首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this study, pre-seismic and post-seismic total electron content (TEC) anomalies of 63 Mw?≥?5.0 earthquakes in Turkey (36°–42°N, 26°–45°E) were statistically investigated. The largest earthquake that occurred in Turkey during 2003–2016 is the Mw 7.1 Van earthquake on October 23, 2011. The TEC data of epicenters is obtained from CODE-GIM using a simple 4-point bivariate interpolation. The anomalies of TEC variations were determined by using a quartile-based running median process. In order to validate GIM results, we used the GPS-TEC data of available four IGS stations within the size of the Van earthquake preparation area. The anomalies that are detected by GIM and GPS-TEC show a similar pattern. Accordingly, the results obtained with CODE-GIM are reliable. The statistical results show that there are not prominent earthquake precursors for Mw?≤?6.0 earthquakes in Turkey.  相似文献   

2.
The present study reports the analysis of GPS TEC prior to 3 earthquakes (M > 6.0). The earthquakes are: (1) Loyalty Island (22°36′S, 170°54′E) on 19 January 2009 (M = 6.6), (2) Samoa Island (15°29′S, 172°5′W) on 30 August 2009 (M = 6.6), and (3) Tohoku (38°19′N, 142°22′E) on 11 March 2011 (M = 9.0). In an effort to search for a precursory signature we analysed the land and ocean parameters prior to the earthquakes, namely SLHF (Land) and SST (Ocean). The GPS TEC data indicate an anomalous behaviour from 1–13 days prior to earthquakes. The main purpose of this study was to explore and demonstrate the possibility of any changes in TEC, SST, and SLHF before, during and after the earthquakes which occurred near or beneath an ocean. This study may lead to better understanding of response of land, ocean, and ionosphere parameters prior to seismic activities.  相似文献   

3.
The variations in the total electron content (TEC), obtained from the data of 11 ground-based GPS stations in the region (5°S–80°N; 110–160°E) in the period August 2–15, 2006, have been analyzed in order to search for possible ionospheric manifestations of the SAOMAI powerful typhoon (August 5–11, 2006) near the south-eastern coast of China. The global TEC maps (GIM) have also been used. In the region of the typhoon action during the magnetic storm of August 7, 2006, an intensification of the TEC variations in the evening local time within the 32–128 min periods range was detected. However, this effect was most probably caused by the dynamics of the irregular structure of the equatorial anomaly and by the disturbed geomagnetic situation (Kp ~ 3–6, Dst varied from ?74 to ?153 nT). The analysis of the diurnal variations in the absolute values of TEC and TEC variations with periods of 2–25 min did not reveal a substantial increase in the intensity and changes in the spectrum of the TEC variations in the period of typhoon action as compared to the adjacent days. Thus, we failed to detect ionospheric disturbances unambiguously related to the SAOMAI typhoon.  相似文献   

4.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

5.
The deep-focus Sea of Okhotsk earthquake that occurred on May 24, 2013 (h = 630 km, M w = 8.3) was accompanied by anomalous effects that were unknown previously. A combined analysis of published data concerning the source rupture evolution and some features of the deep structure provided an explanation of some anomalous effects, such as the large number of aftershocks and the low level of ground shaking in the epicentral area. However, GPS observations revealed high coseismic vertical displacements in the area. The seafloor uplift in the Sea of Okhotsk and the adjacent coasts was 3–12 mm, peaking at the approximate center of the sea, while Kamchatka and the North Kuril Islands subsided by 3–18 mm, peaking at the Apacha station 190 km east of the earthquake epicenter. These maximum estimates are 1.2–1.8 times the analogous values (10 mm) for the Chile mega-earthquake of May 20, 1960 (M w ~ 9.5). It is known that the large distances at which ground shaking is felt during deep-focus earthquakes are due to the fact that the body waves travel through the high-Q lower mantle. However, this does not explain the paradox of the present earthquake in the Sea of Okhotsk, viz., a constant intensity of shaking (two grades) in the range of epicentral distances between 1300 and 9500 km. The explanation requires consideration of the earth’s free oscillations excited by the earthquake.  相似文献   

