinskii's potential function, Chen (1974, 1983) developed an approximate analytical solution to analyze transient ground water flow to a pumping well in an aquifer that changes from an initially confined system to a system with both unconfined and confined regimes. This article presents the details of the Chen model and then compares it with the analytical model developed by Moench and Prickett (1972) for the same problem. Hypothetical pumping test examples in which the aquifer undergoes conversion from confined to water table conditions are solved by the two analytical models and also a numerical model based on MODFLOW. Comparison of the results suggests that the solutions of the Chen model give better results than the Moench and Prickett model except when the radial distance is very large or aquifer thickness is large compared with drawdown.  相似文献   

19.
Chen X  Shu L 《Ground water》2002,40(3):284-290
Numerical modeling techniques were used to simulate stream-aquifer interactions from seasonal ground water pumping. We used stream-aquifer models in which a shallow stream penetrates the top of an aquifer that discharges ground water to the stream as base flow. Because of the pumping, the volume of base flow discharged to the stream was reduced, and as the pumping continued, infiltration from the stream to the aquifer was induced. Both base-flow reduction and stream infiltration contributed to total stream depletion. We analyzed the depletion rates and volumes of the reduced base flow and induced stream infiltration during pumping and postpumping periods. Our results suggested that for a shallow penetrating stream with a low streambed conductance, base-flow reduction accounts for a significant percentage of the total stream depletion. Its residual effects in postpumping can last very long and may continue into the next pumping season for areas where recharge is nominal. In contrast, the contribution of the induced stream infiltration to the total stream depletion is much smaller, and its effects often become negligible shortly after pumping was stopped. For areas where surface recharge replenishes the aquifer, the residual effects of base-flow reduction and thus its depletion volume will be significantly reduced. A stream of large conductance has a high hydraulic connection to the aquifer, but the relationship between stream conductance and stream depletion is not linear.  相似文献   

20.
Geochemical processes during five years of aquifer storage recovery   总被引:4,自引:0,他引:4  
A key factor in the long-term viability of aquifer storage recovery (ASR) is the extent of mineral solution interaction between two dissimilar water types and consequent impact on water quality and aquifer stability. We collected geochemical and isotopic data from three observation wells located 25, 65, and 325 m from an injection well at an experimental ASR site located in a karstic, confined carbonate aquifer in South Australia. The experiment involved five major injection cycles of a total of 2.5 x 10(5) m3 of storm water (total dissolved solids [TDS] approximately 150 mg/L) into the brackish (TDS approximately 2400 mg/L) aquifer. Approximately 60% of the mixture was pumped out during the fifth year of the experiment. The major effect on water quality within a 25 m radius of the injection well following injection of storm water was carbonate dissolution (35 +/- 6 g of CaCO3 dissolved/m3 of aquifer) and sulfide mineral oxidation (50 +/- 10 g as FeS2/m3 after one injection). < 0.005% of the total aquifer carbonate matrix was dissolved during each injection event, and approximately 0.2% of the total reduced sulfur. Increasing amounts of ambient ground water was entrained into the injected mixture during each of the storage periods. High 14C(DIC) activities and slightly more negative delta13C(DIC) values measured immediately after injection events show that substantial CO2(aq) is produced by oxidation of organic matter associated with injectant. There were no detectable geochemical reactions while pumping during the recovery phase in the fifth year of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号