首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seasonal variation of upper layer circulation in the northern part of the East/Japan Sea and its mechanism were investigated using empirical orthogonal function (EOF) analysis with satellite sea surface heights over the northern East/Japan Sea and a three-dimensional circulation model. The spatial structure and temporal variation of first EOF mode, which explains about 64% of the total variance, indicate that a large cyclonic circulation in the northern East/Japan Sea shows a semi-annual variation with maximum strength in summer and winter. According to numerical model result, the Liman Cold Current, accepted as a major current in the northern East/Japan Sea, is well mixed vertically by the winter monsoon and the current in the upper layer has a relatively deep structure, with a maximum westward speed of about 20 cm/s in winter. On the other hand, in summer the current has a stronger baroclinic structure of velocity than in winter. Numerical experiments showed that in summer the temporal variation of upper layer circulation is controlled by thermal forcing, such as sea surface heat flux and inflow of heat transport into the East/Japan Sea through the Korea/Tsushima Strait. Moreover, the cyclonic circulation in the upper layer of the northern East/Japan Sea is also generated and strengthened by the positive wind stress curl occupying most of the East/Japan Sea during the winter. The seasonal variation of each forcing that drives the circulation is responsible for the strength or weakness of the upper layer circulation in the northern East/Japan Sea. The contribution of each forcing to the seasonal variation of the upper layer circulation is examined through sensitivity experiments. According to these numerical experiments, the upper layer circulation in the northern East/Japan Sea is strengthened twice a year, in winter and summer, and this semi-annual variation is determined by a combination of wind (winter) and thermal (summer) forcing.  相似文献   

2.
李崇银  杨辉 《湖泊科学》2003,15(Z1):16-22
观测资料的分析极为清楚地表明,江淮流域的夏季降水有着极为明显的低频变化,周期为30-60d和近20d的振荡是其最基本的特征,尤其是在多雨的年份.对应江淮夏季多雨(涝)年和少雨(旱)年,大气环流的分析表明其大气季节内振荡(IS0)的形势有着显著的差异.例如在多雨(少雨)年,在长江以南的850hPa上为一个低频(IS0)反气旋(气旋)性环流控制,而中国北部和日本一带为气旋(反气旋)性环流,从而在江淮流域形成较强的低频辐合(辐散)气流;在200hPa的青藏高原上却为一个低频气旋(反气旋)性环流所控制.分析还表明,对应多雨年,在江淮流域有明显的由中高讳度向南传播和由低玮度向北传播的大气低频振荡的汇合情况;而对应于少雨年,由中高纬度向南传播的低频系统较不明显,在江淮流域低频系统的汇合也较为不清楚.  相似文献   

3.
Seasonal variation in the transverse and layered structure of estuarine circulation in Ariake Bay, Japan was investigated by box model analysis using monthly salinity data from 1990 to 2000. Two-layered gravitational estuarine circulation was intensified from autumn to spring (vertically well mixed season) accompanied by a small river discharge. Two-layered circulation was weakened accompanying the transversely segregated cyclonic circulation in the upper layer during summer (stratified season) with a large river discharge. Such seasonal variation in the transverse and layered structure of estuarine circulation is because the bay width of Ariake Bay (20 km) is narrower than the external Rossby deformation radius (235 km) but wider than the internal Rossby deformation radius (3–5 km).  相似文献   

4.
赤道MJO活动对南海夏季风爆发的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
利用1979—2013年NCEP/DOE再分析资料的大气多要素日平均资料、美国NOAA日平均向外长波辐射资料和ERSST月平均海温资料,分析赤道大气季节内振荡(简称MJO)活动对南海夏季风爆发的影响及其与热带海温信号等的协同作用.结果表明,赤道MJO活动与南海夏季风爆发密切联系,MJO的湿位相(即对流活跃位相)处于西太平洋位相时,有利于南海夏季风爆发,而MJO湿位相处于印度洋位相时,则不利于南海夏季风爆发.赤道MJO活动影响南海夏季风爆发的物理过程主要是大气对热源响应的结果,当MJO湿位相处于西太平洋位相时,一方面热带西太平洋对流加强使潜热释放增加,导致处于热源西北侧的南海—西北太平洋地区对流层低层由于Rossby响应产生气旋性环流异常,气旋性环流异常则有利于西太平洋副热带高压的东退,另一方面菲律宾附近热源促进对流层高层南亚高压在中南半岛和南海北部的建立,使南海地区高层为偏东风,从而有利于南海夏季风建立;当湿位相MJO处于印度洋位相时,热带西太平洋对流减弱转为大气冷源,情况基本相反,不利于南海夏季风建立.MJO活动、孟加拉湾气旋性环流与年际尺度海温变化协同作用,共同对南海夏季风爆发迟早产生影响,近35年南海夏季风爆发时间与海温信号不一致的年份,基本上是由于季节转换期间的MJO活动特征及孟加拉湾气旋性环流是否形成而造成,因此三者综合考虑对于提高季风爆发时间预测水平具有重要意义.  相似文献   