6.
Tectonic activities, electrical structures, and electromagnetic environments are major factors that affect the stability of spontaneous fields. The method of correlating regional synchronization contrasts(CRSC) can determine the reliability of multi-site data trends or shortimpending anomalies. From 2008 to 2013, there were three strong earthquake cluster periods in the North–South seismic belt that lasted for 8–12 months. By applying the CRSC method to analyze the spontaneous field E_(SP) at 25 sites of the region in the past 6 years, it was discovered that for each strong earthquake cluster period, the E_(SP) strength of credible anomalous trends was present at minimum 30%of the stations. In the southern section of the Tan-Lu fault zone, the E_(SP) at four main geoelectric field stations showed significant anomalous trends after June 2015, which could be associated with the major earthquakes of the East China Sea waters(MS7.2) in November 2015 and Japan's Kyushu island(MS7.3) in April 2016.  相似文献   

7.
The influence of geomagnetic disturbances on electron density Ne at F1 layer altitudes in different conditions of solar activity during the autumnal and vernal seasons of 2003–2015, according to the data from the Irkutsk digital ionospheric station (52° N, 104° Е) is examined. Variations of Ne at heights of 150–190 km during the periods of twenty medium-scale and strong geomagnetic storms have been analyzed. At these specified heights, a vernal–autumn asymmetry of geomagnetic storm effects is discovered in all periods of solar activity of 2003–2015: a considerable Ne decrease at a height of 190 km and a weaker effect at lower levels during the autumnal storms. During vernal storms, no significant Ne decrease as compared with quiet conditions was registered over the entire analyzed interval of 150?190 km.  相似文献   

8.
A great earthquake of M S=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is located at 36.2°N and 90.9°E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of M S=8.1 exhibits a course very similar to that found for earthquake cases with M S≥7. The difference is that anomalous seismicity before the earthquake of M S=8.1 involves in the larger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and forecasting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes.  相似文献   

9.
The study presents the results of the analysis of the F2-layer critical frequency variations obtained for the winter periods of 2008–2010, during which sudden stratospheric warmings were observed. The data were obtained at Kaliningrad ionospheric station (54.6° N, 20° E) with the Parus digital ionosonde in standard sounding mode. The mean daily foF2 values were used in the analysis. The results of spectral analysis based on continuous wavelet transform showed that, during all of the warmings that occurred in 2008–2010, the foF2 time variations demonstrated the presence of wave processes with periods of approximately 5?6 days, as well as more extended processes with periods of ~10?13 and 23?30 days. These periods coincide with the characteristic periods of planetary waves observed in the mesosphere during sudden stratospheric warmings, while the 13- and 30-day periods can be conditioned by the influence of the Sun.  相似文献   

10.
The results of analysis of variations in the sporadic layer critical frequency (foEs) for winter periods of 2008–2010 in which sudden stratospheric warmings were observed are presented in the paper. The data were obtained at Kaliningrad ionospheric station (54.6° N, 20° E) by a Parus digital ionosonde under the usual sounding regime with an interval of 15 min. Daily mean values of foEs were used for the analysis. Solar and geomagnetic activity remained low during the periods under study, making it possible to relate the quasiwave time variations in foEs to the parameters of stratospheric warmings. The results of spectral analysis performed on the basis of continuous wavelet transform showed that, during all warmings occurring in 2008–2010, time variations in foEs show the presence of wave processes with a period of an order of 5 days and longer ones with a period of ~10—11 days. These periods coincide with characteristic periods of planetary waves observed in the atmosphere during sudden stratospheric warnings.  相似文献   

11.
This paper presents the results of simultaneous observations of narrow-band noise VLF emissions in the frequency range 4–10 kHz at Kannuslehto ground station in Northern Finland and by Van Allen Probes (previously RBSP) in the equatorial part of the magnetosphere. The event of December 25, 2015, is considered. During the event, narrow-band noise VLF emissions were detected on the Earth in two frequency ranges, f = 3.5–6 kHz and f = 8–10 kHz, between 1100 and 1300 UT. Narrow-band VLF emissions in the equatorial zone were also observed during that time by the RBSP-B satellite; their frequency was close to the electron equatorial half-gyrofrequency and gradually increased from 3 to 11 kHz during the satellite motion from L = 5.0 to L = 3.0. Analysis of the fine structure of the emissions on the ground showed that their spectral and temporal characteristics corresponded to emissions by the satellites in localized zones at different L-shells. The ground-based observations at lower frequencies correlated with the satellite observations at larger L-shells. In order to localize the regions of the generation of the VLF emissions observed at Kannuslehto auroral station at different frequencies, we calculated the ray trajectories of waves from the equator for the plasma density distributions detected by Van Allen Probes. The calculations of the trajectories showed that the VLF waves detected at Kannuslehto station could travel to the ground only if they propagated in the large-scale density ducts (700–900 km) observed by Van Allen Probes.  相似文献   

