共查询到20条相似文献,搜索用时 15 毫秒
1.
Gerhard SCHMIDT 《Meteoritics & planetary science》2004,39(12):1995-2007
Abstract— The relative abundances of the highly siderophile elements (HSE) Os, Ir, Ru, Pt, Rh, and Pd in relatively pristine lherzolites differ from solar abundance ratios and are several orders of magnitude higher than predicted for equilibrium distribution between metal/silicate (core‐mantle). The samples are characterized by a mean Ca/Al ratio of 1.18 ± 0.09 σM and a mean Ca/Si ratio of 0.10 ± 0.01 σM, overlapping with a mean Ca/Al of 1.069 ± 0.044 σM and a mean Ca/Si of 0.081 ± 0.023 σM found in chondrites (Wasson and Kallemeyn 1988). Interestingly, the CI‐normalized abundance pattern shows decreasing solar system normalized abundances with increasing condensation temperatures. The abundance of the moderately volatile element Pd is about 2x higher than those in the most refractory siderophiles Ir and Os. Thus, the HSE systematics of upper mantle samples suggest that the late bombardment, which added these elements to the accreting Earth, more closely resembles materials of highly reduced EH or EL chondrites than carbonaceous chondrites. In fact, the HSE in the Earth mantle are even more fractionated than the enstatite chondrites—an indication that some inner solar system materials were more highly fractionated than the latter. 相似文献
2.
3.
Shigeyuki WAKAKI Naoya SAKAMOTO Sachio KOBAYASHI Hisayoshi YURIMOTO 《Meteoritics & planetary science》2012,47(12):2070-2083
Abstract– High‐precision isotope imaging analyses of reversely zoned melilite crystals in the gehlenitic mantle of Type A CAI ON01 of the Allende carbonaceous chondrite reveal that there are four types of oxygen isotopic distributions within melilite single crystals: (1) uniform depletion of 16O (δ18O ≈ ?10‰), (2) uniform enrichment of 16O (δ18O ≈ ?40‰), (3) variations in isotopic composition from 16O‐poor core to 16O‐rich rim (δ18O ≈ ?10‰ to ?30‰, ?20‰ to ?45‰, and ?10‰ to ?35‰) with decreasing åkermanite content, and (4) 16O‐poor composition (δ18O ≥ ?10‰) along the crystal rim. Hibonite, spinel, and perovskite grains are 16O‐rich (δ18O ≈ ?45‰), and adjoin 16O‐poor melilites. Gas‐solid or gas‐melt isotope exchange in the nebula is inconsistent with both the distinct oxygen isotopic compositions among the minerals and the reverse zoning of melilite. Fluid‐rock interaction on the parent body resulted in 16O‐poor compositions of limited areas near holes, cracks, or secondary phases, such as anorthite or grossular. We conclude that reversely zoned melilites mostly preserve the primary oxygen isotopic composition of either 16O‐enriched or 16O‐depleted gas from which they were condensed. The correlation between oxygen isotopic composition and åkermanite content may indicate that oxygen isotopes of the solar nebula gas changed from 16O‐poor to 16O‐rich during melilite crystal growth. We suggest that the radial excursions of the inner edge of the protoplanetary disk gas simultaneously resulted in both the reverse zoning and oxygen isotopic variation of melilite, due to mixing of 16O‐poor disk gas and 16O‐rich coronal gas. Gas condensates aggregated to form the gehlenite mantle of the Type A CAI ON01. 相似文献
4.
