首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the last decade, silica aerogel tracks and aluminum foil craters on the Stardust collector have been studied extensively to determine the nature of captured cometary dust grains. Analysis of particles captured in aerogel has been developed to a fine art, aided by sophisticated preparation techniques, and yielding revolutionary knowledge of comet dust mineralogy. The Stardust foil craters can be interpreted in terms of impacting particle size and structure, but almost all studies of composition for their contents have relied on in situ analysis techniques or relatively destructive extraction of materials. This has limited their examination and interpretation. However, numerous experimental hypervelocity impact studies under Stardust-Wild 2 encounter conditions have shown that abundant dust components are preserved in foil craters of all sizes. Using some of these analogue materials, we have previously shown that modern, nondestructive scanning electron microscope imaging and X-ray microanalysis techniques can document distribution of dust remnants both quickly and thoroughly within foil craters prior to any preparation. Here we present findings from our efforts to quantify the amount of residue and demonstrate a simple method of crater shape modification which can bring material into positions where it is much more accessible for in situ analysis, or safe removal of small subsamples. We report that approximately 50% of silicate-dominated impactors were retained as impact crater residue; however, <3% of organic impactors remained in the craters after impact.  相似文献   

2.
Abstract— The known encounter velocity (6.1 kms?1) and particle incidence angle (perpendicular) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild‐2 fall within a range that allows simulation in laboratory light‐gas gun (LGG) experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminum foil components of the Stardust collector. Buckshot of a wide size, shape, and density range of mineral, glass, polymer, and metal grains, have been fired to impact perpendicularly on samples of Stardust Al 1100 foil, tightly wrapped onto aluminum alloy plate as an analogue of foil on the spacecraft collector. We have not yet been able to produce laboratory impacts by projectiles with weak and porous aggregate structure, as may occur in some cometary dust grains. In this report we present information on crater gross morphology and its dependence on particle size and density, the pre‐existing major‐ and trace‐element composition of the foil, geometrical issues for energy dispersive X‐ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density, and composition for particles impacted on the Stardust aluminum foils.  相似文献   

3.
Abstract– We have shown in laboratory experiment that hypervelocity impacts on a solar cell produce ejecta that can be captured on aluminum (Al 1100) foil or in low density (33 kg m?3) aerogel. The origin of the secondary impacts can be determined by either analysis of the residue in the craters in the foils (which preserve an elemental signature of the solar cell components) or by their pointing direction for tracks in the aerogel (which we show align with the impact direction to ± 0.4°). This experimental evidence explains the observations of the NASA Stardust mission which has reported that the majority of tracks in the aerogel collector used to collect interstellar dust actually point at the spacecraft’s solar panels. From our results, we suggest that it should also be possible to recognize secondary ejecta craters in the Stardust mission aluminum foils, also used as dust sampling devices during the mission.  相似文献   

4.
Abstract— Various microscopic techniques were used to characterize experimental microcraters in aluminum foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminum foils to be returned by the Stardust mission. First, scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy (EDS) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda‐lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using transmission electron microscopy (TEM), EDS, and electron diffraction methods. The TEM samples were prepared by focused ion beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that infrared microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.  相似文献   

5.
Almost every meteorite impact occurs at an oblique angle of incidence, yet the effect of impact angle on crater size or formation mechanism is only poorly understood. This is, in large part, due to the difficulty of inferring impactor properties, such as size, velocity and trajectory, from observations of natural craters, and the expense and complexity of simulating oblique impacts using numerical models. Laboratory oblique impact experiments and previous numerical models have shown that the portion of the projectile’s kinetic energy that is involved in crater excavation decreases significantly with impact angle. However, a thorough quantification of planetary-scale oblique impact cratering does not exist and the effect of impact angle on crater size is not considered by current scaling laws. To address this gap in understanding, we developed iSALE-3D, a three-dimensional multi-rheology hydrocode, which is efficient enough to perform a large number of well-resolved oblique impact simulations within a reasonable time. Here we present the results of a comprehensive numerical study containing more than 200 three-dimensional hydrocode-simulations covering a broad range of projectile sizes, impact angles and friction coefficients. We show that existing scaling laws in principle describe oblique planetary-scale impact events at angles greater than 30° measured from horizontal. The displaced mass of a crater decreases with impact angle in a sinusoidal manner. However, our results indicate that the assumption that crater size scales with the vertical component of the impact velocity does not hold for materials with a friction coefficient significantly lower than 0.7 (sand). We found that increasing coefficients of friction result in smaller craters and a formation process more controlled by impactor momentum than by energy.  相似文献   

