首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Geodynamics》2003,35(1-2):125-144
The NW Bohemia/Vogtland region situated at the western part of the Bohemian Massif is characteristic in a frequent reoccurrence of earthquake and micro-earthquake swarms. We present a comprehensive, integrated pattern of the space and time distribution of seismic energy release in the principal NK (Nový Kostel) focal zone for the period 1991–2001 and for the intensive 1985/1986 swarm. More than 3000 earthquakes, recorded by the WEBNET, the KRASLICE net and by temporary stations VAC, TIS and OLV operating during the 1985/1986 swarm, were located or re-located using the master event technique. Swarm-like sequences were identified and discriminated from solitary events by detecting local minima of the inter-event time using a standard short-time/long-time average (STA/LTA) detection algorithm. Most of the seismic energy in the NK zone was released during the two intensive 1985/1986 and 2000 swarms and in the course of the weaker January 1997 swarm. Further 27 swarm-like sequences (micro-swarms) and many solitary micro-earthquakes (background activity) were identified in the NK zone for the period 1991–2001 by the inter-event time analysis. Relative location revealed a pronounced planar character of the NK focal zone. Most of the events, including those of the intensive 1985/1986 and 2000 swarms, were located at the main focal plane (MFP) striking 169° N and dipping 80° westward at depths between 6 and 11 km. A singularity was the January 1997 swarm together with a micro-swarm that were both located across the MFP. The position and geometry of the MFP match quite well the Nový Kostel-Počátky-Zwota tectonic line. The space distribution patterns of larger events and of micro-swarms at the MFP differ: larger events predominantly grouped in planar clusters while the micro-swarms lined up along two parallel seismogenic lines. The temporal behaviour was examined from two aspects: (a) migration and (b) recurrence of the seismic activity. It was found that (a) the seismic activity in the time span 1991–2001 migrated in an area of about 12×4 km and (b) several segments of the MFP were liable to reactivation. The activity before, during and after the 2000 swarm took place in different parts of the MFP.  相似文献   

2.
The West Bohemia and adjacent Vogtland are well known for quasi-periodical earthquake swarms persisting for centuries. The seismogenic area near Nový Kostel involved about 90 % of overall earthquake activity clustered here in space and time. The latest major earthquake swarm took place in August–September 2011. In 1994 and 1997, two minor earthquake swarms appeared in another location, near Lazy. Recently, the depth-recursive tomography yielded a velocity image with an improved resolution along the CEL09 refraction profile passing between these swarm areas. The resolution, achieved in the velocity image and its agreement with the inverse gravity modeling along the collateral 9HR reflection profile, enabled us to reveal the key structural background of these West Bohemia earthquake swarms. The CEL09 velocity image detected two deeply rooted high-velocity bodies adjacent to the Nový Kostel and Lazy focal zones. They correspond to two Variscan mafic intrusions influenced by the SE inclined slab of Saxothuringian crust that subducted beneath the Teplá-Barrandian terrane in the Devonian era. In their uppermost SE inclined parts, they roof both focal zones. The high P-wave velocities of 6,100–6,200 m/s, detected in both roofing caps, indicate their relative compactness and impermeability. The focal domains themselves are located in the almost gradient-free zones with the swarm foci spread near the axial planes of profound velocity depressions. The lower velocities of 5,950–6,050 m/s, observed in the upper parts of focal zones, are indicative of less compact rock complexes corrugated and tectonically disturbed by the SE bordering magma ascents. The high-velocity/high-density caps obviously seal the swarm focal domains because almost no magmatic fluids of mantle origin occur in the Nový Kostel and Lazy seismogenic areas of the West Bohemia/Vogtland territory, otherwise rich in the mantle-derived fluids. This supports the hypothesis of the fluid triggering of earthquake swarms. The sealed focal domains retain ascending magmatic fluids until their critical pressure and volumes accumulated cause rock micro-fractures perceived as single earthquake bursts. During a swarm period, the focal depths of these sequential events become shallower while their magnitudes grow. We assume that coalescence of the induced micro-fractures forms temporary permeability zones in the final swarm phase and the accumulated fluids release into the overburden via the adjacent fault systems. The fluid release usually occurs after the shallowest events with the strongest magnitudes ML > 3. The seasonal summer declines of hydrostatic pressure in the Cheb Basin aquifer system seem to facilitate and trigger the fluid escape as happened for the 2000, 2008, and 2011 earthquake swarms. The temporary fluid release, known as the valve-fault action, influences the surface aquifer systems in various manners. In particular, we found three quantities, the strain, mantle-derived 3He content in CO2 surface sources and ground water levels, which display a 3–5 months decline before and then a similar restoration after each peak earthquake during the swarm activities. The revealed structure features are particularly important since the main Nový Kostel earthquake swarm area is proposed as a site for the ICDP project, ‘Eger Rift Drilling’.  相似文献   