Abstract— Fischer‐Tropsch catalysis, the iron/nickel catalyzed conversion of CO and H2 to hydrocarbons, would have been the only thermally‐driven pathway available in the solar nebula to convert CO into other forms of carbon. A major issue in meteoritics is to determine the origin of meteoritic organics: are they mainly formed from CO in the solar nebula via a process such as Fischer‐Tropsch, or are they derived from interstellar organics? In order to determine the role that Fischer‐Tropsch catalysis may have played in the organic chemical evolution of the solar nebula, we have developed a kinetic model for this process. Our model results agree well with experimental data from several existing laboratory studies. In contrast, empirical rate equations, which have been derived from experimental rate data for a limited temperature (T) and pressure (P) range, are inconsistent with experimental rate data for higher T and lower P. We have applied our model to pressure and temperature profiles for the solar nebula, during the epoch in which meteorite parent bodies condensed and agglomerated. We find that, under nebular conditions, the conversion rate of CO to CH4 does not simply increase with temperature as the empirically‐derived equations suggest. Instead, our model results show that this process would have been most efficient in a fairly narrow region that coincides with the present position of the asteroid belt. Our results support the hypothesis that Fischer‐Tropsch catalysis may have played a role in solar nebula chemistry by converting CO into less volatile materials that can be much more readily processed in the nebula and in parent bodies. 相似文献
5.
J. J. Rawal 《Earth, Moon, and Planets》1984,31(2):175-182
The concept of Roche limit is applied to the Laplacian theory of the origin of the solar system to study the contraction of a spherical gas cloud (solar nebula). In the process of contraction of the solar nebula, it is assumed that the phenomenon of supersonic turbulent convection described by Prentice (1978) is operative and brings about the halt at various stages of contraction. It is found that the radius of the contracting solar nebula follows Titius-Bode law R
p = Rap, where R
is the radius of the present Sun and a = 1.442. We call a the Roche's constant. The consequences of the relation are also discussed. The aim, here, is an attempt to explain, on the basis of the concept of Roche limit, the distribution of planets in the solar system and try to understand the physics underlying it. 相似文献
6.
S. B. Simon A. M. Davis L. Grossman K. D. McKeegan 《Meteoritics & planetary science》2002,37(4):533-548
Abstract— Through freeze‐thaw disaggregation of the Murchison (CM) carbonaceous chondrite, we have recovered a ?90 times 75 μm refractory inclusion that consists of corundum and hibonite with minor perovskite. Corundum occurs as small (?10 μm), rounded grains enclosed in hibonite laths (?10 μm wide and 30–40 μm long) throughout the inclusion. Perovskite predominantly occurs near the edge of the inclusion. The crystallization sequence inferred petrographically‐corundum followed by hibonite followed by perovskite‐is that predicted for the first phases to form by equilibrium condensation from a solar gas for Ptot ≤5 times 10?3 atm. In addition, the texture of the inclusion, with angular voids between subhedral hibonite laths and plates, is also consistent with formation of the inclusion by condensation. Hibonite has heavy rare earth element (REE) abundances of ?40 × CI chondrites, light REE abundances ?20 × CI chondrites, and negative Eu anomalies. The chondrite‐normalized abundance patterns, especially one for a hibonite‐perovskite spot, are quite similar to the patterns of calculated solid/gas partition coefficients for hibonite and perovskite at 10?3 atm and are not consistent with formation of the inclusion by closed‐system fractional crystallization. In contrast with the features that are consistent with a condensation origin, there are problems with any model for the formation of this inclusion that includes a molten stage, relic grains, or volatilization. If thermodynamic models of equilibrium condensation are correct, then this inclusion formed at pressures <5 times 10?3 atm, possibly with enrichments (<1000x) in CI dust relative to gas at low pressures (below 10?4 atm). Both hibonite and corundum have δ17O ? δ18O ? ?50%, indicating formation from an 16O‐rich source. The inclusion does not contain radiogenic 26Mg and apparently did not contain live 26Al when it formed. If the short‐lived radionuclides were formed in a supernova and injected into the early solar nebula, models of this process suggest that 26Al‐free refractory inclusions such as this one formed within the first ?6 times 105 years of nebular collapse. 相似文献
7.