6.
Abstract– Impacts of small particles of soda‐lime glass and glycine onto low density aerogel are reported. The aerogel had a quality similar to the flight aerogels carried by the NASA Stardust mission that collected cometary dust during a flyby of comet 81P/Wild 2 in 2004. The types of track formed in the aerogel by the impacts of the soda‐lime glass and glycine are shown to be different, both qualitatively and quantitatively. For example, the soda‐lime glass tracks have a carrot‐like appearance and are relatively long and slender (width to length ratio <0.11), whereas the glycine tracks consist of bulbous cavities (width to length ratio >0.26). In consequence, the glycine particles would be underestimated in diameter by a factor of 1.7–3.2, if the glycine tracks were analyzed using the soda‐lime glass calibration and density. This implies that a single calibration for impacting particle size based on track properties, as previously used by Stardust to obtain cometary dust particle size, is inappropriate.  相似文献   

7.
Abstract— New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm?3 (similar to soda‐lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by μm‐scale and smaller sub‐grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse finegrained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.  相似文献   

8.
Abstract– We present initial results from hydrocode modeling of impacts on Al‐1100 foils, undertaken to aid the interstellar preliminary examination (ISPE) phase for the NASA Stardust mission interstellar dust collector tray. We used Ansys’ AUTODYN to model impacts of micrometer‐scale, and smaller projectiles onto Stardust foil (100 μm thick Al‐1100) at velocities up to 300 km s?1. It is thought that impacts onto the interstellar dust collector foils may have been made by a combination of interstellar dust particles (ISP), interplanetary dust particles (IDP) on comet, and asteroid derived orbits, β micrometeoroids, nanometer dust in the solar wind, and spacecraft derived secondary ejecta. The characteristic velocity of the potential impactors thus ranges from <<1 to a few km s?1 (secondary ejecta), approximately 4–25 km s?1 for ISP and IDP, up to hundreds of km s?1 for the nanoscale dust reported by Meyer‐Vernet et al. (2009) . There are currently no extensive experimental calibrations for the higher velocity conditions, and the main focus of this work was therefore to use hydrocode models to investigate the morphometry of impact craters, as a means to determine an approximate impactor speed, and thus origin. The model was validated against existing experimental data for impact speeds up to approximately 30 km s?1 for particles ranging in density from 2.4 kg m?3 (glass) to 7.8 kg m?3 (iron). Interpolation equations are given to predict the crater depth and diameter for a solid impactor with any diameter between 100 nm and 4 μm and density between 2.4 and 7.8 kg m?3.  相似文献   

9.
Abstract— Metallic aluminum alloy foils exposed on the forward, comet‐facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminum alloy to record hypervelocity impacts as bowl‐shaped craters offers an opportunistic substrate for recognition of impacts by particles of a potentially wide size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild‐2, with a known and constant spacecraft‐particle relative velocity and effective surface‐perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration program, we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well‐documented particle size range from 10 μm to nearly 100 μm. Light gas gun buckshot firings of these particles at approximately 6 km s?1 onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild‐2, independent of the active impact detector instruments aboard the Stardust spacecraft.  相似文献   

