首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract– The deceleration tracks in the Stardust aerogel display a wide range of morphologies, which reveal a large diversity of incoming particles from comet 81P/Wild 2. If the large and dense mineral grains survived the extreme conditions of hypervelocity capture, this was not the case for the fine‐grained material that is found strongly damaged within the aerogel. Due to their low mechanical strength, these assemblages were disaggregated, dispersed, and flash melted in the aerogel in walls of bulbous deceleration tracks. Their petrologic and mineralogical properties are found significantly modified by the flash heating of the capture. Originating from a quenched melt mixture of comet material and aerogel, the representative microstructure consists of silica‐rich glassy clumps containing Fe‐Ni‐S inclusions, vesicles and “dust‐rich” patches, the latter being remnants of individual silicate components of the impacting aggregate. The average composition of these melted particle fragments is close to the chondritic CI composition. They might originate from ultrafine‐grained primitive components comparable to those found in chondritic porous IDPs. Capture effects in aerogel and associated sample biases are discussed in terms of size, chemical and mineralogical properties of the grains. These properties are essential for the grain survival in the extremely hot environment of hypervelocity impact capture in aerogel, and thus for inferring the correct properties of Wild 2 material.  相似文献   

2.
Abstract— Does comet 81P/Wild 2 have indigenous glass? Glass is used here to include all types of amorphous materials that could be either indigenous or modified comet Wild 2 grains, and all amorphous phases in chondritic aggregate interplanetary dust particles (IDPs). The answer is that it probably does, but very little is known of their compositions to allow a definitive answer to be given. There is no evidence among the collected comet dust for interstellar glass with embedded metals and sulfides. There is, however, ample evidence for melting of the smallest, sub‐micrometer comet particles of nanometer‐scale grains similar to those in the matrix of chondritic aggregate IDPs, including pyrrhotite. Massive patches of Mg‐SiO, Al‐SiO, or Ca‐Si‐O glass are incorporated in the familiar, vesicular Si‐rich glass are melted Wild 2 silicates. Magnesiosilica glass has a deep metastable eutectic smectite‐dehydroxylate composition. It indicates that very high temperatures well above the liquidus temperatures of forsterite were achieved very rapidly and were followed but ultra‐rapid quenching. This predictable and systematic response is not limited to Mg‐silicates, and recognizing this phenomenon among massive glass will provide a means to complete the reconstruction of this comet's original minerals, as well as constrain the physiochemical environment created during aerogel melting and evaporation.  相似文献   

3.
Abstract— Flight aerogel in Stardust allocation C2092,2,80,47,6 contains percent level concentrations of Na, Mg, Al, S, Cl, K, Ca, Cr, Mn, Fe, and Ni that have a distinctive Fe‐ and CI‐normalized distribution pattern, which is similar to this pattern for ppb level chemical impurities in pristine aerogel. The elements in this aerogel background were assimilated in non‐vesicular and vesicular glass with the numerous nanometer Fe‐Ni‐S compound inclusions. After correction for the background values, the chemical data show that this piece of comet Wild 2 dust was probably an aggregate of small (<500 nm) amorphous ferromagnesiosilica grains with many tiny Fe,Ni‐sulfide inclusions plus small Ca‐poor pyroxene grains. This distinctive Fe‐ and CI‐normalized element distribution pattern is found in several Stardust allocations. It appears to be a common feature in glasses of quenched aerogel melts but its exact nature is yet to be established.  相似文献   