5.
TOPEX/Poseidon satellite altimetry data from 1993 to 1999 were used to study mean annual variation of sea surface height anomaly (SSHA) in the South China Sea (SCS) and to reproduce its climatological monthly surface dynamic topography in conjunction with historical hydrographic data. The characters and rules of seasonal evolution of the SCS dynamic topography and its upper circulation were then discussed. Analyses indicate that annual variation of the SCS large-scale circulation could be divided into four major phases. In winter (from November to February), the SCS circulation is mainly controlled by double cyclonic gyres with domination of the northern gyre. Other corresponding features include the Kuroshio intrusion from the Luzon Strait and the northeastward off-shelf current in the area northwest off Kalimantan Island. The double gyre structure disassembled in spring (from March to April) when the northern gyre remains cyclonic, the southern gyre becomes anticyclonic, and the general circulation pattern shows a dipole. There is no obvious large-scale closed gyre inside the SCS basin in both summer (from May to July) and autumn (from August to October) when the SCS Monsoon Jet dominates the circulation, which flows northeastward across the SCS. Even so, circulation patterns of these two phases diverse significantly. From May to July, the SCS monsoon jet flows northward near the Vietnam coast and bends eastward along the topography southeast off Hainan Island at about 18°N forming an anticyclonic turn. It then turns northeastward after crossing the SCS. From August to October, however, the monsoon Jet leaves the coast of Vietnam and enters interior of the basin at about 13°N, and the general circulation pattern becomes cyclonic. The Kuroshio intrusion was not obvious in spring, summer and autumn. It is suggested from these observations that dynamic adjustment of the SCS circulation starts right after the peak period of the prevailing monsoon.  相似文献   

6.
Results of field observations of current dynamics in the frontal zone of the western Middle Caspian are given. The cyclonic circulation over the western slope in winter is shown to be a unidirectional intense current with velocities up to 100 cm/s. In summer, the current slows down and separates into branches—it turns southwestward and westward at the slope depth down to 150 m, southward and southeastward at the depth of ~100–350 m, and eastward at larger depths. In summer, shelf currents interact with the flow of Middle Caspian cyclonic circulation, resulting in that anticyclonic vortices reach the shelf.  相似文献   

7.
The northern Gulf of California (NGC) is characterized by seasonal hydrography and circulation (cyclonic in summer and anticyclonic in winter), by intense tidal mixing in the midriff archipelago region (MAR), and by coastal upwelling on the eastern side from autumn to spring. We examined changes in larval fish assemblages (LFAs) in relation with hydrography and circulation during both phases of the seasonal circulation, as indicators of changes in the pelagic ecosystem. A canonical correspondence analysis defined LFAs (r>0.70), which were related with: (i) the coastal current on the mainland shelf, (ii) the central eddy and (iii) the MAR. In the early cyclonic phase, when the temperature and stratification were increasing and the coastal current was starting, demersal (Gobulus crescentalis, Lythrypnus dalli) and mesopelagic species (Benthosema panamense) dominated the NGC. The highest larval abundance was in the Current LFA area and the lowest in the MAR LFA area. In the mature cyclonic phase, the larval abundance increased in the NGC and species characteristic of eastern boundary current systems such as Opisthonema libertate and Engraulis mordax displaced the demersal species and became dominant, together with B. panamense in the Current LFA area; the latter species dominated in the Eddy LFA area. In the early anticyclonic phase, the direction of the coastal current reversed and the temperature and larval abundance decreased. E. mordax and B. panamense larvae continued dominating the NGC with higher abundance in the MAR than in the Current and Eddy LFA areas. In the mature anticyclonic phase, E. mordax larvae dominated in the Current and the Eddy LFA areas with the highest abundance in the former, while M. productus larvae (an eastern boundary current species) dominated in the Eddy LFA area. Results showed that in the NGC, the dramatically seasonal and predictable hydrographic and circulation features trigger the seasonal spawning of the dominant species. The biological richness of the coastal current area, in both circulation phases, suggested that this area has an important role in the pelagic ecosystem functionality of the NGC.  相似文献   