10.
Abstract The pattern of radial and concentric offset dikes at Sudbury strongly resembles fracture patterns in certain volcanically modified craters on the Moon. Since the Sudbury dikes apparently formed shortly after the impact event, this resemblance suggests that early endogenic modification at Sudbury was comparable to deformation in lunar floor-fractured craters. Although regional deformation has obscured many details of the Sudbury Structure, such a comparison of Sudbury with lunar floor-fractured craters provides two alternative models for the original size and surface structures of the Sudbury basin. First, the Sudbury date pattern can be correlated with fractures in the central peak crater Haldane (36 km in diameter). This comparison indicates an initial Sudbury diameter of between 100 and 140 km but requires loss of a central peak complex for which there is little evidence. Alternatively, comparison of the Sudbury dikes with fractures in the two-ring basin Schrödinger indicates an initial Sudbury diameter of at least ~ 180 km, which is in agreement with other recent estimates for the size of the Sudbury Structure. In addition to constraining the size and structure of the original Sudbury crater, these comparisons also suggest that crater modification may reflect different deformation mechanisms at different sizes. Most lunar floor-fractured craters are attributed to deformation over a shallow, crater-centered intrusion; however, there is no evidence for such an intrusion at Sudbury. Instead, melts from the evolving impact melt sheet probably entered fractures formed by isostatically-induced flexure of the crater floor. Since most of the lunar floor-fractured craters are too small (<100-km diameter) to induce significant isostatic adjustment, crater modification by isostatic uplift apparently is limited to only the largest of craters, whereas deformation over igneous intrusions dominates the modification of smaller craters.  相似文献   

11.
The primary crater population on Mercury has been modified by volcanism and secondary craters. Two phases of volcanism are recognized. One volcanic episode that produced widespread intercrater plains occurred during the period of the Late Heavy Bombardment and markedly altered the surface in many areas. The second episode is typified by the smooth plains interior and exterior to the Caloris basin, both of which have a different crater size-frequency distribution than the intercrater plains, consistent with a cratering record dominated by a younger population of impactors. These two phases may have overlapped as parts of a continuous period of volcanism during which the volcanic flux tended to decrease with time. The youngest age of smooth plains volcanism cannot yet be determined, but at least small expanses of plains are substantially younger than the plains associated with the Caloris basin. The spatial and temporal variations of volcanic resurfacing events can be used to reconstruct Mercury's geologic history from images and compositional and topographic data to be acquired during the orbital phase of the MESSENGER mission.  相似文献   

12.
Abstract– We present NanoSIMS four‐isotope S analyses of 24 comet Wild 2 dust impact residues in craters on aluminum foil C2037N returned by NASA’s Stardust mission. Except for one sample, all impact residues have normal S isotopic compositions within 2σ uncertainties of at least two S isotope ratios. This implies that most S‐rich Wild 2 dust impactors formed in the solar system. Instrumental isotope fractionation due to sample topography is the main contribution to our analytical uncertainty. One impact crater residue shows small anomalies of δ33S = ?57 ± 17‰, and δ34S = ?41 ± 17‰ (1σ uncertainties). Although this could be simply a statistical outlier or the fingerprint of a chemical isotope fractionation it is also possible that the observed anomaly results from the mixture of a cometary FeS particle with a small (150 nm diam.) presolar FeS supernova grain. This would translate into a presolar sulfide abundance of approximately 200 ppm.  相似文献   

13.
We experimentally studied the formation and collapse processes of transient craters. Polycarbonate projectiles with mass of 0.49 g were impacted into the soda-lime glass sphere target (mean diameters of glass spheres are ∼36, 72, and 220 μm, respectively) using a single-stage light-gas gun. Impact velocity ranged from 11 to 329 m s−1. We found that the transient crater collapses even at laboratory scales. The shape (diameter and depth) of the transient crater differs from that of the final crater. The depth-rim diameter ratios of the final and transient craters are 0.11-0.14 and 0.26-0.27, respectively. The rim diameter of both the transient and final crater depends on target material properties; however, the ratio of final to transient crater diameter does not. This suggests that target material properties affect the formation process of transient craters even in the gravity regime, and must be taken into account when scaling experimental results to planetary scales. By observing impacts into glass sphere targets, we show that although the early stage of the excavation flow does not depend on the target material properties, the radial expansion of the cavity after the end of vertical expansion does. This suggests that the effect of target material properties is specifically important in the later part of the crater excavation and collapse.  相似文献   