3.
The western part of the Bohemian Massif hosts an intersection of two regional fault zones, the SW-NE trending Oh?e/Eger Graben and the NNW-SSE trending Mariánské Lázně Fault, which has been reactivated several times in the geological history and controlled the formation of the Tertiary Cheb Basin. The broader area of the Cheb Basin is also related to permanent seismic activity of ML 3+ earthquake swarms. The Eastern Marginal Fault of the Cheb Basin (northern segment of the Mariánské Lázně Fault) separates the basin sediments and underlying granites in the SW from the Kru?né Hory/Erzgebirge Mts. crystalline unit in the NE. We describe a detailed geophysical survey targeted to locating the Eastern Marginal Fault and determining its geometry in the depth. The survey was conducted at the Kopanina site near the Nový Kostel focal zone, which shows the strongest seismic activity of the whole Western Bohemia earthquake swarm region. Complex geophysical survey included gravimetry, electrical resistivity tomography, audiomagnetotellurics and seismic refraction. We found that the rocks within the Eastern Marginal Fault show low resistivity, low seismic velocity and density, which indicates their deep fracturing, weathering and higher water content. The dip of the fault in shallow depths is about 60° towards SW. At greater depths, the slope turns to subvertical with dip angle of about 80°. Results of geoelectrical methods show blocky fabric of the Cheb Basin and deep weathering of the granite bedrock, which is consistent with geologic models based on borehole surveys.  相似文献   

4.
A swarm of earthquakes of magnitudes up to M L = 3.8 stroke the region of West Bohemia/Vogtland (border area between Czechia and Germany) in October 2008. It occurred in the Novy Kostel focal zone, where also all recent earthquake swarms (1985/1986, 1997, and 2000) took place, and was striking by a fast sequence of macroseismically observed earthquakes. We present the basic characteristics of this swarm based on the observations of a local network WEBNET (West Bohemia seismic network), which has been operated in the epicentral area, on the Czech territory. The swarm was recorded by 13 to 23 permanent and mobile WEBNET stations surrounding the swarm epicenters. In addition, a part of the swarm was also recorded by strong-motion accelerometers, which represent the first true accelerograms of the swarm earthquakes in the region. The peak ground acceleration reached 0.65 m/s2. A comparison with previous earthquake swarms indicates that the total seismic moments released during the 1985/1986 and 2008 swarms are similar, of about 4E16 Nm, and that they represent the two largest swarms that occurred in the West Bohemia/ Vogtland region since the M L = 5.0 swarm of 1908. Characteristic features of the 2008 swarm are its short duration (4 weeks) and rapidity and, consequently, the fastest seismic moment release compared to previous swarms. Up to 25,000 events in the magnitude range of 0.5 < M L < 3.8 were detected using an automatic picker. A total of nine swarm phases can be distinguished in the swarm, five of them exceeding the magnitude level of 2.5. The magnitude–frequency distribution of the complete 2008 swarm activity shows a b value close to 1. The swarm hypocenters fall precisely on the same fault portion of the Novy Kostel focal zone that was activated by the 2000 swarm (M L ≤ 3.2) in a depth interval from 6 to 11 km and also by the 1985/1986 swarm (M L ≤ 4.6). The steeply dipping fault planes of the 2000 and 2008 swarms seem to be identical considering the location error of about 100 m. Furthermore, focal mechanisms of the 2008 swarm are identical with those of the 2000 swarm, both matching an average strike of 170° and dip of 80° of the activated fault segment. An overall upward migration of activity is observed with first events at the bottom and last events at the top of the of the activated fault patch. Similarities in the activated fault area and in the seismic moments released during the three largest recent swarms enable to estimate the seismic potential of the focal zone. If the whole segment of the fault plane was activated simultaneously, it would represent an earthquake of M L ~5. This is in good agreement with the estimates of the maximum magnitudes of earthquakes that occurred in the West Bohemia/Vogtland region in the past.  相似文献   