Abstract– Refractory materials, such as calcium‐aluminum‐rich inclusions (CAIs) and crystalline silicates, are widely found in chondritic meteorites as well as comets, taken as evidence for large‐scale mixing in the solar nebula. Most models for mixing in the solar nebula begin with a well‐formed protoplanetary disk. Here, we relax this assumption by modeling the formation and evolution of the solar nebula during and after the period when it accreted material from its parent molecular cloud. We consider how disk building impacts the long‐term evolution of the disk and the implications for grain transport and mixing within it. Our model shows that materials that formed before infall was complete could be preserved in primitive bodies, especially those that accreted in the outer disk. This potentially explains the discovery of refractory objects with low initial 26Al/27Al ratios in comets. Our model also shows that the highest fraction of refractory materials in meteorites formed around the time that infall stopped. Thus, we suggest that the calcium‐aluminum‐rich inclusions in chondrites would be dominated by the population that formed during the transition from class I to class II stage of young stellar objects. This helps us to understand the meaning of t = 0 in solar system chronology. Moreover, our model offers a possible explanation for the existence of isotopic variations observed among refractory materials—that the anomalous materials formed before the collapse of the parent molecular cloud was complete. 相似文献
8.
Characteristic time scales relevant to the accumulation of planetesimals in a gaseous nebula are examined and the accumulation toward the planets is simulated by numerically solving a growth equation for a mass distribution function. The eccentricity and inclination of planetesimals are assumed to be determined by a balance between excitation due to mutual gravitational scattering and dissipation due to gas drag. Two kinds of mass motion in the radial direction, i.e., diffusion due to mutual scattering and inward flow due to gas drag, are both taken into account. The diffusion is shown to be effective in later stages with a result of accelerating the accumulation. As to the coalescent collision cross section, the usual formula for a binary encounter in a free space is used but the effect of tidal disruption which increases substantially the cross section is taken into account. Numerical results show that the gravitational enhancement factor (i.e., the so-called “Safronov number”), contained in the cross section formula, always takes a value of the order of unity but the accumulation proceeds relatively rapidly owing to the effects of radial diffusion and tidal disruption. That is, a proto-Earth, a proto-Jupiter, and a proto-Saturn with masses of 1×1027 g are formed in 5×106, 1×107, and 1.6×108 years, respectively. Also, a tentative numerical computation for the Neptune formation shows that a proto-Neptune with the same mass requires a long accumulation time, 4.6×109 years. Finally, the other effects which are expected to reduce the above growth times further are discussed. 相似文献
9.
Numerical models have been constructed to represent probable conditions in the primitive solar nebula. A two solar mass fragment of a collapsing interstellar gas cloud has been represented by a uniformly rotating sphere. Two cases have been considered: one in which the internal density of the sphere is uniform and the other in which the density falls linearly from a central value to zero at the surface (the uniform and linear models). These assumptions served to define the distribution of angular momentum per unit mass with mass fraction. The spheres were flattened into disks, and models of the disks were found in which there was a force balance in the radial and vertical directions, subject to certain approximations, and with everywhere the assigned values of angular momentum per unit mass. The radial pressure gradient of the gas was included in the force balance. The energy transport in the vertical direction involved convection and radiative equilibrium; the principal contributors to opacity at lower temperatures were metallic iron grains and ice. The models contained two convection zones, an inner one due to the dissociation of hydrogen molecules, and an outer one in which there was a high opacity due to metallic iron grains. The characteristic semithickness of the disks ranged from about 0.1 astronomical units near the center to about one astronomical unit near the exterior. Characteristic angular momentum transport times and radiation lifetimes for these models of the initial solar nebula were estimated. Both types of characteristic lifetime were as short as a few years near the inner part of the models, and became about 104 years or longer at distances greater than ten astronomical units. 相似文献
10.