4.
The silica glass extracted from the bulbous parts of Stardust tracks is riddled by electron‐opaque nanograins with compositions that are mostly between pyrrhotite and metallic iron with many fewer nanograins having a Fe‐Ni‐S composition. Pure taenite nanograins are extremely rare, but exist among the terminal particles. Assuming that these Fe‐Ni‐S compositions are due to mixing of pyrrhotite and taenite melt droplets, it is remarkable that the taenite melt grains had discrete Fe/Ni ratios. This paper presents the data from an igneous pyrrhotite/taenite fragment of cluster IDP L2011#21, wherein the taenite compositions have the same discrete Fe/Ni clusters as those inferred for the Stardust nanograins. These Fe/Ni clusters are a subsolidus feature with compositions that are constrained by the Fe‐Ni phase diagram. They formed during cooling of the parent body of this cluster IDP fragment. These specific Fe/Ni ratios, 12.5, 24, 40, and 53 atom% Ni, were preserved in asteroidal taenite that survived radially outward transport to the Kuiper Belt where it accreted into the (future) comet Wild 2 nucleus.  相似文献   

5.
The bulbous Stardust track #80 (C2092,3,80,0,0) is a huge cavity. Allocations C2092,2,80,46,1 nearest the entry hole and C2092,2,80,47,6 about 0.8 mm beneath the entry hole provide evidence of highly chaotic conditions during capture. They are dominated by nonvesicular low‐Mg silica glass instead of highly vesicular glass found deeper into this track which is consistent with the escape of magnesiosilica vapors generated from the smallest comet grains. The survival of delicate (Mg,Al,Ca)‐bearing silica glass structures is unique to the entry hole. Both allocations show a dearth of surviving comet dust except for a small enstatite, a low‐Ca hypersthene grain, and a Ti‐oxide fragment. Finding scattered TiO2 fragments in the silica glass could support, but not prove, TiO2 grain fragmentation during hypervelocity capture. The here reported dearth in mineral species is in marked contrast to the wealth of surviving silicate and oxide minerals deeper into the bulb. Both allocations show Fe‐Ni‐S nanograins dispersed throughout the low‐Mg silica glass matrix. It is noted that neither comet Halley nor Wild 2 had a CI bulk composition for the smallest grains. Using the analogs of interplanetary dust particles (IDPs) and cluster IDPs it is argued that a CI chondritic composition requires the mixing of nonchondritic components in the appropriate proportions. So far, the fine‐grained Wild 2 dust is biased toward nonchondritic ferromagnesiosilica materials and lacking contributions of nonchondritic components with Mg‐Fe‐Ni‐S[Si‐O] compositions. To be specific, “Where are the GEMS”? The GEMS look‐alike found in this study suggests that evidence of GEMS in comet Wild 2 may still be found in the Stardust glass.  相似文献   

6.
Allocation FC6,0,10,0,26 from Stardust track 10 shows a slightly wavy silica glass/compressed silica aerogel interface exposing a patchwork of compressed silica aerogel domains and domains of silica glass with embedded Wild 2 materials in ultra‐thin TEM sections. This interface is where molten silica encountered compressed silica aerogel at temperatures <100 °C, and probably near room temperature, causing steep thermal gradients. An Mg, Fe‐olivine grain, and a plagioclase‐leucite intergrowth survived without melting in silica glass. A Mg‐, Al‐, Ca‐, K‐bearing silica globule moved independently as a single object. Two clusters of pure iron, low‐Ni iron, and low‐Ni, low‐sulfur Fe‐Ni‐S grains also survived intact and came to rest right at the interface between silica glass/compressed silica aerogel. There are numerous Fe‐Ni‐S nanograins scattered throughout MgO‐rich magnesiosilica glass, but compositionally similar Fe‐Ni‐S are also found in the compressed silica aerogel, where they are not supposed to be. This work could not establish how deep they had penetrated the aerogel. Iron nanograins in this allocation form core‐ring grains with a gap between the iron core and a surrounding ring of thermally modified aerogel. This structure was caused when rapid, thermal expansion of the core heated the surrounding compressed aerogel that upon rapid cooling remained fixed in place while the iron core shrank back to its original size. The well‐known volume expansion of pure iron allowed reconstruction of the quench temperature for individual core‐ring grains. These temperatures showed the small scale of thermal energy loss at the silica glass/compressed silica aerogel interface. The data support fragmentation of olivine, plagioclase, and iron and Fe ± low‐Ni grains from comet 81P/Wild 2 during hypervelocity capture.  相似文献   