8.
The South China Sea (SCS) is a semi-enclosed deep basin with complex topography includ-ing broad continental shelves, steep slopes, and a large deep basin. It is dominated by prevailing southwest monsoon in summer and by much stronger northeast monsoon in…  相似文献   

9.
A two-dimensional barotropic, coupled, ocean-ice model with a space resolution of 55.5 km and driven by atmospheric forces, river run-off, and sea-level slope between the Pacific and the Arctic Oceans, has been used to simulate the vertically averaged currents and ice drift in the Arctic Ocean. Results from 43 years of numerical simulations of water and ice motions demonstrate that two wind-driven circulation regimes are possible in the Arctic, a cyclonic and an anti-cyclonic circulation. These two regimes appear to alternate at 5-7 year intervals with the 10-15 year period. It is important to pollution studies to understand which circulation regime prevails at any time. It is anticipated that 1995 is a year with a cyclonic regime, and during this cyclonic phase and possibly during past cyclonic regimes as well, pollutants may reach the Alaskan shelf. The regime shifts demonstrated in this paper are fundamentally important to understanding the Arctic's general circulation and particularly important for estimating pollution transport.  相似文献   

10.
This study investigated spatial and temporal patterns of trends of the precipitation maxima (defined as the annual/seasonal maximum precipitation) in the Yangtze River basin for 1960–2005 using Mann–Kendall trend test, and explored association of changing patterns of the precipitation maxima with large-scale circulation using NCEP/NCAR reanalysis data. The research results indicate changes of precipitation maxima from relative stable patterns to the significant increasing/decreasing trend in the middle 1970s. With respect to annual variability, the rainy days are decreasing and precipitation intensity is increasing, and significant increasing trend of precipitation intensity was detected in the middle and lower Yangtze River basin. Number of rain days with daily precipitation exceeding 95th and 99th percentiles and related precipitation intensities are in increasing tendency in summer. Large-scale atmospheric circulation analysis indicates decreasing strength of East Asian summer monsoon during 1975–2005 as compared to that during 1961–1974 and increasing geopotential height in the north China, South China Sea and west Pacific regions, all of which combine to negatively impact the northward propagation of the vapor flux. This circulation pattern will be beneficial for the longer stay of the Meiyu front in the Yangtze River basin, leading to more precipitation in the middle and lower Yangtze River basin in summer months. The significant increasing summer precipitation intensity and changing frequency in the rain/no-rain days in the middle and lower Yangtze River basin have potential to result in higher occurrence probability of flood and drought hazards in the region.  相似文献   

11.
Modeling the circulation in the Gulf of Tonkin, South China Sea   总被引:4,自引:0,他引:4  
The circulation in the Gulf of Tonkin (Beibu Gulf) was studied using the Princeton Ocean Model, which was forced with the daily surface and lateral boundary fluxes for 2006 and 2007, as well as tidal harmonics and monthly climatological river discharges. In the southern Gulf, the vertically averaged circulation was anti-cyclonic in summer and changed to cyclonic in winter. Although it was highly correlated with the local wind, the southern gyre was driven primarily by the South China Sea (SCS) general circulation from the south. Flows in the Qiongzhou Strait that played a significant role in determining the circulation variability in the northeastern Gulf could be eastward or westward at any given day in summer or winter, but the seasonal mean current was eastward from late spring through summer and westward during the rest of the year, with an annual mean westward transport of ~0.1 Sv into the Gulf. Different water masses were distinguished at the surface with the warm and saline SCS water in the south, relatively fresh plume waters along the northern and western coasts of the Gulf, and the mixture of the two in between. At lower levels, two cold water masses were identified in the model, and each had T/S distributions qualitatively similar to the observations obtained in 2007. These two water masses were produced throughout the winter, sheltered from the surface warming by a thermocline as the season progressed, and eventually disappeared in late fall.  相似文献   

12.
A set of four indices that quantify Lagrangian properties of the Gulf of California seasonal circulation were implemented from outputs of a three-dimensional numerical model. From trajectories of particles seeded over the entire Gulf, we calculated for 12 one-month periods the following indices: net and total distance traveled by the particles, the number of particles that are found within an area centered on the release positions after one month, and time taken by particles to escape from a 50-km-radius circle. These indices can be used for studies on transport of inert properties and passive planktonic organisms such as eggs and early-stage larvae; their use is illustrated for typical summer and winter conditions in the Gulf of California. These indices show the potential for connecting areas separated by a few hundreds of km along the eastern side of the Gulf, due to the strong seasonal up-gulf and down-gulf current. In the Northern Gulf, large displacements occur at the borders of the basin-wide seasonally reversing eddy that dominates the large-scale circulation (cyclonic in summer, anticyclonic in winter). On the other hand, the potential for self-recruitment areas is found as particles can be trapped for longer than one month within these eddies, as well as in smaller ones in the Northern Gulf, and near the coast of the peninsular side of the Southern Gulf, where current speeds are slow and many small capes and islands are present.  相似文献   