V. Dyczmons 《Earth, Moon, and Planets》1978,18(1):105-142
The theory discussed in the present paper is a solar nebula-type theory which assumes the initial existence of a big disk-shaped gas cloud in rotational motion around the Sun. At the outer edge of the gas cloud there is a steady loss of angular momentum, which is mainly caused by the diffusion induced by turbulence and shock waves. This leads to the formation of a doughnutshaped gas ring at the edge of the cloud, outside of which there is plasma in a state of partial corotation. The gas ring is then slowly shifted towards the Sun, whereby the grains of solid matter within the gas cloud are also transported and collected within the gas torus. During the contraction process the following two situations arise: First, due to the small amount of friction, the angular momentum of the inner part of the ring rapidly exceeds that of the outer part. Second, the angle between the orbits of the inner and outer part of the gas ring increases gradually. When, during contraction, a certain distance is covered, the gas ring turns over, i.e. there is a sudden interchange of the inner and outer parts of the gas ring, where two adjacent rings of solid matter (jet streams) are formed. Immediately after the turn-over process the speed of contraction is at first drastically reduced, but then the gas ring is shifted once more towards the Sun. This process is then repeated periodically. The planets originate from the outer rings of solid matter, which contain much more matter than their adjacent inner rings. The inclination between the inner and outer rings is roughly 5°. In particular, Mercury, the Moon, Titan as well as Triton result from the innermost rings of matter. Having gone through the formation process, most of the planets acquire a rotating gas disk out of which the regular satellites are also created by the same periodic contraction process (hetegonic principle). This theory is the first that can explain all noteworthy facts about our planetary system and the satellite systems in a qualitative yet conclusive way. 相似文献
11.
Models of the collapse of a protostellar cloud and the formation of the solar nebula reveal that the size of the nebula produced will be the larger of (where J, M, and cs are the total angular momentum, total mass, and sound speed of the protosetellar material; G is the gravitational constant; k is a number of order unity; and v is the effective viscosity in the nebula). From this result it can be deduced that low-mass nebulas are produced if P ≡ (RV/RCF)2 ? 1; “massive” nebulas result if P ? 1. Gravitational instabilities are expected to be important for the evolution of P ? 1 nebulas. The value of J distinguishes most current models of the solar nebula, since P ∝ J?4. Analytic expressions for the surface density, nebular mass flux, and photospheric temperature distributions during the formation stage are presented for some simple models that illustrate the general properties of growing protostellar disks. It does not yet seem possible to rule out either P ? 1 or P < 1 for the solar nebula, but observed or possible heterogeneities in composition and angular-momentum orientation favor P < 1 models. 相似文献
12.
Three-dimensional gas flow in the solar nebula, which is subject to the gravity of the Sun and proto-Jupiter, is numerically calculated by using a three-dimensional hydrodynamic code - i.e., the socalled smoothed-particle method. The flow is circulating around the Sun as well as falling into a potential well of proto-Jupiter. The results for various masses of proto-Jupiter show that (1) the e-folding growth time of proto-Jupiter by accretion of the nebular gas is as short as about 300 years in stages where the mass of proto-Jupiter is 0.2 ~ 0.5 times the present Jovian mass, and that (2) proto-Jupiter begins to push away the nebular gas from the orbit of proto-Jupiter and form a gap around the orbit, when its mass is about 0.7 times the present Jovian mass. It is possible that this pushing-away process determined the present Jovian mass. 相似文献
13.
Augusto Carballido 《Icarus》2011,211(1):876-884
Numerical magnetohydrodynamic (MHD) simulations of a turbulent solar nebula are used to study the growth of dust mantles swept up by chondrules. A small neighborhood of the solar nebula is represented by an orbiting patch of gas at a radius of 3 AU, and includes vertical stratification of the gas density. The differential rotation of the nebular gas is replaced by a shear flow. Turbulence is driven by destabilization of the flow as a result of the magnetorotational instability (MRI), whereby magnetic field lines anchored to the gas are continuously stretched by the shearing motion. A passive contaminant mimics small dust grains that are aerodynamically well coupled to the gas, and chondrules are modeled by Lagrangian particles that interact with the gas through drag. Whenever a chondrule enters a region permeated by dust, its radius grows at a rate that depends on the local dust density and the relative velocity between itself and the dust. The local dust abundance decreases accordingly. Compaction and fragmentation of dust aggregates are not included. Different chondrule volume densities ρc lead to varying depletion and rimmed-chondrule size growth times. Most of the dust sweep-up occurs within ~1 gas scale-height of the nebula midplane. Chondrules can reach their asymptotic radius in 10–800 years, although short growth times due to very high ρc may not be altogether realistic. If the sticking efficiency Q of dust to chondrules depends on their relative speed δv, such that Q < 10?2 whenever δv > vstick ≈ 34 cm/s (with vstick a critical sticking velocity), then longer growth times result due to the prevalence of high MRI-turbulent relative velocities. The vertical variation of nebula turbulent intensity results in a moderate dependence of mean rimmed-chondrule size with nebula height, and in a ~20% dispersion in radius values at every height bin. The technique used here could be combined with Monte Carlo (MC) methods that include the physics of dust compaction, in a self-consistent MHD-MC model of dust rim growth around chondrules in the solar nebula. 相似文献
14.