7.
Abstract— We report the results of our petrological and mineralogical study of Fe‐Ni metal in type 3 ordinary and CO chondrites, and the ungrouped carbonaceous chondrite Acfer 094. Fe‐Ni metal in ordinary and CO chondrites occurs in chondrule interiors, on chondrule surfaces, and as isolated grains in the matrix. Isolated Ni‐rich metal in chondrites of petrologic type lower than type 3.10 is enriched in Co relative to the kamacite in chondrules. However, Ni‐rich metal in type 3.15–3.9 chondrites always contains less Co than does kamacite. Fe‐Ni metal grains in chondrules in Semarkona typically show plessitic intergrowths consisting of submicrometer kamacite and Ni‐rich regions. Metal in other type 3 chondrites is composed of fine‐ to coarse‐grained aggregates of kamacite and Ni‐rich metal, resulting from metamorphism in the parent body. We found that the number density of Ni‐rich grains in metal (number of Ni‐rich grains per unit area of metal) in chondrules systematically decreases with increasing petrologic type. Thus, Fe‐Ni metal is a highly sensitive recorder of metamorphism in ordinary and carbonaceous chondrites, and can be used to distinguish petrologic type and identify the least thermally metamorphosed chondrites. Among the known ordinary and CO chondrites, Semarkona is the most primitive. The range of metamorphic temperatures were similar for type 3 ordinary and CO chondrites, despite them having different parent bodies. Most Fe‐Ni metal in Acfer 094 is martensite, and it preserves primary features. The degree of metamorphism is lower in Acfer 094, a true type 3.00 chondrite, than in Semarkona, which should be reclassified as type 3.01.  相似文献   

8.
We present the analyses results of two bulk Terminal Particles, C2112,7,171,0,0 and C2112,9,171,0,0, derived from the Jupiter‐family comet 81P/Wild 2 returned by the Stardust mission. Each particle embedded in a slab of silica aerogel was pressed in a diamond cell. This preparation, as expected, made it difficult to identify the minerals and organic materials present in these particles. This problem was overcome using a combination of three different analytical techniques, viz. FE‐SEM/EDS, IR, and Raman microspectroscopy that allowed identifying the minerals and small amounts of amorphous carbon present in both particles. TP2 and TP3 were dominated by Ca‐free and low‐Ca, Mg‐rich, Mg,Fe‐olivine. The presence of melilite in both particles is supported by IR microspectroscopy, but is not confirmed by Raman microspectroscopy, possibly because the amounts are too small to be detected. TP2 and TP3 show similar silicate mineral compositions, but Ni‐free and low‐Ni, subsulfur (Fe,Ni)S grains are present in TP2 only. TP2 contains indigenous amorphous carbon hot spots; no indigenous carbon was identified in TP3. These nonchondritic particles probably originated in a differentiated body. This work found an unanticipated carbon contamination following the FE‐SEM/EDS analyses. It is suggested that organic materials in the embedding silica aerogel are irradiated during FE‐SEM/EDS analyses creating a carbon gas that develops a strong fluorescence continuum. The combination of the selected analytical techniques can be used to characterize bulk Wild 2 particles without the need of extraction and removal of the encapsulating aerogel. This approach offers a relatively fast sample preparation procedure, but compressing the samples can cause spurious artifacts, viz. silica contamination. Because of the combination of techniques, we account for these artifacts.  相似文献   