14.
Abstract– Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust particles (IDPs) and Wild 2 samples. Chemical analyses indicate Wild 2 sulfides are fundamentally different from those in IDPs. However, as Wild 2 dust was collected via impact into capture media at approximately 6.1 km s?1, it is unclear whether this is due to variation in preaccretional/parent body processes experienced by these materials or due to heating and alteration during collection. We investigated alteration in pyrrhotite and pentlandite impacted into Stardust flight spare Al foils under encounter conditions by comparing scanning and transmission electron microscope (SEM, TEM) analyses of preimpact and postimpact samples and calculating estimates of various impact parameters. SEM is the primary method of analysis during initial in situ examination of Stardust foils, and therefore, we also sought to evaluate the data obtained by SEM using insights provided by TEM. We find iron sulfides experience heating, melting, separation, and loss of S, and mixing with molten Al. These results are consistent with estimated peak pressures and temperatures experienced (approximately 85 GPa, approximately 2600 K) and relative melting temperatures. Unambiguous identification of preserved iron sulfides may be possible by TEM through the location of Al‐free regions. In most cases, the Ni:Fe ratio is preserved in both SEM and TEM analyses and may therefore also be used to predict original chemistry and estimate mineralogy.  相似文献   

15.
The depth and duration of energy and momentum coupling in an impact shapes the formation of the crater. The earliest stages of crater growth (when the projectile transfers its energy and momentum to the target) are unrecoverable when the event is described by late stage parameters, which collapse the initial conditions of the impact into a singular point in time and space. During the coupling phase, the details of the impact are mapped into the ejecta flow field. In this experimental study, we present new experimental and computational measurements of the ejecta distribution and crater growth extending from early times into main-stage ballistic flow for hypervelocity impacts over a range of projectile densities. Specifically, we assess the effect of projectile density on coupling depth and location in porous particulate (sand) targets. A non-invasive high-speed imaging technique is employed to capture the velocity of individual ejecta particles very early in the cratering event as a function of both time and launch position. These data reveal that the effects of early-stage coupling, such as non-constant ejection angles, manifest not only in early-time behavior but also extend to main-stage crater growth. Time-resolved comparisons with hydrocode calculations provide both benchmarking and insight into the parameters controlling the ejection process. Measurements of the launch position and metrics for the transient diameter to depth ratio as a function of time demonstrate non-proportional crater growth throughout much of excavation. Low-density projectiles couple closer to the surface, thereby leading to lower ejection angles and larger effective diameter to depth ratios. These results have implications for the ballistic emplacement of ejecta on planetary surfaces, and are essential to interpreting temporally resolved data from impact missions.  相似文献   

16.
Hale crater, a 125 × 150 km impact crater located near the intersection of Uzboi Vallis and the northern rim of Argyre basin at 35.7°S, 323.6°E, is surrounded by channels that radiate from, incise, and transport material within Hale’s ejecta. The spatial and temporal relationship between the channels and Hale’s ejecta strongly suggests the impact event created or modified the channels and emplaced fluidized debris flow lobes over an extensive area (>200,000 km2). We estimate ∼1010 m3 of liquid water was required to form some of Hale’s smaller channels, a volume we propose was supplied by subsurface ice melted and mobilized by the Hale-forming impact. If 10% of the subsurface volume was ice, based on a conservative porosity estimate for the upper martian crust, 1012 m3 of liquid water could have been present in the ejecta. We determine a crater-retention age of 1 Ga inside the primary cavity, providing a minimum age for Hale and a time at which we propose the subsurface was volatile-rich. Hale crater demonstrates the important role impacts may play in supplying liquid water to the martian surface: they are capable of producing fluvially-modified terrains that may be analogous to some landforms of Noachian Mars.  相似文献   