12.
Ionospheric time delay (VΔt) variability using Global Positioning System (GPS) data over Akure (7.15°N, 5.12°E), Nigeria, has been studied. The observed variability of VΔt in comparison to older results of vertical total electron content (TEC) across similar regions has shown equivalent signatures. Higher monthly mean values of VΔt (MVΔt) were observed during daytime as compared to nighttime (pre- and post-midnight) hours in all months. The highest MVΔt observed in September during daytime hours range between ~6 and ~21 ns (~1.80 and ~6.30 m) and at post-midnight, they are in the range of ~1 to ~6 ns (~0.3 to ~1.80 m). The possible mechanisms responsible for this variability were discussed. Seasonal VΔt were investigated as well.  相似文献   

13.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

14.
This paper investigates the suitability of a three-parameter (scale, shape, and location) Weibull distribution in probabilistic assessment of earthquake hazards. The performance is also compared with two other popular models from same Weibull family, namely the two-parameter Weibull model and the inverse Weibull model. A complete and homogeneous earthquake catalog (Yadav et al. in Pure Appl Geophys 167:1331–1342, 2010) of 20 events (M ≥ 7.0), spanning the period 1846 to 1995 from north–east India and its surrounding region (20°–32°N and 87°–100°E), is used to perform this study. The model parameters are initially estimated from graphical plots and later confirmed from statistical estimations such as maximum likelihood estimation (MLE) and method of moments (MoM). The asymptotic variance–covariance matrix for the MLE estimated parameters is further calculated on the basis of the Fisher information matrix (FIM). The model suitability is appraised using different statistical goodness-of-fit tests. For the study area, the estimated conditional probability for an earthquake within a decade comes out to be very high (≥0.90) for an elapsed time of 18 years (i.e., 2013). The study also reveals that the use of location parameter provides more flexibility to the three-parameter Weibull model in comparison to the two-parameter Weibull model. Therefore, it is suggested that three-parameter Weibull model has high importance in empirical modeling of earthquake recurrence and seismic hazard assessment.  相似文献   

15.
The Gumbel’s third asymptotic distribution (GIII) of the extreme value method is employed to evaluate the earthquake hazard parameters in the Iranian Plateau. This research quantifies spatial mapping of earthquake hazard parameters like annual and 100-year mode beside their 90 % probability of not being exceeded (NBE) in the Iranian Plateau. Therefore, we used a homogeneous and complete earthquake catalogue during the period 1900–2013 with magnitude M w ? ?4.0, and the Iranian Plateau is separated into equal area mesh of 1° late?×?1° long. The estimated result of annual mode with 90 % probability of NBE is expected to exceed the values of M w 6.0 in the Eastern part of Makran, most parts of Central and East Iran, Kopeh Dagh, Alborz, Azerbaijan, and SE Zagros. The 100-year mode with 90 % probability of NBE is expected to overpass the value of M w 7.0 in the Eastern part of Makran, Central and East Iran, Alborz, Kopeh Dagh, and Azerbaijan. The spatial distribution of 100-year mode with 90 % probability of NBE uncovers the high values of earthquake hazard parameters which are frequently connected with the main tectonic regimes of the studied area. It appears that there is a close communication among the seismicity and the tectonics of the region.  相似文献   

16.
The deep structure of the upper mantle is determined from data on phase velocities of Love and Rayleigh waves measured by a differential method on traces between two stations in central Western Europe. One-dimensional velocity structures are first constructed from data of each pair of stations, after which two-dimensional distributions of SH and SV velocities are calculated by the method of two-dimensional tomography from S wave velocities at fixed depths. The results are presented in the form of 2-D vertical structures of the average S wave velocity (S = (SV + SH)/2) constructed along profiles crossing the region in directions of the best resolution. The main structural features are a higher velocity zone at depths of 60–80 km in the area (48°–50°N, 9°–11°E) and a lower velocity zone in the western part of the region at depths of 100–150 km, probably extending farther beyond the studied area.  相似文献   