5.
《Journal of Geodynamics》2003,35(1-2):5-32
The earthquake distribution pattern of Central Europe differs systematically from the neighbouring areas of NW and southern Europe regarding the fault plane kinematics. Within a belt between the French Massif Central and the northern part of the Bohemian Massif (1000 km) sinistral faulting along N-S zones dominates on the contrary to the Alps and their foreland with common bookshelf shears. One of the prominent N-S structures is the Regensburg-Leipzig-Rostock Zone (A) with several epicentral areas, where the main seismic center occurs in the northern Cheb Basin (NW Bohemia). The study demonstrates new structural results for the swarm-quake region in NW-Bohemia, especially for the Nový Kostel area in the Cheb Basin. There the N-S-trending newly found Počatky-Plesná zone (PPZ) is identical with the main earthquake line. The PPZ is connected with a mofette line between Hartušov and Bublák with evidence for CO2 degassing from the subcrustal mantle. The morphologically more prominent Mariánské Lázně fault (MLF) intersects the PPZ obliquely under an acuate angle. In the past the MLF was supposed to be the tectonic structure connected with the epicentral area of Nový Kostel. But evidence from the relocated hypocentres along the PPZ (at 7–12 kms depth) indicate that the MLF is seismically non-active. Asymmetric drainage patterns of the Cheb Basin are caused by fault related movement along Palaeozoic basement faults which initiate a deformation of the cover (Upper Pliocene to Holocene basin filling). The PPZ forms an escarpment in Pliocene and Pleistocene soft rock and is supposingly acting as an earthquake zone since late Pleistocene time. The uppermost Pleistocene of 0.12–0.01 Ma deposited only in front of the fault scarp dates the fault activity. The crossing faults envelope crustal wedges under different local stress conditions. Their intersection line forms a zone beginning at the surface near Nový Kostel, dipping south with increasing depth, probably down to about 12 km. The intersection zone represents a crustal anomaly. There fault movements can be blocked up and peculiar stress condition influence the behaviour of the adjacent crust. An ENE-WNW striking dextral wrench fault was detected which is to expect as kinematic counterpart to the ca. N-S striking sinistral shear zones. Nearly E-W striking fracture segments were formerly only known as remote sensing lineaments or as joint density zones. The ENE shear zone is characterized by a set of compressional m-scale folds and dm-scale faults scattered within a 20 m wide wrench zone. It is built up of different sets of cleavage-like clay plate pattern of microscopical scale. The associated shear planes fit into a Riedel shear system. One characteristic feature are tiny channels of micrometer scale. They have originated after shear plane bending and are the sites of CO2 mantle degassing.  相似文献   