9.
Abstract— Four particles extracted from track 80 at different penetration depths have been studied by analytical transmission electron microscopy (ATEM). Regardless of their positions within the track, the samples present a comparable microstructure made of a silica rich glassy matrix embedding a large number of small Fe‐Ni‐S inclusions and vesicles. This microstructure is typical of strongly thermally modified particles that were heated and melted during the hypervelocity impact into the aerogel. X‐ray intensity maps show that the particles were made of Mg‐rich silicates (typically 200 nm in diameter) cemented by a fine‐grained matrix enriched in iron sulfide. Bulk compositions of the four particles suggest that the captured dust particle was an aggregate of grains with various iron sulfide fraction and that no extending chemical mixing in the bulb occurred during the deceleration. The bulk S/Fe ratios of the four samples are close to CI and far from the chondritic meteorites from the asteroidal belt, suggesting that the studied particles are compatible with chondritic‐porous interplanetary dust particles or with material coming from a large heliocentric distance for escaping the S depletion.  相似文献   

10.
NASA’s Stardust spacecraft collected dust from the coma of Comet 81P/Wild 2 by impact into aerogel capture cells or into Al-foils. The first direct, laboratory measurement of the physical, chemical, and mineralogical properties of cometary dust grains ranging from <10−15 to ∼10−4 g were made on this dust. Deposition of material along the entry tracks in aerogel and the presence of compound craters in the Al-foils both indicate that many of the Wild 2 particles in the size range sampled by Stardust are weakly bound aggregates of a diverse range of minerals. Mineralogical characterization of fragments extracted from tracks indicates that most tracks were dominated by olivine, low-Ca pyroxene, or Fe-sulfides, although one track was dominated by refractory minerals similar to Ca–Al inclusions in primitive meteorites. Minor mineral phases, including Cu–Fe-sulfide, Fe–Zn-sulfide, carbonate and metal oxides, were found along some tracks. The high degree of variability of the element/Fe ratios for S, Ca, Ti, Cr, Mn, Ni, Cu, Zn, and Ga among the 23 tracks from aerogel capture cells analyzed during Stardust Preliminary Examination is consistent with the mineralogical variability. This indicates Wild 2 particles have widely varying compositions at the largest size analyzed (>10 μm). Because Stardust collected particles from several jets, sampling material from different regions of the interior of Wild 2, these particles are expected to be representative of the non-volatile component of the comet over the size range sampled. Thus, the stream of particles associated with Comet Wild 2 contains individual grains of diverse elemental and mineralogical compositions, some rich in Fe and S, some in Mg, and others in Ca and Al. The mean refractory element abundance pattern in the Wild 2 particles that were examined is consistent with the CI meteorite pattern for Mg, Si, Cr, Fe, and Ni to 35%, and for Ca, Ti and Mn to 60%, but S/Si and Fe/Si both show a statistically significant depletion from the CI values and the moderately volatile elements Cu, Zn, Ga are enriched relative to CI. This elemental abundance pattern is similar to that in anhydrous, porous interplanetary dust particles (IDPs), suggesting that, if Wild 2 dust preserves the original composition of the Solar Nebula, the anhydrous, porous IDPs, not the CI meteorites, may best reflect the Solar Nebula abundances. This might be tested by elemental composition measurements on cometary meteors.  相似文献   

11.
Transmission electron microscope examination of more than 250 fragments, >1 μm from comet Wild 2 and a giant cluster interplanetary dust particle (GCP) of probable cometary origin has revealed four new calcium‐aluminum‐rich inclusions (CAIs), an amoeboid olivine aggregate (AOA), and an additional AOA or Al‐rich chondrule (ARC) object. All of the CAIs have concentric mineral structures and are composed of spinel + anorthite cores surrounded by Al,Ti clinopyroxenes and are similar to two previous CAIs discovered in Wild 2. All of the cometary refractory objects are of moderate refractory character. The mineral assemblages, textures, and bulk compositions of the comet CAIs are similar to nodules in fine‐grained, spinel‐rich inclusions (FGIs) found in primitive chondrites and like the nodules may be nebular condensates that were altered via solid–gas reactions in the solar nebula. Oxygen isotopes collected on one Wild 2 CAI also match FGIs. The lack of the most refractory inclusions in the comet samples may reflect the higher abundances of small moderately refractory CAI nodules that were produced in the nebula and the small sample sizes collected. In the comet samples, approximately 2–3% of all fragments larger than 1 μm, by number, are CAIs and nearly 50% of all bulbous Stardust tracks contain at least one CAI. We estimate that ~0.5 volume % of Wild 2 material and ~1 volume % of GCP is in the form of CAIs. ARCs and AOAs account for <1% of the Wild 2 and GCP grains by number.  相似文献   