We study the distribution and transport of angular momentum in a self-gravitating accretion disk formed during the collapse of a rotating gas cloud. Using the surface density for the low-viscosity models and minimum-mass models presented by Cassen and Summers, Poisson's equation is solved explicitly to determine the effects of self-gravitation of the protostellar disk. Analytic expressions for the angular momentum of the central star and other relevant quantities of interest during the formation stage are presented.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.On leave from the City College of the City University of New York, U.S.A. 相似文献
15.
S.J. Weidenschilling 《Icarus》1980,44(1):172-189
The behavior of solid particles in a low-mass solar nebula during settling to the central plane and the formation of planetesimals is examined. Gravitational instability in a dust layer and collisional accretion are considered as possible mechanisms of planetesimal formation. Non-Keplerian rotation of the nebula results in shear between the gas and a dust layer. This shear produces turbulence within the layer which inhibits gravitational instability, unless the mean particle size exceeds a critical value, ~1 cm at 1 AU. The size requirement is less stringent at larger heliocentric distances, suggesting a possible difference in planetesimal formation mechanisms between the inner and outer nebula. Coagulation of grains during settling is expected in the solar nebula environment. Van der Waals forces appear adequate to produce centimeter-sized aggregates. Growth is primarily due to sweepup of small particles by larger ones due to size-dependent settling velocities. A numerical model for computing simultaneous coagulation and settling is described. Relative velocities are determined by gas drag and the non-Keplerian rotation of the nebula. The settling is very nonhomologous. Most of the solid matter reaches the central plane as centimeter-sized aggregates in a few times 103 revolutions, but some remains suspended in the form of fine dust. Drag-induced relative velocities result in collisions. The growth of bodies in the central plane is initially rapid. After sizes reach ~103 cm, relative velocities decrease and the growth rate declines. Gas drag rapidly damps the out-of-plane motions of these intermediate-sized bodies. They settle into a thin layer which is subject to gravitational instability. Kilometer-sized planetesimals are formed by this composite process. 相似文献
16.
C. Denker L. Didkovsky J. Ma S. Shumko J. Varsik J. Wang H. Wang P.R. Goode 《Astronomische Nachrichten》2003,324(4):332-333
The Coudé feed of the vacuum telescope (aperture D = 65 cm) at the Big Bear Solar Observatory (BBSO) is currently completely remodelled to accommodate a correlation tracker and a high‐order Adaptive Optics (AO) system. The AO system serves two imaging magnetograph systems located at a new optical laboratory on the observatory's 2nd floor. The InfraRed Imaging Magnetograph (IRIM) is an innovative magnetograph system for near‐infrared (NIR) observations in the wavelength region from 1.0 μm to 1.6 μm. The Visible‐light Imaging Magnetograph (VIM) is basically a twin of IRIM for observations in the wavelength range from 550 nm to 700 nm. Both instruments were designed for high spatial and high temporal observations of the solar photosphere and chromosphere. Real‐time data processing is an integral part of the instruments and will enhance BBSO's capabilities in monitoring solar activity and predicting and forecasting space weather. 相似文献
17.