6.
We present the pattern of seismic activity in the period between 2001 and 2007 for the Novy Kostel focal zone, which is recently the most active zone of the West-Bohemia/Vogtland earthquake swarm region. While the year 2001 was characterized by dying out of the 2000-swarm activity in the form of a few microswarms, almost no seismicity occurred in the period between 2002 and 2003. Since 2004 an elevated seismic activity occurs in the form of repeating microearthquake swarms. We used a relative location method to relate the hypocenter positions of the post-swarm activity to the geometry of the 2000-swarm cluster. We found that the activity has concentrated in several clusters, which have been repeatedly activated. Some clusters coincide with the position of the previous activity; the others have activated so far inactive deep segments at the southern edge of the Novy Kostel fault. Besides the shift of the hypocenters to the edges of the previously active area we observe a southward migration of the activity and an increase of maximum depths of earthquakes from 10 to 13 km. The waveform similarity analysis disclosed that some fault patches consist of only a single, repeatedly activated fault plane, while the others consist of multiple, differently oriented fault planes activated almost simultaneously. Most of the focal mechanisms are consistent with the geometry of hypocenters showing NNW-SSE trending steep fault planes with left-lateral strike-slip mechanisms and varying dip-slip component.  相似文献   

7.
Summary Systematic observations of natural seismic activity in the West-Bohemian earthquake-swarm region began at two autonomous seismological stations of the Geophysical Institute, the digital station Novy Kostel (NKC) and the analogue station Skalná (SKC), in May 1986 and December 1989, respectively. This paper presents the station data of NKC and SKC, the method of processing the records, and the database structure. It also includes the interpretation of observations made at these stations in the period 1986–1993. It was found that the seismic activity in the West Bohemian region, in the Vogtland (Saxony) and NE Bavaria was continuous. Between two strong earthquake swarms, the energy in this area was released in the form of a large number of micro-earthquakes of a markedly swarm-like nature, mostly concentrated in six focal regions.  相似文献   

8.
Regional geophysical data from detailed gravity survey, airborne magnetometry and gamma-ray spectrometry were analysed in order to determine the subsurface extent of contrasting geological bodies and to highlight subtle anomalies which can be related to the occurrence of earthquake swarms. Potential field data were compiled into contour and colour-shaded relief maps suitable for detecting structural tectonic elements. A shaded relief map of the horizontal gradient of gravity was used to detect considerable structural and tectonic features. The results of airborne gamma-ray spectrometry, showing the regional total gamma-ray activity, abundance of uranium, thorium and potassium, were included in this study. Only the two most instructive maps – the total gamma-ray activity and the abundance of potassium are shown. The main line of epicentres Nový Kostel – Poátky coincides well with the N-S configuration of abundances of these natural radioactive elements. The epicentres of micro-earthquakes detected by the local seismological network KRASLICE for the 1991 to 1998 period were plotted in the geophysical maps. The hypocentres of earthquakes in the main epicentral zone at Nový Kostel were projected onto the crustal density model based on the interpretation of seismic reflection profile 9HR and gravity data. The average distance between the Nový Kostel epicentral zone and the seismic profile was 4-5 km. Based on the interpretation of gravity data the hypocentres of the main epicentral zone seem to be associated with the western margin of the Eibenstock - Nejdek (Karlovy Vary) Pluton and, beside that, they follow the depth level where the allochthonnous part of the Saxothuringian Zone is thrust over the European parautochton. A drawing of the geodynamic model of the area is also shown.  相似文献   

9.
We analyze refraction measurements along a short profile in western Kru?né hory crystalline unit. The profile passed close to the seismically active zone of Nový Kostel. The measurements were carried out to distances of about 15 km using quarry blasts near the village of Horní Rozmy?l, located at the eastern margin of the crystalline unit. Smoothed P-wave travel times were interpreted using the Wiechert-Herglotz method, which yielded a 1-D velocity model of the shallow crustal structure of the crystalline unit down to a depth of 1.7 km. The P-wave velocity of the model increases from about 4.0 km/s at the surface to 5.9 km/s at a depth of 1.7 km. The superficial velocities of our model are somewhat higher than the superficial velocities of the model that is routinely used for earthquake location in the region.  相似文献   