12.
In a consortium analysis of a large particle captured from the coma of comet 81P/Wild 2 by the Stardust spacecraft, we report the discovery of a field of fine‐grained material (FGM) in contact with a large sulfide particle. The FGM was partially located in an embayment in the sulfide. As a consequence, some of the FGM appears to have been protected from damage during hypervelocity capture in aerogel. Some of the FGM particles are indistinguishable in their characteristics from common components of chondritic‐porous interplanetary dust particles, including glass with embedded metals and sulfides and equilibrated aggregates. The sulfide exhibits surprising Ni‐rich lamellae, which may indicate that this particle experienced a long‐duration heating event after its formation but before incorporation into Wild 2.  相似文献   

13.
Abstract— Five amorphous (extensively melted) grains from Stardust aerogel capture Track 35 were examined by transmission electron microscopy (TEM); two from the bulb, two from near the bulb‐stylus transition, and one from near the terminal particle. Melted grains consist largely of a texturally and compositionally heterogeneous emulsion of immiscible metal/sulfide beads nanometers to tens of nanometers in diameter in a silica‐rich vesicular glass. Most metal/sulfide beads are spherical, but textures of non‐spherical beads indicate that some solidified as large drops during stretching and breaking while in translational and rotational motion, and others solidified from lenses of immiscible liquid at the silicate‐melt/vesicle (vapor) interface. Melted grains appear to become richer in Fe relative to Mg, and depleted in S relative to Fe and Ni with increasing penetration distance along the aerogel capture track. Fe/S ratios are near unity in grains from the bulb of Track 35, consistent with the dominance of Fe‐monosulfide minerals inferred by previous research on Stardust materials. Near‐stoichiometric Fe/S in melted grains from the bulb suggests that Fe‐sulfides in the bulb were dispersed and melted during formation of the bulb but did not lose S. Along‐track increases in Fe/S in melted grains from the bulb through the bulb‐stylus transition and continuing into the stylus indicate that S initially present as iron monosulfide may have been progressively partially volatilized and lost from the melted grains with greater penetration of the grains deeper into the aerogel during capture‐melting of comet dust. Extensively melted grains from the bulbs of aerogel capture tracks may preserve better primary compositional information with less capture‐related modification than grains from farther along the same capture tracks.  相似文献   

14.
So far there is no conclusive evidence for water in the nucleus of 81P/comet Wild 2. Recently magnetite in collected Wild 2 samples was cited as proxy evidence for parent body aqueous alteration in this comet (Hicks et al. 2017 ). A potentional source for water of hydration would be layer silicates but unfortunately there is no record, neither texturally nor chemically, for hydrated layer silicates that survived hypervelocity impact in the Wild 2 samples. This paper reports large vesicles in the matrix of allocation C2044,2,41,2,5 from a volatile‐rich type B/C Stardust track. These vesicles were probably caused by boiling water that were generated when hydrated Wild 2 silicates impacted the near‐surface silica aerogel layer. Potential water sources were partially and fully hydrated GEMS (glass with embedded metal and sulfides) and CI carbonaceous chondrite materials among the earliest dusts that experienced hydration and icy‐body formation and long‐range transport and mixing with materials from across the solar system.  相似文献   