Laser‐induced melting experiments: Simulation of short‐term high‐temperature impact processes 下载免费PDF全文
This study introduces an experimental approach using direct laser irradiation to simulate the virtually instantaneous melting of target rocks during meteorite impacts. We aim at investigating the melting and mixing processes of projectile (iron meteorite; steel) and target material (sandstone) under idealized conditions. The laser experiments (LE) were able to produce features very similar to those of impactites from meteorite craters and cratering experiments, i.e., formation of lechatelierite, partial to complete melting of sandstone, and injection of projectile droplets into target melts. The target and projectile melts have experienced significant chemical modifications during interaction of these coexisting melts. Emulsion textures, observed within projectile‐contaminated target melts, indicate phase separation of silicate melts with different chemical compositions during quenching. Reaction times of 0.6 to 1.4 s could be derived for element partitioning and phase‐separation processes by measuring time‐depended temperature profiles with a bolometric detector. Our LE allow (i) separate melting at high temperatures to constrain primary melt heterogeneities before mixing of projectile and target, (ii) quantification of element partitioning processes between coexisting projectile and target melts, (iii) determination of cooling rates, and (iv) estimation of reaction times. Moreover, we used a thermodynamic approach to calculate the entropy gain during laser melting. The entropy changes for laser‐melting of sandstone and iron meteorite correspond to shock pressures and particle velocities produced during the impact of an iron projectile striking a quartz target at a minimum impact velocity of ~6 km s?1, inducing peak shock pressures of ~100 GPa in the target. 相似文献
18.
K.G. Strassmeier I.V. Ilyin M. Woche T. Granzer M. Weber J. Weingrill S.‐M. Bauer E. Popow C. Denker W. Schmidt O. von der Lühe S. Berdyugina M. Collados P. Koubsky T. Hackman M.J. Mantere 《Astronomische Nachrichten》2012,333(9):901-910
We describe the future night‐time spectrograph for the GREGOR solar telescope and present its science core projects. The spectrograph provides a 3‐pixel resolution of up to R = 87 000 in 45 échelle orders covering the wavelength range 390‐900 nm with three grating settings. An iodine cell can be used for high‐precision radial velocity work in the 500‐630 nm range. The operation of the spectrograph and the telescope will be fully automated without the presence of humans during night‐time and will be based on the successful STELLA control system. Future upgrades include a second optical camera for even higher spectral resolution, a Stokes‐V polarimeter and a link to the laser‐frequency comb at the Vacuum Tower Telescope. The night‐time core projects are a study of the angular‐momentum evolution of “The Sun in Time” and a continuation of our long‐term Doppler imaging of active stars (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
Jeffrey N. Grossman Conel M. O'D. Alexanders Jianhua Wang Adrian J. Brearley 《Meteoritics & planetary science》2002,37(1):49-73
Abstract— At least 15% of the low‐FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x‐ray mapping plus quantitative analysis), ion microprobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water‐rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene‐ and olivine‐rich chondrules may indicate that fractionation of low‐ and high‐Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub‐parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements between altered glass and surrounding matrix and rim material. Calcium was mainly lost during this process, and other nonvolatile elements may have been mobile as well. Some unzoned, low‐FeO chondrules appear to have fully altered mesostasis. 相似文献
20.
Abstract— Oxidation of Fe metal and Gibeon meteorite metal to magnetite via the net reaction 3 Fe (metal) + 4 H2O (gas) = Fe3O4 (magnetite) + 4 H2 (gas) was experimentally studied at ambient atmospheric pressure at 91–442 °C in H2 and H2-He gas mixtures with H2/H2O molar ratios of ~4–41. The magnetite produced was identified by x-ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe2O4 and CoFe2O4) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe-Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling-Brounshtein, and Valensi-Carter models for powder reactions. Magnetite formation followed parabolic (i.e., diffusion-controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are: These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H2S-H2 gas mixtures containing 1000 or 10 000 ppmv H2S (Lauretta et al., 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1–1 μm radius metal grains are generally within estimated lifetimes of the solar nebula (0.1–10 Ma). However, the calculated reaction times are probably lower limits, and further study of magnetite formation at larger H2/H2O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation. 相似文献