10.
本文通过对四川木里地区地震震源位置的重新确定,反演了较大地震震源机制解,结果显示:①重定位后的小震群震中分布成带状,地震震源深度分布在0—12km范围内;②经过对震群空间分布进行仔细分析,认为其发震构造是小金河断裂西侧的一条NWW向分支断裂;③3次4.0级以上地震震源参数存在明显差异,浅源逆冲事件表现有受垂直方向应力(重力)作用的特征,走滑事件表现出与区域应力构造活动有关。  相似文献   

11.
An analysis of the space-time locations of earthquake swarms in the Kamchatka subduction zone showed that the source zones of these earthquake swarms, as well as of the epicenters of most tsunami-generating earthquakes, are confined to the seamounts in the barrier ridge between Kamchatka and the deep-sea trench. The ??dot clouds?? of hypocenters of practically all earthquake swarms dip toward the trench on seismic sections that are oriented across the subduction zone trend; this fits the auxiliary focal solution of tsunami-generating earthquakes as was first noticed by L.M. Balakina and is in agreement with the model experiment carried out by L.I. Lobkovskii et al. We discuss a likely scenario for the generation of reverse-thrust blocks whose movements are accompanied by earthquake swarms and by tsunami-generating earthquakes. We estimate the locations of the most probable tsunami generation.  相似文献   

12.
华北地区近年来小震群活动频繁, 在有数字波形记录的中强地震相对缺乏的背景下, 小震群发震构造精细研究可为华北地区地震危险性分析和地震趋势判断提供重要依据. 本文利用匹配滤波技术对2013年8月22—25日河北蔚县小震群遗漏地震事件进行检测, 并通过地震精定位和震源机制求解分析此次震群的发震构造. 计算结果显示, 通过互相关扫描检测到18次被地震台网常规分析遗漏的地震, 约为地震目录给出的13次地震事件的1.38倍. 该震群发震构造有北东向和北西向两组断裂, 震群活动前期以北东向构造活动为主, 后期地震主要发生在北西向构造, 北西向构造在此次震群活动中地震频度和强度均高于北东向构造. 震源机制计算结果显示北西向构造发震机制以正断拉张为主.   相似文献   

13.
In the fourth quarter of 2016, the system for monitoring induced seismicity in the Kuznetsk Basin (Kuzbass) began to record increasing seismic activity in the area of the Kaltan open-pit coal mine, which was struck by a series of seismic events felt in cities and settlements of the Kuzbass. In addition to the existing monitoring network, a temporary network of stations has been established, which has significantly increased the accuracy and representativeness of technogenic earthquake records. Markedly expressed seismic activation near open mine works (the Kaltan open-pit mine) has been revealed. The seismically activated area covers several open mine works and their vicinity. The strongest earthquakes have occurred outside the open-pit mine at the boundary of the dump. Inside the activated area, near the operating underground mine works (the Alarda mine), local seismic activation represented by low-energy technogenic earthquakes has been recorded. The largest number of perceptible earthquakes occurred in the fourth quarter of 2016. According to the monitoring data, the number of earthquakes with magnitudes 2.5–4 decreased in early 2017, but since February 2017, seismic activation has increased around the underground mine works, which was manifested as a significant increase in the number of low-energy technogenic earthquakes. In fact, the technogenic seismic hazard has shifted from open mine works towards the area of the operating underground mine.  相似文献   