13.
A high resolution (3–8 km grid), 3D numerical ocean model of the West Caribbean Sea (WCS) is used to investigate the variability and the forcing of flows near the Meso-American Barrier Reef System (MBRS) which runs along the coasts of Mexico, Belize, Guatemala and Honduras. Mesoscale variations in velocity and temperature along the reef were found in seasonal model simulations and in observations; these variations are associated with meandering of the Caribbean current (CC) and the propagation of Caribbean eddies. Diagnostic calculations and a simple assimilation technique are combined to infer the dynamically adjusted flow associated with particular eddies. The results demonstrate that when a cyclonic eddy (negative sea surface height anomaly (SSHA)) is found near the MBRS the CC shifts offshore, the cyclonic circulation in the Gulf of Honduras (GOH) intensifies, and a strong southward flow results along the reef. However, when an anticyclonic eddy (positive SSHA) is found near the reef, the CC moves onshore and the flow is predominantly westward across the reef. The model results help to explain how drifters are able to propagate in a direction opposite to the mean circulation when eddies cause a reversal of the coastal circulation. The effect of including the Meso-American Lagoon west of the Belize Reef in the model topography was also investigated, to show the importance of having accurate coastal topography in determining the variations of transports across the MBRS. The variations found in transports across the MBRS (on seasonal and mesoscale time scales) may have important consequences for biological activities along the reef such as spawning aggregations; better understanding the nature of these variations will help ongoing efforts in coral reef conservation and maintaining the health of the ecosystem in the region.  相似文献   

14.
Flow structure in the Australian–Antarctic basin is investigated using an eddy-resolving general ocean circulation model and validated with iceberg and middepth float trajectories. A cyclonic circulation system between the Antarctic Circumpolar Current and Antarctic Slope Current consists of a large-scale gyre in the west (80–110° E) and a series of eddies in the east (120–150° E). The western gyre has an annual mean westward transport of 22 Sv in the southern limb. Extending west through the Princess Elizabeth Trough, 5 Sv of the gyre recirculates off Prydz Bay and joins the western boundary current off the Kerguelen Plateau. Iceberg trajectories from QuickScat and ERS-1/2 support this recirculation and the overall structure of the Antarctic Slope Current against isobath in the model. Argo float trajectories also reveal a consistent structure of the deep westward slope current. This study indicates the presence of a large cyclonic circulation in this basin, which is comparable to the Weddell and Ross gyres.  相似文献   

15.
Spatial and seasonal patterns of flood change across Brazil   总被引:1,自引:1,他引:0  
Brazil has some of the largest rivers in the world and has the second greatest flood loss potential among the emergent countries. Despite that, flood studies in this area are still scarce. In this paper, we used flood seasonality and trend analysis at the annual and seasonal scales in order to describe flood regimes and changes across the whole of Brazil in the period 1976–2015. We identified a strong seasonality of floods and a well-defined spatio-temporal pattern for flood occurrence. There are positive trends in the frequency and magnitude of floods in the North, South and parts of Southeast Brazil; and negative trends in the North-east and the remainder of Southeast Brazil. Trends in the magnitude (frequency) were predominant in the winter (summer). Overall, floods are becoming more frequent and intense in Brazilian regions characterized by wet conditions, and less frequent and intense in drier regions.  相似文献   

16.
Based on 5 years of OH imager data between September 2003 and September 2008 over Yucca Ridge Field Station, CO (40.7ºN, 104.9ºW), we presented the variation of gravity wave (GW) occurrence frequency and propagation direction in the upper mesosphere. In summer the GW occurrence frequency was extremely high at above 95% compared to other seasons (around 85%). The GW propagation direction showed a strong northward (poleward) preference in summer and a southward (equatorward) preference in winter. This could be possibly due to ducting of waves in the mesopause thermal structure and wave generation by the strong deep convection located at south side in summer and possible storms located at north side in winter. Westward traveling waves were rare, but eastward were frequent. In addition to seasonal variability, significant interannual variability was also observed.  相似文献   