15.
Comet 81P/Wild 2 dust, the first comet sample of known provenance, was widely expected to resemble anhydrous chondritic porous (CP) interplanetary dust particles (IDPs). GEMS, distinctly characteristic of CP IDPs, have yet to be unambiguously identified in the Stardust mission samples despite claims of likely candidates. One such candidate is Stardust impact track 57 “Febo” in aerogel, which contains fine‐grained objects texturally and compositionally similar to GEMS. Their position adjacent the terminal particle suggests that they may be indigenous, fine‐grained, cometary material, like that in CP IDPs, shielded by the terminal particle from damage during deceleration from hypervelocity. Dark‐field imaging and multidetector energy‐dispersive X‐ray mapping were used to compare GEMS‐like‐objects in the Febo terminal particle with GEMS in an anhydrous, chondritic IDP. GEMS in the IDP are within 3× CI (solar) abundances for major and minor elements. In the Febo GEMS‐like objects, Mg and Ca are systematically and strongly depleted relative to CI; S and Fe are somewhat enriched; and Au, a known aerogel contaminant, is present, consistent with ablation, melting, abrasion, and mixing of the SiOx aerogel with crystalline Fe‐sulfide and minor enstatite, high‐Ni sulfide, and augite identified by elemental mapping in the terminal particle. Thus, GEMS‐like objects in “caches” of fine‐grained debris abutting terminal particles are most likely deceleration debris packed in place during particle transit through the aerogel.  相似文献   

16.
We have studied the petrologic characteristics of sulfide‐metal lodes, polymineralic Fe‐Ni nodules, and opaque assemblages in the CR2 chondrite Graves Nunataks (GRA) 06100, one of the most altered CR chondrites. Unlike low petrologic type CR chondrites, alteration of metal appears to have played a central role in the formation of secondary minerals in GRA 06100. Differences in the mineralogy and chemical compositions of materials in GRA 06100 suggest that it experienced higher temperatures than other CR2 chondrites. Mineralogic features indicative of high temperature include: (1) exsolution of Ni‐poor and Ni‐rich metal from nebular kamacite; (2) formation of sulfides, oxides, and phosphates; (3) changes in the Co/Ni ratios; and (4) carbidization of Fe‐Ni metal. The conspicuous absence of pentlandite may indicate that peak temperatures exceeded 600 °C. Opaques appear to have been affected by the action of aqueous fluids that resulted in the formation of abundant oxides, Fe‐rich carbonates, including endmember ankerite, and the sulfide‐silicate‐phosphate scorzalite. We suggest that these materials formed via impact‐driven metamorphism. Mineralogic features indicative of impact metamorphism include (1) the presence of sulfide‐metal lodes; (2) the abundance of polymineralic opaque assemblages with mosaic‐like textures; and (3) the presence of suessite. Initial shock metamorphism probably resulted in replacement of nebular Fe‐Ni metal in chondrules and in matrix by Ni‐rich, Co‐rich Fe metal, Al‐Ti‐Cr‐rich alloys, and Fe sulfides, while subsequent hydrothermal alteration produced accessory oxides, phosphates, and Fe carbonates. An extensive network of sulfide‐metal veins permitted effective exchange of siderophile elements from pre‐existing metal nodules with adjacent chondrules and matrix, resulting in unusually high Fe contents in these objects.  相似文献   

17.
Abstract– The Stardust sample return mission to the comet Wild 2 used silica aerogel as the principal cometary and interstellar particle capture and return medium. However, since both cometary dust and interstellar grains are composed largely of silica, using a silica collector complicates the science that can be accomplished with these particles. The use of non‐silica aerogel in future extra‐terrestrial particle capture and return missions would expand the scientific value of these missions. Alumina, titania, germania, zirconia, tin oxide, and resorcinol/formaldehyde aerogels were produced and impact tested with 20, 50, and 100 μm glass microspheres to determine the suitability of different non‐silica aerogels as hypervelocity particle capture mediums. It was found that non‐silica aerogels do perform as efficient hypervelocity capture mediums, with alumina, zirconia, and resorcinol/formaldehyde aerogels proving to be the best of the materials tested.  相似文献   