17.
The observations of spread F during the nighttime hours (0000–0500 LT) have been statistically analyzed based on data of Tokyo, Akita, Wakkanai, and Yamagawa Japan vertical ionospheric sounding stations for the time intervals a month before and a month after an earthquake. The disturbances in the probability of spread F appearance before an earthquake are revealed against a background of the variations depending on season, solar activity cycle, geomagnetic and solar disturbances. The days with increased solar (Wolf number W > 100) and geomagnetic (ΣK > 30) activity are excluded from the analysis. The spread F effects are considered for more than a hundred earthquakes with magnitude M > 5 and epicenter depth h < 80 km at distances of R < 1000 km from epicenters to the vertical sounding station. An average decrease in the spread F occurrence probability one-two weeks before an earthquake has been revealed using the superposed epoch method (the probability was minimal approximately ten days before the event and then increased until the earthquake onset). Similar results are obtained for all four stations. The reliability of the effect has been estimated. The dependence of the detected effect on the magnitude and distance has been studied.  相似文献   

18.
The occurrence probabilities of the first and second anomalous nighttime local maximums in the diurnal variations in the electron density at a maximum of the ionospheric F 2 layer (NmF2) in the region where the crest (hump) of the equatorial anomaly originates in the northern geographic hemisphere have been studied using the data of the stations for vertical sounding of the ionosphere (Paramaribo, Dakar, Quagadougou, Ahmedabad, Delhi, Calcutta, Chongoing, Guangzhou, Taipei, Chung-Li, Okinawa, Yamagawa, Panama, and Bogota) from 1957 to 2004. It has been demonstrated that the anomalous nighttime NmF2 maximums are least frequently formed at ~53° geomagnetic longitude. The calculations have indicated that the studied probabilities are independent of solar activity. Geomagnetic activity weakly affects the rate of occurrence of the first nighttime NmF2 maximum at geomagnetic longitudes of approximately 140° to 358°. At geomagnetic longitudes of approximately 16° to 70° (i.e., in the longitudinal zone of a decreased occurrence frequency of anomalous nighttime maximums), the occurrence probability of the first anomalous nighttime NmF2 maximum under geomagnetically quiet conditions is pronouncedly lower than under geomagnetically disturbed conditions. The dependence of the occurrence probabilities of the first and second anomalous nighttime NmF2 maximums on the month number in a year has been studied.  相似文献   

19.
At the beginning of the 21st century, a series of great earthquakes were recorded in northeastern Tibet, along the periphery of the Bayan Hara lithospheric block. An earthquake with MS = 8.1 occurred within the East Kunlun fault zone in the Kunlun Mountains, which caused an extended surface rupture with left-lateral strike slip. An earthquake with MS = 8 occurred in Wenchuan (China) on May 12, 2008, giving rise to an extended overthrust along the Lunmanshan fault zone. An earthquake with MS = 7.1 occurred in Yushu (China) on April 14, 2010; its epicenter was on the Grazze–Yushu–Funchuoshan fault; a left-lateral strikeslip offset was observed on the surface. An earthquake with MS = 7 occurred in the vicinity of Lushan on April 20, 2013; its epicenter was within the Lunmanshan fault zone, 103 km southwest of the zone of the catastrophic Wenchuan earthquake. An earthquake with MS = 8.2 occurred in Nepal on April 25, 2015. Based on the CSN seismic catalog, the energy of all earthquakes in eastern Tibet at the end of the 20th and beginning of the 21st centuries was estimated. It was found that Tibet was seismically quiet from 1980 to 2000. The beginning of the 21st century has been marked by seismic activation with earthquake sources migrating southward to surround the Bayan Hara lithospheric block from every quarter. Therefore, this block can be regarded as one of the most seismically active regions of China.  相似文献   

20.
The behavior of the F2 layer at sunrise has been studied based on vertical-incidence ionospheric sounding data in Almaty (76°55′E, 43°15′N). Records with small amplitudes of electron density background fluctuations were selected in order to exactly estimate the onsets of a pronounced increase in the electron density at different altitudes. It has been indicated that the electron density growth rate is a function of altitude; in this case, the growth rate at the F2 layer maximum is much lower than such values at fixed altitudes of ~30–55 km below the layer maximum. The solar zenith angle (χ) and the blanketing layer thickness (h 0) at the beginning of a pronounced increase in the electron density at altitude h are linearly related to the h value, and these quantities vary within ~90° < χ < 100° and 180 km < h 0 < 260 km, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号