14.
Recent seismological studies of the Cameroon Volcanic Line show that Mt. Cameroon is the most active centre, so a permanent seismic network of six seismographs was set up in its region between 1984 and 1986. The network was reinforced with temporary stations up till 1987, and the local seismicity was studied. Here we emphasise a statistical analysis of seismic events recorded by the permanent seismic stations. Four swarms lasting 9 to 14 months are identified at intervals of 2–3 years. Most earthquakes are felt (intensity and magnitude, respectively, less than VI MM and 5) during the first three swarms and a few during repose periods. The main focal regions are the northwest and southeast flanks, the Bimbia and Bioko regions in the South of the volcano. Hypocentres are distributed from the surface to 60 km depth indicating crustal and subcrustal activities. The subcrustal events are observed only in the southeast flank, they are the most regular earthquakes with a monthly frequency of 9 to 15 events. They are characteristic earthquakes with magnitude 2.8 ± 0.1. Between 1984 and 1992, their yearly mean time interval between successive events range from 50 to 86 hours. For that period their occurrence can be modelled as a stationary renewal process with a 3-day period. But the analysis of variance shows possible significant differences among yearly means. A Weibull's distribution confirms that the time intervals between successive deep events are not independent, and in 1993 a swarm of deep earthquakes is recorded, hence a non-loglinear magnitude/frequency relation. The deep seismicity is thought to be associated with a zone of weakness (perhaps a magmatic conduit) and may have some close relationship with the magmatic activity.  相似文献   

15.

The great Tancheng earthquake of M8? occurred in 1668 was the largest seismic event ever recorded in history in eastern China. This study determines the fault geometry of this earthquake by inverting seismological data of present-day moderate-small earthquakes in the focal area. We relocated those earthquakes with the double-difference method and found focal mechanism solutions using gird test method. The inversion results are as follows: the strike is 21.6°, the dip angle is 89.5°, the slip angle is 170°, the fault length is about 160 km, the lower-boundary depth is about 32 km and the buried depth of upper boundary is about 4 km. This shows that the seismic fault is a NNE-trending upright right-lateral strike-slip fault and has cut through the crust. Moreover, the surface seismic fault, intensity distribution of the earthquake, earthquake-depth distribution and seismic-wave velocity profile in the focal area all verified our study result.

  相似文献   

16.
GPS observations in the Western Bohemia/Vogtland earthquake swarm region revealed indications of horizontal displacements of low amplitude, and no clear long-term trend in 1993–2007. On the other hand, in 1998–2001 there was relatively significant active movement along NNE-SSW oriented line that we called the “Cheb-Kraslice GPS Boundary” (ChKB), identical with an important limitation of earthquake activity. The most impressive were dextral (right-lateral) movements in the 1998–1999 period followed by reverse sinistral (left-lateral) movements in 1999–2000 that correlate with prevailing motion defined by fault plane solutions of the Autumn 2000 earthquake swarm. Before the February 2004 micro-swarm, two points located on opposite sides of the Mariánské Lázně fault showed extension in the order of about 7 mm in the same NNE-SSW direction of ChKB. The new NOKO permanent GPS station in Novy Kostel showed the peak-to-peak vertical changes up to 10 mm before and during the February 2007 micro-swarm. Annual precise levelling campaigns in the local network around Novy Kostel revealed regular vertical displacements during the 1994, 1997 and 2000 earthquake swarms. The points around the Novy Kostel seismological station showed uplift during the active periods, including the micro-swarm February 2004. However, no such indication was observed on levelling points in the period of the February 2007 swarm. Long-term vertical displacements depend on the same direction NNE-SSW (ChKB) as the GPS displacements. Both geodetic techniques have revealed oscillating displacements, GPS horizontal, and levelling vertical, rather than any long-term trends in the study period 1993–2007. The displacements exhibited significant spatial and temporal relation to tectonic activity (earthquake swarms) including their coincidence with the seismologically determined sense of motion along the fault plane during earthquakes.  相似文献   

17.
陈颙 《地球物理学报》1978,21(02):142-159
本文根据近年来的一些强震震例,从震源机制角度分析了前震、余震和地震群的不同特点,指出在震源机制的一致程度方面,前震、余震和地震群有明显的差别,提出了描述一群地震活动性方面的一个“群体”参数——震源机制一致性,并试图给这个参数定量化.本文强调判断一群地震震源机制一致性时,用地震记录波形鉴别法常常是迅速方便的,还给出了一些用震源机制一致性参数确定地震危险性的实例.  相似文献   