18.
Dust from comet 81P/Wild 2 was captured at high speed in silica aerogel collectors during the Stardust mission. Studies of deceleration tracks in aerogel showed that a number of cometary particles were poorly cohesive and fragmented during impact. Fragments are now scattered along the walls of impact cavities. Here, we report a transmission electron microscope study of a piece of aerogel extracted from the wall of track 10. We focused on micron‐sized secondary tracks along which fragments of a fine‐grained material are disseminated. Two populations of fragments were identified. The first is made of polycrystalline silicate assemblages (olivine, pyroxene, and spinel) that appear to be chemically related to each other. The second corresponds to silica‐rich glassy clumps characteristic of a mixture of melted cometary material and aerogel. A significant number of fragments have been found with a composition close to chondritic CI for the major elements Fe‐Mg‐S at a submicron scale. These fragments have thus never been chemically differentiated by high‐temperature processes prior to the accretion on the comet, in contrast to terminal particles, which are dominated by larger, denser, and frequently monomineralic components.  相似文献   

19.
Abstract– We have experimentally produced nanophase sulfide compounds and magnetite embedded in Si‐rich amorphous materials by flash‐cooling of a gas stream. Similar assemblages are ubiquitous, and often dominant components of samples of impact‐processed silica aerogel tiles and submicron grains from comet 81P/Wild 2 were retrieved by NASA’s Stardust mission. Although the texture and compositions of nanosulfide compounds have been reproduced experimentally, the mechanisms of formation of these minerals and their relationship with the surrounding amorphous materials have not been established. In this study, we present evidence that both of these materials may not only be produced through cooling of a superheated liquid but they may have also been formed simultaneously by flash‐cooling and subsequent deposition of a gas dominated by Fe‐S‐SiO‐O2. In a dust generator at the Goddard Space Flight Center, samples are produced by direct gas‐phase condensation from gaseous precursors followed by deposition, which effectively isolates the effects of gas‐phase reactions from the effects of melting and condensation. High‐resolution transmission electron microscopy images and energy‐dispersive spectroscopy analysis show that these experiments replicate key features of materials from type B and type C Stardust tracks, including textures, distribution of inclusions, nanophase size, and compositional diversity. We argue that gas‐phase reactions may have played a significant role in the capture environment for nanophase materials. Our results are consistent with a potential progenitor assemblage of micron and submicron‐sized sulfides and submicron silica‐bearing phases, which are commonly observed in chondritic interplanetary dust particles and in the matrices of the most pristine chondritic meteorites.  相似文献   

20.
Abstract– We have used synchrotron Fe‐XANES, XRS, microRaman, and SEM‐TEM analyses of Stardust track 41 slice and track 121 terminal area slices to identify Fe oxide (magnetite‐hematite and amorphous oxide), Fe‐Ti oxide, and V‐rich chromite (Fe‐Cr‐V‐Ti‐Mn oxide) grains ranging in size from 200 nm to ~10 μm. They co‐exist with relict FeNi metal. Both Fe‐XANES and microRaman analyses suggest that the FeNi metal and magnetite (Fe2O3FeO) also contain some hematite (Fe2O3). The FeNi has been partially oxidized (probably during capture), but on the basis of our experimental work with a light‐gas gun and microRaman analyses, we believe that some of the magnetite‐hematite mixtures may have originated on Wild 2. The terminal samples from track 121 also contain traces of sulfide and Mg‐rich silicate minerals. Our results show an unequilibrated mixture of reduced and oxidized Fe‐bearing minerals in the Wild 2 samples in an analogous way to mineral assemblages seen in carbonaceous chondrites and interplanetary dust particles. The samples contain some evidence for terrestrial contamination, for example, occasional Zn‐bearing grains and amorphous Fe oxide in track 121 for which evidence of a cometary origin is lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号