17.
《水文科学杂志》2012,57(1):57-70
ABSTRACT

Leading patterns of observed seasonal extreme and mean streamflow on the Korean peninsula were estimated using an empirical orthogonal teleconnection (EOT) technique. In addition, statistical correlations on a seasonal basis were calculated using correlation and regression analyses between the leading streamflow patterns and various climate indices based on atmospheric–ocean circulation. The spatio-temporal patterns of the leading EOT modes for extreme and mean streamflow indicate an upstream mode for the Han River, with increasing trends in summer, and a downstream mode for the Nakdong River, with oscillations mainly on inter-decadal time scales in winter. The tropical ENSO (El Niño Southern Oscillation) forcing for both extreme and mean streamflow is coherently associated with summer to winter streamflow patterns. The western North Pacific monsoon has a negative correlation with winter streamflow variability, and tropical cyclone indices also exhibit significant positive correlation with autumn streamflow. Leading patterns of autumn and winter streamflow time series show predictability up to two seasons in advance from the Pacific sea-surface temperatures.  相似文献   

18.
Some aspects of the monsoon circulation and monsoon rainfall   总被引:1,自引:0,他引:1  
Summary The south Asian summer monsoon from June to September accounts for the greater part of the annual rainfall over most of India and southeast Asia. The evolution of the summer and winter monsoon circulations over India is examined on the basis of the surface and upper air data of stations across India. The salient features of the seasonal reversals of temperature and pressure gradients and winds and the seasonal and synoptic fluctuations of atmospheric humidity are discussed. The space-time variations of rainfall are considered with the help of climatic pentad rainfall charts and diagrams. The rainfall of several north and central Indian stations shows a minimum around mid-August and a maximum around mid-February which seem to be connected with the extreme summer and winter positions of the ITCZ and the associated north-south shifts in the seasonal circulation patterns. Attention is drawn to the characteristic features of the monsoon rainfall that emerge from a study of daily and hourly rainfall of selected stations. Diurnal variations of temperature, pressure, wind and rainfall over the monsoon belt are briefly treated.  相似文献   

19.
ABSTRACT

A rainfall–runoff model was employed to identify four major flood-generating processes corresponding to flood events identified from daily discharge data from 614 stations across Europe in the period 1961–2010: long-rain, short-rain, snowmelt, and rain-on-dry-soil flood events. Trend analyses were performed on the frequency of occurrence of each of the flood types continentally and in five geographical regions of Europe. Continentally, the annual frequency of flood events did not show a significant change over the investigation period. However, the frequency of both winter and summer long-rain events increased significantly, while that of summer snowmelt events decreased significantly. Regionally, the frequency of winter short and long-rain events increased significantly in Western Europe, while the frequency of summer snowmelt and short-rain events decreased in Northern Europe. The frequency of summer snowmelt events in Eastern Europe and winter short-rain events in Southern Europe showed a declining trend.  相似文献   

20.
The relationship between the synoptic weather types (WTs), runoff and sediments in a Mediterranean mountain landscape was analysed. The study was performed between 2005 and 2012 using one of the most complete and extensive daily databases of rainfall, runoff and sediment recorded in the Spanish Pyrenees, coupled with WTs defined from the National Meteorological Center/National Center for Atmospheric Research (NMC/NCAR) 40‐Year Reanalysis Project ? ? Correction added on 18 December 2013, after online publication: EMULATE project was replaced with NMC/NCAR 40‐Year Reanalysis Project.
. The results show that the three wettest WTs accounted for 30% of rainy days and 46% of rainfall, but comprised only 13% of total daily records. To obtain a much more robust association between WTs and rainfall an analysis was carried out using a longer rainfall record (1989–2011). The analyses confirmed that the results obtained from the Araguás catchment are representative of a longer time span. The cyclonic, north‐westerly and westerly WTs play an important role in runoff generation, coinciding with the wettest WTs. Extreme floods are commonly associated also with south‐westerly and westerly airflows, whereas less flooding was generated under cyclonic circulations. Sediment transport was concentrated in 2.9% of total time mainly related to westerly WTs. Seasonal differences exist in WT frequency. In winter and spring north‐west and West are the most prominent WTs related to rainfall, water and sediment yield, although in spring cyclonic frequency was higher. During autumn north‐west and south‐west were the most frequent, but sediment yield was produced nearby under south‐west flow. In summer the WTs that produce sediment are north and west. A magnitude–frequency analysis shows the different behaviour of WTs according to their efficiency in producing runoff and sediment. A study with different monitored areas around the Iberian Peninsula and the Mediterranean basin would be very valuable in providing information for hydrological and sediment behaviour under the current conditions of global climate change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号