18.
朝鲜自2006年10月9日第一次开展地下核试验以来,分别于2009年5月25日、2013年2月12日、2016年1月6日、2016年9月9日和2017年9月3日相继进行了5次规模较大的核试验.由于核爆炸和天然地震的震源机制不同,可以通过核爆炸产生的地震波来进行核试验的监测,核试验相关地震学研究一直是国内外专家关注的焦点.本文分别从事件定位、性质识别、当量和埋藏深度等几个方面总结了近些年来朝鲜核试验相关地震学的研究进展,并基于文献计量学方法对朝鲜核试验相关地震学研究现状进行分析,综合结果表明,近些年基于朝鲜核试验的相关地震学研究的主要研究方向为核试验定位、当量估算以及震源深度等.  相似文献   

19.
The 1977–1978 eruption of Usu volcano is discussed from the geophysical standpoint as a classic example of dacite volcanism. The activities of dacitic volcanoes are characterized by persistent earthquake swarms and remarkable crustal deformations due to the high viscosity of the magmas; the former include shocks felt near the volcanoes and the latter accompany formation of lava domes or cryptodomes.The hypocenters of the earthquakes occurring beneath Usu volcano have been located precisely. Their distribution defines an earthquake-free zone which underlies the area of doming within the summit crater. This zone is regarded as occupied by viscous magma. The domings within the summit crater forming the cryptodomes have amounted to about 160 m. In addition to uplift they showed thrusting towards the northeast. As a result, the northeastern foot of the volcano has contracted by about 150 m. The relation between crustal deformation and earthquake occurrence is examined, and it is found that the abrupt domings are accompanied by the larger earthquakes (M = 3–4.3). Both the seismic activity and the ground deformation are shown to have a unique and common energy source.The energy of activities of Usu volcano consists of the explosive type, the deformation type and the seismic type; the second and the third are in parallel with each other in discharges, and both energies are complementary to the explosive energy. The explosive energy and the seismic energy have been calculated for an explosion sequence, and it is concluded that the deformation energy is about 10 times greater than the seismic energy. The discharge rate of the seismic energy and the upheaval rates of the cryptodomes have continued to decrease since the outburst of the eruption, except for a small increase at the end of January 1978. Eruptions are governed not only by the supply of the energies but also by the depth of the magma, which has gradually approached the surface. The last eruption occurred in October 1978; however, the crustal deformations and the earthquake swarms are still proceeding as of January 1980, albeit at a lower rate of activity.  相似文献   

20.
For more than 20 years, seismohydrological investigations have been undertaken at the mineral aquifer system of Bad Brambach (Vogtland, Germany). Two strong swarm earthquake series in 2000–2001 and 2008–2009 at the Nový Kostel epicentre (Czech Republic, 10 km E of BB) have enabled for the first time a comparison of seismological and groundwater hydraulic features in a semi-quantitative way. In spite of their similar spatial distribution in 2001 and 2008, the earthquake foci of each swarm migrated differently through time, horizontally as well as in depth. The seismic energy of the 2008–2009 events was released predominantly within 1 month, in contrast to 2000–2001 when it occurred over 3 months. The main distinctive features of each are seen in the hydraulic pressure anomalies which accompanied the earthquake swarms: number, shape, and progression (duration) of the anomalies. The comprehensive hydraulic data, with high temporal resolution, suggest that fluid triggering dominated not only the earthquake initiating phases. In particular, the long-lasting seismicity of the 2008–2009 swarm can be attributed to a continued triggering of weak earthquakes by over-pressured deep fluids. Here, the remaining static strain was obviously not sufficient to generate strong earthquakes as at the beginning of the earthquake swarm periods. Furthermore, the enduring high fluid pressure in 2009 could also indicate a continuation of the long-term gas flow increase observed at several gas outlets in the Vogtland/NW Bohemia region between 1998 and 2008. However, it is not possible at present to derive a systematic relationship between anomaly occurrence and seismic activity, as generally proposed in the context of earthquake prediction discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号