17.
Trace element concentrations in pyroxene, plagioclase, and olivine were measured in five diogenite breccias previously identified as containing distinct harzburgitic (ol+opx) and orthopyroxenitic (opx) lithologies (dimict). Three samples show two distinct populations of pyroxene trace element abundances, supporting their classification as dimict. These three meteorites show increases in Y, Yb, and HREE concentrations from harzburgitic to orthopyroxenitic pyroxenes, supporting the hypothesis that the lithologies are related through fractional crystallization whereby harzburgite olivine and pyroxene crystallized from the magma first followed by orthopyroxenite pyroxene. Depletions in LREE and Eu concentrations in the orthopyroxenitic lithology are most likely due to equilibration with LREE and Eu‐rich phases, likely plagioclase, which is found primarily in that lithology. Two samples do not show evidence supporting a dimict classification. Large pyroxene trace element variation in one sample indicates that it is polymict, while uniform trace element distribution in the other suggests that it may be a monomict breccia.  相似文献   

18.
Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8–5.3 km s?1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3–30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi‐infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well‐consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s?1) is effectively semi‐infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7–15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well‐consolidated basalt, no crater forms in the exposed subsurface layer.  相似文献   

19.
In order to understand the penetration process of projectiles into lower-density targets, we carry out hypervelocity impact experiments using low-density (60 mg cm?3) aerogel targets and various types of projectiles, and observe the track formation process in the targets using a high-speed camera. A carrot shaped track, a bulbous, and a “hybrid” one consisting of bulbous and thin parts, are formed. The results of the high-speed camera observations reveal the similarity and differences on the temporal evolution of the penetration depth and maximum diameter of these tracks. At very early stages of an impact, independent of projectile type, the temporal penetration depth is described by hydrodynamic models for the original projectiles. Afterward, when the breakup of projectiles does not occur, intact projectiles continue to penetrate the aerogels. In the case of the breakup of projectiles, the track expands with a velocity of about a sound velocity of the aerogel at final stages. If there are large fragments, they penetrate deeper and the tracks become a hybrid type. The penetration of the large fragments is described by hydrodynamic models. Based on these results, we discuss the excavation near the impact point by shock waves.  相似文献   

20.
Abstract— Scaling laws describing crater dimensions are defined in terms of projectile velocity and mass, densities of the materials involved, strength of the target, and the local gravity. Here, the additional importance of target porosity and saturation, and an overlying water layer, are considered through 15 laboratory impacts of 1 mm diameter stainless steel projectiles at 5 km s?1 into a) an initially uncharacterized sandstone (porosity ?17%) and b) Coconino Sandstone (porosity ?23%). The higher‐porosity dry sandstone allows a crater to form with a larger diameter but smaller depth than in the lower‐porosity dry sandstone. Furthermore, for both porosities, a greater volume of material is excavated from a wet target than a dry target (by 27–30%). Comparison of our results with Pi‐scaling (dimensionless ratios of key parameters characterizing cratering data over a range of scales) suggests that porosity is important for scaling laws given that the new data lie significantly beneath the current fit for ice and rock targets on a πv versus π3 plot (πv gives cratering efficiency and π3 the influence of target strength). An overlying water layer results in a reduction of crater dimensions, with larger craters produced in the saturated targets compared to unsaturated targets. A water depth of approximately 12 times the projectile diameter is required before craters are no longer observed in the targets. Previous experimental studies have shown that this ratio varies between 10 and 20 (Gault and Sonett 1982). In our experiments ?25% of the original projectile mass survives the impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号